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From damage response to action
potentials: early evolution of neural and
contractile modules in stem eukaryotes

Thibaut Brunet and Detlev Arendt

European Molecular Biology Laboratory, Developmental Biology Unit, Heidelberg 69012, Germany

Eukaryotic cells convert external stimuli into membrane depolarization,

which in turn triggers effector responses such as secretion and contraction.

Here, we put forward an evolutionary hypothesis for the origin of the

depolarization–contraction–secretion (DCS) coupling, the functional core of

animal neuromuscular circuits. We propose that DCS coupling evolved in

unicellular stem eukaryotes as part of an ‘emergency response’ to calcium

influx upon membrane rupture. We detail how this initial response was sub-

sequently modified into an ancient mechanosensory–effector arc, present in

the last eukaryotic common ancestor, which enabled contractile amoeboid

movement that is widespread in extant eukaryotes. Elaborating on calcium-

triggered membrane depolarization, we reason that the first action potentials

evolved alongside the membrane of sensory-motile cilia, with the first

voltage-sensitive sodium/calcium channels (Nav/Cav) enabling a fast and

coordinated response of the entire cilium to mechanosensory stimuli. From

the cilium, action potentials then spread across the entire cell, enabling

global cellular responses such as concerted contraction in several independent

eukaryote lineages. In animals, this process led to the invention of mechano-

sensory contractile cells. These gave rise to mechanosensory receptor cells,

neurons and muscle cells by division of labour and can be regarded as the

founder cell type of the nervous system.
All the essential problems of living organisms are already solved in the one-celled . . .
protozoan and these are only elaborated in man or the other multicellular animals.

G. G. Simpson, The Meaning of Evolution, 1941. [1]
1. Introduction
The intracellular composition of all living cells differs radically from that of

extracellular fluids: the cytoplasm is richer in potassium, poorer in sodium—

and, in particular, much poorer in calcium (which does not exceed 1027 M in

the resting cell but reaches 1023 and 1022 M in blood and seawater, respect-

ively) [2,3]. The peculiar chemistry of the cytoplasm is often assumed to

reflect the environment of the first cells [4,5]. Indeed, based on their reconsti-

tuted membrane composition (rich in simple single-chain lipids), primitive

cells were probably leaky to small molecules—their intracellular ionic balance

thus necessarily matching the one of their environment [6,7]. One such possible

environment could have been geothermal fields [5]. The composition of the pri-

mordial ocean itself is debated [8], but it could have been calcium-rich from the

very beginning, or calcium could have accumulated as recently as 1.5 billion

years ago [9]. In any case, the presence of abundant extracellular calcium

poses a special challenge to cellular life, as a high quantity of intracellular cal-

cium is highly toxic to all living cells. One key reason is that energetic

metabolism is universally phosphate-based (e.g. ATP hydrolysis and synthesis
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Figure 1 . Excitation – contraction coupling across the eukaryotic tree of life. A first split between the plant lineage (Bikonta) and the animal lineage (Unikonta) is
favoured by most authors [30], and we follow this view here. However, alternatives are still not excluded [31]. Data on eukaryotic groups are from the literature
([32 – 35] and references in the text). Green ticks indicate the presence and red crosses indicates the absence. This distribution is consistent with the presence of
depolarization – contraction coupling via calcium in the last common eukaryotic ancestor.
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of nucleic acids release phosphate ions), but calcium readily

forms insoluble precipitates with phosphate [2,3,10].

The evolving discrepancy between intracellular and extra-

cellular chemistry forced concomitant adaptations of living

cells. No known cell has altered its cytoplasmic composition

to match modern environmental conditions but, instead,

ways to maintain the old cytoplasmic chemistry in the new

environment have evolved. The most prominent are active

sodium and calcium efflux pumps: Naþ and Ca2þ efflux

ATPases are widespread in both eukaryotes and prokaryotes,

and are probable ancestral features of all living cells [11–19].

Another shared strategy is concentration of calcium in

specialized storage spaces, both intracellular [20–24] and

extracellular, like cell walls or skeletal structures [10,25,26].

This discrepancy between the intracellular and extracellular

medium has two further consequences: the necessity to iso-

late the cell content—by enclosing it in tight membranes,

and quickly repairing any wound; and the necessity to main-

tain the transmembrane voltage close to its setpoint—as

required for the integrity of membrane protein structure

[27]. These two protective mechanisms probably evolved in

stem eukaryotes and set the stage for the evolution of a

powerful signalling system: influx of calcium and membrane

depolarization became the functional core of the later

evolving nervous systems.

