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The quantification of transmissibility during epidemics is essential to designing and adjusting public health

responses. Transmissibility can be measured by the reproduction number R, the average number of secondary

cases caused by an infected individual. Several methods have been proposed to estimate R over the course of an

epidemic; however, they are usually difficult to implement for people without a strong background in statistical

modeling. Here, we present a ready-to-use tool for estimating R from incidence time series, which is implemented

in popular software including Microsoft Excel (Microsoft Corporation, Redmond, Washington). This tool produces

novel, statistically robust analytical estimates of R and incorporates uncertainty in the distribution of the serial inter-

val (the time between the onset of symptoms in a primary case and the onset of symptoms in secondary cases).

We applied the method to 5 historical outbreaks; the resulting estimates of R are consistent with those presented

in the literature. This tool should help epidemiologists quantify temporal changes in the transmission intensity of

future epidemics by using surveillance data.

incidence; influenza; measles; reproduction number; SARS; smallpox; software

Abbreviations: CI, credible interval; SARS, severe acute respiratory syndrome.

The reproduction number, R, is the average number of
secondary cases of disease caused by a single infected indi-
vidual over his or her infectious period. This statistic, which
is time and situation specific, is commonly used to character-
ize pathogen transmissibility during an epidemic. The mon-
itoring of R over time provides feedback on the effectiveness
of interventions andon theneed to intensify control efforts (1–4),
given that the goal of control efforts is to reduce R below the
threshold value of 1 and as close to 0 as possible, thus bring-
ing an epidemic under control.

Awide range of methods have been proposed to estimate R
from surveillance data (5–12). However, methods based on
fitting mechanistic transmission models to incidence data are
often difficult to generalize because of the context-specific
assumptions often made (e.g., presence/absence of a latency
period or size of the population studied). Recently, a simpler
statistical approach was proposed, which addressed this
issue. The Wallinga and Teunis method (13) is generic and
requires only case incidence data and the distribution of the

serial interval (the time between the onset of symptoms in a
primary case and the onset of symptoms of secondary cases)
to estimate R over the course of an epidemic. It is based on
the probabilistic reconstruction of transmission trees and on
counting the number of secondary cases per infected individ-
ual. The method estimates 1 value of R per time step of inci-
dence (typically, per day).

However, the approach has several drawbacks. First, esti-
mates are right censored, because the estimate of R at time t
requires incidence data from times later than t. Approaches
to correct for this issue have been developed (14).

When the data aggregation time step is small (e.g., daily data),
estimates of R can vary considerably over short time periods,
producing substantial negative autocorrelation. Other studies
have developed methods to achieve smoother estimates, but the
results can be sensitive to the selected time step or to smoothing
parameters (15–18).

The implementation of these methods requires time and
expertise, especially to produce confidence or credible intervals
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for R. Hence, although there are many methods to quantify
transmissibility during an epidemic, none currently comes as
a ready-to-use tool for nonmodelers.
The aim of our study was to develop a generic and robust tool

for estimating the time-varying reproduction number, similar
in spirit to earlier methods, but implemented with ready-to-use
software and without the drawbacks mentioned above. We
provide Microsoft Excel (Microsoft Corporation, Redmond,
Washington) and R software (R Foundation for Statistical
Computing, Vienna, Austria) versions of this tool, and a user-
friendly web interfacewill soon be available, aswell. (The use
of the letter R to denote both the reproduction number and the
software package is coincidental).
After describing our approach, we apply it to data from

selected historical outbreaks of pandemic influenza, severe
acute respiratory syndrome (SARS), measles, and smallpox.

MATERIALS ANDMETHODS

A more detailed description of our methods can be found
in theWeb Appendices 1–13 available at http://aje.oxfordjournals.
org/.
We assume that, once infected, individuals have an infec-

tivity profile given by a probability distribution ws, depen-
dent on time since infection of the case, s, but independent
of calendar time, t. For example, an individual will be most
infectious at time s when ws is the largest. The distribution
ws typically depends on individual biological factors such as
pathogen shedding or symptom severity.
The instantaneous reproduction number (19), Rt, can be

estimated by the ratio of the number of new infections gener-
ated at time step t, It, to the total infectiousness of infected
individuals at time t, given by

Pt
s¼1 It�sws, the sum of infec-

tion incidence up to time step t− 1, weighted by the infectiv-
ity function ws. Rt is the average number of secondary cases
that each infected individual would infect if the conditions
remained as they were at time t.
In practice, contact rates and transmissibility can change

over time, particularly when control measures are initiated.
This affects the number of secondary cases that a given indi-
vidual infected at time step t will actually infect. The case
reproduction number at time step t, Rc

t , takes into account
those changes. It is the average number of secondary cases
that a case infected at time step twill eventually infect (19). It
is sometimes called the cohort reproduction number because
it counts the average number of secondary transmissions caused
by a cohort infected at time step t. However, estimation of Rc

t
can be undertaken only in retrospect, once the secondary cases
generated by cases infected at t have been infected. Rc

t is the
quantity estimated in Wallinga and Teunis–type approaches
(although the Wallinga and Teunis method considers cohorts
of individuals with symptom onset at time t rather than infec-
tion at time t) (13).
The distinction between Rc

t and Rt is similar to the distinc-
tion between the actual life span of individuals born in 2013,
which we can measure only retrospectively after all individ-
uals have died (i.e., in a century), and life expectancy in
2013, estimated now by assuming that death rates in the
future will be similar to those in 2013.

