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Review

High-throughput screening (HTS) and high-content screen-
ing (HCS) are used to identify small-molecule modulators 
of either precise targets in target-based screenings or dis-
tinct pathways and phenotypes in phenotypic screenings.1,2 
Screening campaigns initially generate a large set of active 
compounds (primary hits). The most challenging task dur-
ing the early hit selection phase is to discard false-positive 
hits and at the same time score the most active and specific 
compounds.3,4 Therefore, a cascade of computational and 
experimental approaches should be used to select the most 
promising hits.5,6 This brief guide aims at presenting a short 
overview of essential procedures to experimentally triage 
primary hit sets toward specific and high-quality hits, while 
eliminating artifacts.

One important prerequisite for successful screening is 
the rigorous development of an optimized screening assay 
(biochemical or cell-based) in terms of robustness, repro-
ducibility, signal window, as well as adjustment to auto-
mated robotic platforms. Positive and negative controls 
should be available to check the quality of the assay and the 
generated data.7 It is safe to say, “Quality in, quality out.” 
Using such optimized assays to screen a large number of 
small-molecule modulators will generate a first list of active 
compounds (hits), which need to be confirmed in indepen-
dent experiments to pursue reliable hits. The primary 

screening is usually done at a single compound concentra-
tion. Thus, in a next step, the primary hit compounds are 
tested in a broad concentration range to generate dose–
response curves, from which IC50 values can be calculated.5 
Thereby, the shape of the dose–response curves can give 
important information. Dose–response curves with steep, 
shallow, or bell-shaped curves may indicate toxicity, poor 
solubility, or aggregation of the compound. Hence, these 
hits are usually removed. Compounds not generating dose–
response curves are generally discarded because of lack of 
data reproducibility. Notably, compounds with artifact 
nature can also provide convincing-looking dose–response 
curves. Therefore, to further reduce the number of false-
positive hits, computational and experimental strategies are 
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needed to effectively select specific compounds. In the fol-
lowing, we will briefly touch on computational approaches 
and mainly focus on experimental approaches.

Computational analysis of historic data from other 
screening campaigns can be useful to flag compounds with 
frequent-hitter potential.8 Such frequent-hitter activity may 
arise from general assay interference or from target or path-
way promiscuous molecules (e.g., pan-kinase activity). 
Importantly, larger datasets of historic screenings can be 
used to develop chemoinformatics filters [e.g., a pan-assay 
interference compounds (PAINS) filter] to spot and flag 
promiscuous and undesirable compounds or chemotypes 
causing general assay interference.9–13 Besides, structure–
activity relationship (SAR) analyses, which look at the rela-
tionship between the molecule structure and its biological 
activity, can help identifying truly active compound clus-
ters. SAR interpretations also need caution, however, 
because assay-interfering compounds can actually display a 
convincing SAR, which is referred to as a structure– 
interference relationship. Importantly, a genuine SAR pro-
vides confidence and potential for future lead optimiza-
tion.14 In contrast, a flat SAR suggests nonselective or no 
binding, and can be a criterion for exclusion of such hits.

Experimental efforts to follow up on HTS/HCS results 
should include counter, orthogonal, and cellular fitness 
screens (see Fig. 1, upper right), which can be conducted 
either in parallel or in a consecutive manner. These types of 
follow-up testing assays do not necessarily need to be high-
throughput, because the number of selected primary hits is 
markedly reduced compared to the size of the screening 
compound collection.

Counter screens are needed to assess the specificity of 
hit compounds and thus eliminate false-positive hits (arti-
facts).5 This process is critical to classify and eliminate 
compounds that interfere with the readout technology used 
in the screening assay (assay technology interference). 
Effects such as autofluorescence, signal quenching or 
enhancing, singlet oxygen quenching, light scattering, and 
reporter enzyme modulation can cause compound-mediated 
assay readout interference. In this case, counter screens can 
be designed in a way that bypasses the actual reaction or 
interaction, and solely measure the compound action on the 
detection technology. Also, hit compounds may disrupt 
affinity capture components; hence, a distinct tag exchange 
(e.g., His-tag versus StrepTagII) can generate hit confi-
dence. Buffer conditions can help reduce assay interference 
by adding, for example, bovine serum albumin (BSA) or 
detergents to counteract unspecific binding or aggregation, 
respectively. In cell-based assays, absorbance and emission 
tests can be performed in control cells. Moreover, nonselec-
tive inhibition of target-independent activity can originate 
from nonspecific protein reactivity, aggregation, chelation, 
or redox interference, which should be analyzed in indepen-
dent counter assays, usually in designed cell-free counter 
assays.