We reason here that the key signalling role of calcium-

triggered depolarization in neuron and muscle physiology

(where it controls, respectively, secretion and contraction),

or depolarization–contraction–secretion (DCS) coupling,

evolved from an ancient ‘emergency response’ to external

calcium influx after membrane damage. We detail how con-

trolled membrane depolarization and action potentials

evolved from ancient voltage regulation mechanisms, and

how they became coupled to the downstream responses

such as ciliary beating and whole-cell contraction. Differential
distribution of these functions among distinct cell types by

division of labour finally gave rise to the configuration of

modern neuronal and neuromuscular circuits in animals.
2. From membrane rupture to depolarization –
contraction – secretion coupling

The control of actomyosin contraction by an increase in intra-

cellular calcium concentration, pivotal in animal muscle

physiology [28], appears to be an ancestral feature of

eukaryotic cells [29] (figure 1). Actin, myosin and calmodulin

are virtually universally present in eukaryotic genomes

[36–39]. Myosins are composed of a heavy chain containing

the motor domain (with ATPase and actin-binding activities)

and usually a light-chain binding neck domain. In most

myosin families, the light chains are calmodulin proteins; in

others, specialized calmodulin-related proteins have

evolved—such as the essential and regulatory light chains

of myosin II (MELC and MRLC) [40,41]. In all cases, the

light chains contain an EF-hand calcium-binding domain

[42–44]. (Notably, the control of contraction by direct binding

of calcium to the myosin light chain is lost in vertebrates

[45,46]). Besides animals, myosin-mediated cell contractions

have been observed in amoebozoans [47–49] and in the

green algae Volvox [50] and Chara [51]. How did this

tight and ancient coupling between calcium influx and

actomyosin-based contraction originate?

(a) Local contraction and secretion originated as a
damage response to uncontrolled calcium influx

Calcium concentration is always much larger (usually

about 105-fold higher) in the extracellular medium than in

the cytoplasm. Intracellular Ca2þ concentration has to be
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Figure 2. Excitation – secretion and excitation – contraction coupling in response to external Ca2þ during membrane repair.

Table 1. Electrochemical gradients for the main ions present in extracellular
fluids. Values for human kidney cells. Adapted from Lang et al. [52].

ion electrochemical gradient (mV)

Ca2þ 2190

Naþ 2130

CO3
22 250

Cl2 220

Kþ þ10
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maintained within a narrow margin because of the high tox-

icity of calcium ions (see above). Because of this extreme

concentration difference, calcium is by far the ion with the

steepest electrochemical gradient across the membrane (table 1).

Owing to this strong gradient and to its extreme toxicity,

an influx of extracellular calcium within the cell is both the

first detectable consequence and the main hazard of local

membrane rupture. It is thus unsurprising that, in all eukary-

otic cells studied, ‘wound healing’, i.e. membrane repair

mechanisms are quickly activated upon local rupture, and are

directly downstream of calcium ions [53]. Two major responses

are conserved across eukaryotes (figure 2): (i) contraction of an
actomyosin ring around the puncture, observed in both animals

[54–57] and plants [51,58–62]; (ii) exocytosis of vesicles that seal
the damaged membrane. The latter response is directly triggered

by calcium activation of SNAP-25 and synaptotagmin, in a

striking parallel to the mechanisms of neurotransmitter release

[63]. More specialized calcium-dependent proteins that control

vesicle fusion in both membrane repair and neurotransmitter

secretion were discovered later, such as ferlins (involved in

auditory neurotransmitter secretion [64]) and annexins

(involved in catecholamine secretion by chromaffin cells [65]).

Membrane repair by exocytosis is observed in animals [66,67]

and in plants [68–70].

We propose that this wound healing response dates back to

the last eukaryotic common ancestor (LECA) and was the first

manifestation of a tight coupling of depolarization (through
uncontrolled calcium influx), contraction and secretion,

referred to here as DCS coupling (figure 2). Membrane

wound healing is a vital necessity for any eukaryotic cell

which lacks a protective extracellular cell wall (as was the

case of ancestral eukaryotes [71]). There must thus have existed

a strong selective pressure for the evolution of membrane

repair from the very first stages of eukaryotic evolution

onwards. Owing to its steep concentration gradient and high

toxicity, there are good reasons for calcium in particular to be

the wounding signal—rather than any other ion or molecule.

Finally, calcium has remained the key trigger for actomyosin

contractility and exocytosis in other functional contexts, includ-

ing muscle contraction; in these more specialized cases, specific

mechanisms are required for calcium influx or release (from the

extracellular medium or internal stores) instead of calcium

influx being passively forced by wounding [72]. The general

control of exocytosis by calcium release has indeed been

confirmed in both plants and animals [73–75].
(b) Anticipating damage: evolution of mechanosensitive
Ca2þ channels

We propose that the next step in the evolution of eukaryote

DCS coupling has been the recruitment of stretch-sensitive cal-

cium channels, which allow controlled influx of calcium upon

mechanical stress before the actual damage occurs, and thus

anticipate the effects of membrane rupture (figure 3). Indeed,

ion channels of the TRP and Piezo families known to be

mechanosensitive in animals were ancestrally present in eukar-

yotes, and all characterized members are either partly or

uniquely calcium-permeant [76–79]. The mechanosensitive

role of Trp channels has been demonstrated both in animals

[78] and in the green alga Chlamydomonas [80], while bikont

Piezo channels still await functional characterization—but

mechanosensitive calcium incurrents (by mostly unknown

channels) are broadly present in plants [81,82].

To prevent the actual rupture, the first role of mechano-

sensory Ca2þ channels might have been to pre-activate

components of the repair pathway in stretched membranes.
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As another anticipatory step, actomyosin might have been

pre-positioned under the plasma membrane (hence the corti-

cal actomyosin network detected in every eukaryotic cell)

and might have also evolved direct sensitivity to stretch:

the ATPase activity of myosin is stimulated by tension via

the small GTPase Rho and the ROCK kinase [83], which are

also active in membrane repair [84]. Once its cortical posi-

tion and mechanosensitivity were acquired, the actomyosin

network could automatically fulfil an additional function:

cell-shape maintenance—as any localized cell deformation

would stretch the cortical actomyosin network and trigger

an immediate compensatory contraction (figure 3). This prop-

erty would have arisen as a side-effect (a ‘spandrel’ [85]) of

the presence of cortical actomyosin for membrane repair,

and quickly proved advantageous.
(c) Evolution of amoeboid movement
Once covering the cell cortex, the actomyosin network acquired

the ability to deform the cell by localized contraction. Acto-

myosin-mediated cell deformation is especially instrumental

in amoeboid locomotion, in which part of the cytoplasm

undergoes pulsatile contraction that project the rest of the cell

forward. Based on the genomic study of the protist Naegleria
[86], which has a biphasic life cycle (alternating between an

amoeboid and a flagellated phase), amoeboid locomotion has

been proposed to be ancestral for eukaryotes. It might have

evolved in confined interstitial environments, as it is parti-

cularly instrumental for cells which need to move through

small, irregularly shaped spaces by exploratory deformation

[87]. Amoeboid locomotion has recently been the focus of

regained interest with the discovery that a surprisingly wide

diversity of animal cell types (both embryonic and adult) can

undergo a switch to fast amoeboid locomotion under high-

confinement, low-adhesion conditions [88,89]. This ‘amoeboid

switch’ has been speculated to be evolutionarily ancient [88],

and might recapitulate an ancestral protist escape response to

pressure. One can hypothesize that, if stretch-sensitive calcium

channels and cortical actomyosin were part of the ancestral

eukaryotic molecular toolkit (as comparative genomics indi-

cates), membrane deformation in a confined environment

would probably trigger calcium influx by opening of stretch-

sensitive channels, which would in turn induce broad

actomyosin contraction across the deformed part of the cell

cortex, global deformation and cell movement away from the

source of pressure (figure 4). Similarly, in migrating fish kerati-

nocytes, stretching of part of the cell opens mechanosensitive

calcium channels and triggers local cell retraction, possibly by
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actomyosin contraction [90]. In Amoeba, cell contraction has been

proposed to be controlled by local cell depolarization [91,92]

and calcium influx [93,94]. One can thus propose that a simple

ancestral form of amoeboid movement evolved as a natural con-

sequence of the scenario outlined above for the origin of cortical

actomyosin and the calcium–contraction coupling (figure 4);

once established, it could have been further elaborated. As a

note of caution, the molecular mechanisms that mediate the

amoeboid switch under pressure are still unknown. If they

involved mechanotransduction by calcium influx, for example,

via stretch-sensitive calcium channels, this would support our

evolutionary hypothesis. Direct stretch-sensitivity of the acto-

myosin network (for example via ROCK) might also

have contributed.
.R.Soc.B
371:20150043
(d) The control of flagellar beating by calcium
In addition to the actomyosin-based effector system, the

LECA also possessed microtubule-based cilia [95–97].