The purpose of performing orthogonal screens is to con-
firm the bioactivity of compounds found to be effective in 
the primary screen, with additional readout technologies or 
assay conditions to guarantee specificity.15 Orthogonal 
assays analyze the same biological outcome (e.g., biochem-
ical reaction or cellular phenotype) as tested in the primary 
assay, but use independent assay readouts.5 Also, biophysi-
cal assays are implemented in target-based approaches to 
characterize compound actions and affinity. Examples of 
complementary readout technologies to be used in valida-
tion experiments are:

1. Fluorescence-based readout during primary screen-
ing assays (biochemical or cell-based assays) can be 
backed up by luminescence- or absorbance-based 
readouts in follow-up analysis.

2. Biophysical assays, including surface plasmon 
resonance (SPR), isothermal titration calorimetry 
(ITC), microscale thermophoresis (MST), thermal 
shift assay (TSA), and nuclear magnetic resonance 
(NMR), should be used in biochemical target-based 
approaches to validate hit compounds as well as 
generate affinity data.

3. Bulk-readout assays (plate reader based, one read-
out value per well) in primary screening should be 
replaced by microscopy imaging and high-content 
analysis in follow-up testing to allow the inspection 
of single-cell effects of hit compounds rather  
than population-averaged outcomes. Thereby, high- 
content analyses (e.g., morphology, texture, translo-
cation, or intensity) will provide a more comprehen-
sive picture of the compound’s effects on the cellular 
phenotype.

4. In cell-based phenotypic screening, the use of dif-
ferent cell models (2D vs. 3D cultures; fixed vs. live 
cells) or disease-relevant (primary) cells can be pro-
ductive tools to validate screening hits in biologi-
cally relevant settings.

Cellular fitness screens are necessary to exclude compounds 
exhibiting general toxicity or harm to cells. This step is 
important to classify bioactive molecules that maintain 
global nontoxicity in a cellular context.16 Cellular fitness 
can be assessed using assays with bulk readout representing 
the health state of the treated cell population as a whole. 
Examples are investigations of cell viability (e.g., CellTiter-
Glo and the MTT assay), cytotoxicity [e.g., the lactate 
dehydrogenase (LDH) assay, CytoTox-Glo, and CellTox 
Green], or apoptosis (e.g., the caspase assay).17 In addition, 
microscopy-based techniques can be used to test cellular 
health, which can give a more detailed analysis of the pro-
portion of damaged versus healthy cells on a single-cell 
level. High-content analysis can evaluate cellular fitness 
using nuclear staining [DAPI (4′,6-diamidino-2-phenylin-
dole) and Hoechst] and counting, staining of mitochondria 
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Figure 1. Experimental approaches for high-quality hit selection.
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[e.g., MitoTracker and TMRM/TMRE (tetramethylrhoda-
mine methyl ester and tetramethylrhodamine ethyl ester, 
respectively)], or analysis of membrane integrity (e.g., 
TO-PRO-3, PO-PRO-1, and YOYO-1).18 In addition, cell 
painting is a high-content image-based format for morpho-
logical profiling using multiplexed fluorescent staining of 
eight broadly relevant cellular components or organelles.19 
This extensive staining and subsequent machine learning 
analysis can provide a comprehensive picture of the cellular 
state on compound treatment.20 Profiles based on cell paint-
ing can be used to predict and label healthy cells versus 
compound-mediated cellular toxicity.21,22

During early drug discovery, we advise running coun-
ter, orthogonal, and cellular fitness screens to develop a 
detailed picture of a compound’s effects. This will aid the 
decision as to whether a compound can be optimized to 
an effective, specific, and non-cytotoxic lead. Here, we 
provide concepts for experimental approaches to select 
high-quality hits, which we illustrate with two examples 
(see Fig. 1).
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