These were both sensory and motile, representing an inde-

pendent sensory–effector system in a separate cellular

compartment. Besides cAMP and cGMP, calcium plays a con-

served role in the control of ciliary beating [98]. It is thus

tempting to speculate that, once calcium signalling had

gained control over primitive forms of amoeboid movement,

the same signalling system started to modify ciliary beating,

possibly for ‘switching’ between locomotor states. In Naegle-
ria, calcium signalling stabilizes the amoeboid phase at the

expense of the flagellated phase [99,100]. If calcium-induced

ciliary arrest is ancestral for eukaryotes (which remains to

be fully tested, see below), this might have been part of a

calcium-mediated switch to amoeboid locomotion.

Calcium has a ubiquitous connection to flagellar/ciliary

beating, and it is tempting to hypothesize that cross-talks

between the incipient calcium signalling pathways and flagellar

control were established early in evolution. However, the effects

of calcium on cilia are highly taxa-specific and apparently

fast-evolving, making ancestral reconstructions challenging.

In animals, calcium usually inhibits flagellar or ciliary moti-

lity: calcium induces ciliary arrest in mussel gill cilia [101–103],

in ascidian gill slits [104] and in embryonic epidermal cilia of sea

urchins [105]. In sperm cells of ascidians [106], sea urchins

[107,108], siphonophores [109] and snails [110], calcium bursts

increase the asymmetry of flagellar beating and the swimming

curvature, which serves to change direction during chemotaxis

[111]; in Ciona sperm cells, the calcium sensor has been shown to

be calaxin, a protein that directly inhibits outer-arm dyneins,

thus triggering beating asymmetry [112]—showing that the

response of sperm flagellar beating to calcium is inhibitory at

the molecular level. Exceptions are known in vertebrates, such

as the cilia of the vertebrate foregut (mammalian airways and

frog oesophagus [98,113]) or the flagellum of mammalian sper-

matozoa [114], which respond to calcium by increasing beating

frequency. Another unique situation is known in ctenophores,

where calcium induces ciliary reversal [115].

In other eukaryotes, calcium usually mediates a switch in

the modalities of flagellar beating, but the details vary between

groups. In the green alga Chlamydomonas, calcium induces a

switch from asymmetric to symmetric beating [116,117]—thus

opposite to its effect in animal sperm. Confusingly, in two

other green algae—Pterosperma and Cymbomonas—calcium

induces an asymmetric-to-symmetric switch, similar to

animal sperm [118]. Sperm chemotaxis in the fungus Allomyces
[119] and the brown alga Ectocarpus [120] requires calcium

influx, like in metazoans, but it is unknown whether the

mechanisms are comparable. Like ctenophores, Paramecium
undergoes ciliary reversal in response to calcium [121]. In the

trypanosome Crithidia, calcium induces a switch in the direction

of flagellar wave propagation, from tip-to-base (a trypanosome-

specific propagation mode) to the (more canonical) base-to-tip

direction [122]. The molecules involved, when known, are

equally disparate: the calcium sensor of the Ciona sperm flagel-

lum, calaxin, is opisthokont-specific; conversely, the calcium

sensor of Chlamydomonas, the light chain 4 of outer-arm

dynein (LC4), is absent from opisthokont genomes [123].

This diversity of effects and mechanisms suggests that the

ciliary response to calcium is relatively fast-evolving, which

makes it difficult to deduce which effect (if any) calcium had

on ciliary beating in the LECA. Possibly, in ancestral eukar-

yotes calcium induced a relatively simple switch (such as

ciliary arrest, as still seen in many animal cells and in Chlamy-
domonas in response to high Ca2þ concentrations [116]), which

was then gradually modified into more subtle modulations of

beating mode with a fast turnover of molecular actors mediated

by differential addition, complementation and loss. Alterna-

tively, control of cilia by calcium could have evolved

convergently—but such convergence would then have been

remarkably ubiquitous, as there seems to be no eukaryotic fla-

gellum that is not controlled by calcium in one way or another.

Testing these hypotheses will require better mechanistic under-

standing of ciliary control in the taxa already studied, as well as

broader taxonomic sampling, for example including Naegleria,

flagellated amoebozoa (such as Pelomyxa or Phalansterium) or

flagellated fungi (Chytridiomycota).
3. The ciliary origin of action potentials
Ab initio, membrane depolarization by calcium influx was

a gradual process. In excitable cells, however, the initial

membrane depolarization is not immediately followed by

homeostatic return to the setpoint; rather, depolarization is

first actively amplified if it goes beyond a certain threshold,

and then quickly terminated. This set of events is called an

action potential. Action potentials are all-or-nothing electri-

cal spiking events, which propagate in a regenerative and

unidirectional fashion across the cellular membrane (or

across the membrane segment that expresses the necessary

channels, unidirectionality being due to channel inacti-

vation)—thus allowing fast concerted responses to external

signals. We propose here that the first context where this

enhancement/binarization of depolarization evolved was

the cilium.

(a) Evolution of depolarization-activated calcium and
sodium channels

Active amplification of depolarization requires the opening of

voltage-gated channels permeant to external cations. The

evolution of these channels was a prerequisite to the evol-

ution of action potentials and, importantly, predated the

LECA (box 1). The phylogenetic tree of voltage-gated-like

ionic channels suggests that Naþ- or Ca2þ-permeant channels

evolved by modification of the ancestral stock of voltage-

buffering Kþ channels, and that such modification happened

twice [128,143,144]: one lineage gave rise to the CNG and



Box 1. Evolution of voltage-gated ion channels

All transmembrane proteins of the VGL (voltage-gated-like) superfamily contain a central pore delimited by four identical

domains. In the ancestral state, these four domains are made of distinct polypeptidic chains, and the channel thus forms

by assembly of four subunits. It is assumed that the first ion channels were probably potassium-permeant channels of the

Kir type (four subunits of a very simple structure: two transmembrane domains each). Indeed, similar channels are wide-

spread in bacteria (KcsA) [124] (figure 5a). Kir channels are ubiquitously expressed and respond to hyperpolarization by

allowing potassium influx—so favouring reversal to the resting potential [125]. Their voltage sensitivity appears indirect

and due to voltage-dependent gating by Mg2þ and polyamines [126,127]. The phylogenetic tree of voltage-gated-like chan-

nels suggests that, from these ancestral proteins, Kþ channels with a more complex structures (four subunits of six

transmembrane helices each) evolved, with direct voltage sensitivity (Kv) or sensitivity to calcium influx (KCa). Another

branch led to the constitutively active and mechanosensitive channels of the two-pores K2P family (four transmembrane

domains). Kv channels might predate eukaryotes, as candidate Kv channels are broadly detected in the genomes of both uni-

konts [128] and bikonts (figure 5b)—as had long been assumed from electrophysiological evidence of voltage-dependent Kþ
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currents in plants and protists [129–131]. Moreover, similar (and possibly homologous) voltage-dependent potassium chan-

nels have been found in prokaryotes [132,133]. It is likely that all these potassium channels ancestrally contributed to the

same role: maintaining the resting potential and restoring it upon accidental or controlled depolarization (as in response

to membrane damage or sensory calcium influx). This is indeed still the function of Kv channels in non-excitable cells

such as lymphocytes [134]. The sister-group of one Kv subfamily (Kv10 – 12) is a clade of influx cationic channels that acquired

sodium/calcium permeability and gating by cyclic nucleotides or hyperpolarization (CNG and HCN families) [135–137].

Sensory Trp channels have been reported in Chlamydomonas [80,138] and one Piezo channel (of unknown function) is pre-

sent in Arabidopsis [82], suggesting that their emergence predates the LECA.

The Nav and Cav channels acquired a peculiar one-domain structure (with all four domains joined into one unique poly-

peptidic chains instead of being distinct subunits) and have been proposed to be most closely related to the TPC family, a

subset of Trp-like channels with an intermediate two-domain structure (thus suggesting a two-step tandem duplication his-

tory) [139]. (One voltage-dependent sodium channel detected in some bacteria, NaChBac, has a one-domain structure and

might have evolved convergently to its eukaryotic equivalent [140,141]).

Box 2. Specialized calcium-controlled contractile systems.

In some eukaryotic lineages, the ancestral actomyosin system was complemented or replaced by other, more taxonomically

restricted contractile modules that allowed even faster contractions. These are instrumental, for example, in escape response.

Notably, in all known cases, control by calcium appears to have been retained. For example, many unicellular green algae,

such as Platymonas, display a calcium-sensitive contractile protein, called centrin, as part of their striated ciliary rootlet,

which, upon membrane depolarization and calcium influx, drives local membrane bending and flagellum protrusion/retrac-

tion [153–156]. In Alveolata (a group which includes ciliates and dinoflagellates), the centrin-based system is hugely

expanded into a cell-wide contractile apparatus, which is able to drive contraction of the entire cell in some ciliates (like Para-
mecium or Stentor), or of large specialized cellular structures—such as the piston of the dinoflagellate Erythropsidinium [157],

or the stalk of the ciliate Vorticella [158] which quickly retracts upon mechanical or photic stimulation. In fact, centrin has been

discovered independently as part of the contractile apparatus of Vorticella, the spasmoneme, and given the name spasmin

[34,159–166]. Another mechanism for excitation- and calcium-dependent fast retraction evolved convergently in the rhizarian

Actinocoryne and is mediated by catastrophic disassembly of microtubules [167–172]. Both the centrin/spasmin system and

the microtubule disassembly-based systems allow faster contractions during escape response than actomyosin. Both of these

new mechanisms retained dependency on calcium, which might have facilitated continuous and stepwise complementation,

and ultimately replacement, of actomyosin systems by these specialized mechanisms.
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HCN families and another led to the emergence of the Trp

channels, a family of mostly thermo- or mechanosensitive

and calcium-permeant channels. Importantly, Trp channels

represent the sister clade to the voltage-gated sodium and

calcium channels (Nav and Cav) that are key to the generation

of action potentials figure 5a). Nav/Cav channels have been

identified in genomes of choanoflagellates [145], apusozoans

(the sister-group of opisthokonts) [146] and several bikont

lineages [147], which makes a strong case that they existed

in the LECA. The ancestral presence of voltage-gated Nav/

Cav channels suggests that the LECA was able to support

bona fide action potentials (box 1).

The ancestral Nav/Cav channels were probably pre-

dominantly permeable to calcium [146,148], and functioned

to amplify and propagate calcium influx upon excitation.

Sodium permeability, once evolved, allowed spatial segre-

gation of sodium and calcium channels: the sodium-permeant

membrane portion specialized in propagating the signal (with-

out undergoing the toxic and/or signalling effects of calcium),

while the calcium-permeant portion specialized in responding.

This is observed in bilaterian neurons, with Nav channels being

preferentially localized along the axon and Cav channels being

preferentially localized in the pre-synaptic active zone

[149,150]. The Nav and Cav families diverged before the last

common ancestor of opisthokonts, as both can be detected in

apusozoan genomes, together with mixed identity Nav/Cav

channels apparently basal to the split [146]. Early Nav family
members were permeant to both sodium and calcium, and

full specificity to sodium only evolved in bilaterians and in

medusozoans, probably in line with more active lifestyles and

faster movements [145].
(b) The first action potentials and their function
Once Nav and Cav channels existed, action potentials were

possible, and could spread in a regenerative fashion over the

domain of the plasma membrane that contains these channels.

Action potentials allow a fast, global binary response to

depolarization over the whole membrane domain that

expresses the right channel complement.

What could have been the ancestral function of action

potentials? While amoeboid movement is probably ancient

(as argued above), electrophysiological recordings of amoe-

bae only indicate the involvement of graded potentials

[91,151,152]—unsurprisingly, as amoeboid movement relies

on (graded) contractions of part of the cortex rather than a

global binary response. Some cell-wide binary responses

mediated by action potentials have been described in other

protists—for example, the escape response of Stentor, Vorti-
cella and Actinocoryne (box 2)—but they involve highly

specialized mechanisms and are probably derived. Action

potentials of unknown function have also been detected in

the green algae Chara [173], Eremosphaera [174,175] and Acet-
abularia [51], and in the diatom Odontella [176].
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Figure 6. Loss of Nav/Cav channels correlates with loss of flagella in eukaryotes.
Channel presence/absence is indicated following Moran et al. [128] and Verret et
al. [147]. Putative Nav/Cav were identified by mutual best BLAST hits in
the genomes of Allomyces (genome on the Broad Institute website http://
www.broadinstitute.org/annotation/genome/multicellularity_project/Blast.html)
and Physcomitrella (genome on the NCBI website http://blast.ncbi.nlm.nih.gov);
no such candidate was found in spermaphyte genomes. The correlation closely
follows the pattern of flagellum loss within groups such as diatoms and embry-
ophytes. Two exceptions are Ostreococcus (which might have lost its flagella fairly
recently, as even closely related green algae retained them [182]), and the chy-
tridiomycete Spizellomyces, which has flagellated zoospores. It will be interesting
to investigate the existence and determine the mechanism of flagellar beating
control in the absence of Cav channels in this fungus. The CCH1 channel of
yeast was originally considered a Cav homologue [183] but has been shown
to be orthologous to the sodium leak channels NALCN (belonging to a branch
that diverged at the base of the Nav/Cav clade) [184]. As a caveat, similarly
detailed orthology analyses still have to be performed for bikont channels.
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An interesting situation has been described in the green

alga Chlamydomonas, where action potentials are exclusively

detected in the flagellum, while the rest of the cell presents

only graded potentials [177,178]. Here, action potentials med-

iate a fast switch in flagellar beating. The Chlamydomonas
voltage-dependent calcium-channel Cav 2 is restricted to the

tip of the flagellum [179], while the mechanosensory TRP11

channel is present at its base [138]. This peculiar organization

explains the restriction of action potentials to the flagellum

in Chlamydomonas and provides functional insights into the

organization of the single-celled sensory–effector arc: external

mechanical signals are detected at the flagellar base (where

active bending is restricted), and action potentials spread

quickly along the whole flagellum (but not the rest of the cell)

to allow fast and coordinated beating reversal upon stimulation.

Several lines of evidence suggest that action potentials—

and the corresponding Nav and Cav channels—evolved

in the context of the flagellum. First, in Paramecium as in

Chlamydomonas, Cav channels are exclusively detected

within the membrane of the cilia [180,181]. Second, and
most important, loss of Nav/Cav channel has been prevalent

during eukaryotic evolution—and almost perfectly correlates

with cases of secondary loss of flagella (figure 6). This

strongly suggests that flagella are the primary locus of

action potentials in most protists. (Note that electrophysio-

logical recordings in some ciliated or flagellated protists,

such as Paramecium (as shown in figure 1), only showed

graded potentials, but that, like in Chlamydomonas, action

potentials might be restricted to the flagellar or ciliary

membrane, which has not always been recorded).
4. Towards the animal nervous system
We thus propose that, in ancestral eukaryotes, the cell body

membrane only showed graded potentials, while action

potentials were restricted to the cilia/flagella. However, in

several eukaryotic lineages, regenerative propagation of

action potentials has been described—for example, in protist

escape responses (box 2) and in groups forming unusually

large colonies or syncytia (such as fungal hyphae [32,33]

and the vascular tissues of land plants [185]), where action

potentials appear to be specifically involved in long-range

communication. Finally, in animals, action potentials spread

from the cilium to a large part (or the totality) of the

electrically excitable cell (neurons and myocytes).

(a) The birth of mechanosensory – contractile cells
When did this shift in the spreading of action potentials from fla-

gella to the cell body occur, which was key to the evolution of

animal nervous systems? Choanoflagellate electrophysiology is

undescribed, and it would be interesting to know whether

action potentials are restricted to their flagellum or also invade

the cell body. Regarding sponges, the data is equally scarce.

Interestingly, functional assays suggest that cellular sponges

lack action potentials, as well as the ability to stop the flagellar

beating of choanocytes [186], and Kv and Nav channels appear

lost from the Amphimedon genome (but some Cav are retained)

[128]. This suggests that spreading of action potentials beyond

the cilium may have only been acquired after the sponge lineage

diverged from other animals—and that cellular sponges under-

went some degree of loss of electric excitability when they lost

the ability to control flagellar beating. The only exception

appears to be the syncytial glass sponges, in which global

arrest of flagellar beating is coordinated by action potential

propagation along the syncytium [187].

In ctenophores, action potentials have been recorded from

the cell bodies of the large ciliary comb cells [188] as well as

muscle cells (see below); and in most eumetazoans, action

potentials are likewise detected in other cell parts beyond the

cilium—most prominently, the neuronal axon or the whole

sarcolemma of contractile cells. This has enabled global cellu-

lar responses such as concerted contraction, representing the

birth of mechanosensory–contractile cells, that act in the con-

text of a whole-tissue contraction (rather than in a cellular

context as found during amoeboid movement, see above).

How did this spread occur? A tantalizing possibility

(depicted in figure 7) is that, in early mechanosensory–

contractile myoepithelial cells [189], the action potential was

regeneratively propagating along the whole cell—across the

entire apical and basolateral membranes until it reached the

basal contractile process. Such cell-wide action potentials

have indeed been proposed to exist, for example, in bipolar

http://www.broadinstitute.org/annotation/genome/multicellularity_project/Blast.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/Blast.html
http://www.broadinstitute.org/annotation/genome/multicellularity_project/Blast.html
http://blast.ncbi.nlm.nih.gov
http://blast.ncbi.nlm.nih.gov
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spider mechanoreceptors, where action potentials originate in

a sensory dendrite, and are propagated to the soma and the

axon [190]. Alternatively, the electric signal might have

been passively conducted across the soma and re-amplified

in the basal contractile parts of the cell.

(b) Evolution of neurons and myocytes by division
of labour

In extant ctenophores [191], cnidarians [192] and bilaterians,

action potentials have been recorded from neuronal cell types

as well as diverse myocytes, corroborating the idea that

muscle cells and neurons arose from mechanosensory–
contractile cells by division of labour [189,193]. Following this

scenario, various sensory, secretory and contractile modules

and functions were segregated to different cell types, so that

the depolarization–secretion and depolarization–contraction

couplings became the functional core of neuron and myocyte

physiology, respectively (figure 7). Action potentials would

have been selectively retained where there is a need for either

cell-wide all-or-none response (such as muscle contraction) or

long-range propagation (such as along axons).

Myocytes specialized on converting calcium signals into

contractions. In line with that specialization, additional molecu-

lar actors have evolved in animals to confer heightened calcium

sensitivity to myosin—including the myosin light-chain kinase
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(MLCK) controlled by calmodulin (at the base of Metazoa), tro-

ponin C (in the striated muscles of bilaterians) and caldesmon (in

the smooth muscles of vertebrates) [29]. In vertebrates, these

upstream regulators have entirely taken over, as direct sensitivity

of myosin to calcium has been lost [46]. Myosin evolution thus

illustrates the frequent theme in molecular evolution of irrevers-

ible increase of complexity by evolution of redundant

mechanisms within a pathway, followed by differential loss of

function between its components [194].
.org
Phil.Trans.R.Soc.B

371:20150
5. Conclusion
A clear pattern is emerging that the complex electrical signal-

ling mechanisms of animal neuromuscular circuits emerged

from similar properties in single-celled eukaryotes, and

that those ultimately derive from emergency responses to

accidental events such as cell wounding. Over evolution,

our cells acquired the ability to mimic these accidents, by let-

ting in external calcium ions from the environment (or

releasing them from internal stores). We argue that the
choice of calcium as a ubiquitous ‘informational ion’ can

be ultimately tracked down to its high toxicity, and to the

necessity to exclude it from the cytoplasm.

Our scenario is testable in several important ways. The role

of the DCS coupling in membrane repair should be generally

conserved in eukaryotes, beyond plant and animals. Stretch-

sensitive calcium channels would be expected to play a role in

pressure-induced switch to amoeboid locomotion. Flagellum-

or cilium-restricted action potentials, with corresponding

restriction of Nav/Cav channels, should be present in more

groups besides Chlamydomonas and Paramecium. Increased taxo-

nomic sampling should continue to reveal calcium-regulated

switches in flagellar or ciliary beating across eukaryotes, and

might help to determine the ancestral nature of this switch.
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175. Köhler K, Steigner W, Simonis W, Urbach W. 1985
Potassium channels in Eremosphaera viridis: I. Influence
of cations and pH on resting membrane potential
and on an action-potential-like response. Planta 166,
490– 499. (doi:10.1007/BF00391273)

176. Taylor AR. 2009 A fast Naþ/Ca2þ-based action
potential in a marine diatom. PLoS ONE 4, e4966.
(doi:10.1371/journal.pone.0004966)

177. Harz H, Hegemann P. 1991 Rhodopsin-regulated
calcium currents in Chlamydomonas. Nature 351,
489 – 491. (doi:10.1038/351489a0)

178. Harz H, Nonnengasser C, Hegemann P. 1992 The
photoreceptor current of the green alga
Chlamydomonas. Phil. Trans. R. Soc. Lond. B 338,
39 – 52. (doi:10.1098/rstb.1992.0127)

179. Fujiu K, Nakayama Y, Yanagisawa A, Sokabe M,
Yoshimura K. 2009 Chlamydomonas CAV2 encodes a
voltage-dependent calcium channel required for the
flagellar waveform conversion. Curr. Biol. 19, 133 –
139. (doi:10.1016/j.cub.2008.11.068)

180. Dunlap K. 1977 Localization of calcium channels in
Paramecium caudatum. J. Physiol. 271, 119 – 133.
(doi:10.1113/jphysiol.1977.sp011993)

181. Machemer H, Ogura A. 1979 Ionic conductances of
membranes in ciliated and deciliated Paramecium.
J. Physiol. 296, 49 – 60. (doi:10.1113/jphysiol.1979.
sp012990)

182. Peers G, Niyogi KK. 2008 Pond scum genomics:
the genomes of Chlamydomonas and Ostreococcus.
Plant Cell 20, 502 – 507. (doi:10.1105/tpc.107.
056556)

183. Paidhungat M, Garrett S. 1997 A homolog of
mammalian, voltage-gated calcium channels
mediates yeast pheromone-stimulated Ca2þ uptake
and exacerbates the cdc1(Ts) growth defect. Mol.
Cell. Biol. 17, 6339 – 6347.

184. Liebeskind BJ, Hillis DM, Zakon HH. 2012 Phylogeny
unites animal sodium leak channels with fungal
calcium channels in an ancient, voltage-insensitive
clade. Mol. Biol. Evol. 29, 3613 – 3616. (doi:10.
1093/molbev/mss182)

185. Brenner ED, Stahlberg R, Mancuso S, Vivanco J,
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