Rt is the only reproduction number easily estimated in real
time. Moreover, effective control measures undertaken at
time t are expected to result in a sudden decrease in Rt and a
smoother decrease in Rc

t (19). Hence, assessing the effi-
ciency of control measures is easier by using estimates of Rt.
For these reasons, we focus on estimating the instantaneous
reproduction number Rt in this article. (See Wallinga and
Teunis (13), and Cauchemez et al. (14, 15) for methods used
to estimate the case reproduction number).
Given the definition of Rt stated above, the incidence of

cases at time step t is, on average, E½It� ¼ Rt
Pt

s¼1 It�sws,
where E½X� denotes the expectation of a random variable X,
and It−s is the incidence at time step t− s (19). Bayesian sta-
tistical inference based on this transmission model leads to a
simple analytical expression of the posterior distribution of
Rt if we assume a gamma prior distribution for Rt. This makes
obtaining any desired characteristic of this posterior distribu-
tion (e.g., the median, the variance, or the 95% credible
interval) straightforward (Web Appendix 1).
However, the resulting Rt estimates can be highly variable

and hence difficult to interpret when the time step of data is
small (20). We therefore calculate estimates over longer time
windows, under the assumption that the instantaneous repro-
duction number is constant within that time window. At
each time step t, we calculate the reproduction number over
a timewindowof size τ ending at time t.These estimates, denoted
Rt,τ, quantify the average transmissibility over a time window
of length τ ending at time t. They are expected to be less var-
iable as the window size τ increases, because 2 successive
time windows will then have increasing overlap. As τ increases,
the estimates ofRt,τwill also bemore precise. In fact, we show
in Web Appendix 2 that the precision of these estimates
depends directly on the number of incident cases in the time
window [t− τ + 1; t]. This allows us to control the precision
by adjusting the window size.
We also provide estimates of Rt,τ that take into account the

uncertainty in the serial interval distribution parameters by
integrating over a range of means and standard deviations of
the serial interval (Web Appendix 4).
The estimation method presented above is developed for

the ideal situation in which times of infection are known and
the infectivity profile ws may be approximated by the distri-
bution of the generation time (i.e., time from the infection of
a primary case to infection of the cases he/she generates)
(19). However, times of infection are rarely observed, and the
generation time distribution is therefore difficult to measure.
On the other hand, the timing of onset of symptoms is usually
known, and such data collected in closed settings where trans-
mission can reliably be ascertained (e.g., households) can be
used to estimate the distribution of the serial interval (time
between onset of symptoms of a case and onset of symptoms
of his/her secondary cases). Therefore, in practice, we apply
our method to data consisting of daily counts of onset of
symptoms where the infectivity profile ws is approximated
by the distribution of the serial interval.
For many diseases, including influenza (21), SARS (22),

measles (23), and smallpox (24), it is expected that infec-
tiousness starts only around the time of symptom onset. In such
diseases, and when the infectiousness profile after symptoms
is independent of the incubation period, the distributions
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of the serial interval and the generation time are identical (Web
Appendix 9), and our estimates are exact (albeit with t defined
as the time of symptom onset of a primary case and a time
lag in our estimates of Rt equal to the incubation period).

We provide a Microsoft Excel spreadsheet (available at
http://tools.epidemiology.net/EpiEstim.xls) that implements
the estimation method described above. Documentation on
how to use theMicrosoft Excelfile is provided inWebAppen-
dix 14. We have also developed an R package, EpiEstim,
which can be downloaded at http://cran.r-project.org/web/
packages/EpiEstim/index.html, in which both our method
and theWallinga and Teunis method (13) are implemented to
facilitate comparison. We also developed a user-friendly web
interface that will soon be available at http://shiny.epidemiology.
net/EpiEstim.

RESULTS

To illustrate the insights that our method can provide, we
applied it to 5 historical epidemics that varied in terms of
transmissibility, serial interval, and population size. For each
epidemic, we retrieved the epidemic curve, as well as the
mean and standard deviation of the serial interval, from the
literature (Table 1). The discrete distribution of the serial
interval,ws, was then obtained byassuming a gammadistribu-
tion (Web Appendix 11). For each day t of each epidemic, we
estimated the reproduction number for the weekly window
ending on that day (Rt,τ = 7, now denoted R for simplicity).
The 5 epidemic curves, serial interval distributions, and R
estimates are presented in Figure 1. Estimates are not shown
from the very beginning of each epidemic because precise
estimation is not possible in this period (Web Appendix 3).
The estimated case reproduction numbers for those 5 epidem-
ics are also shown in Figure 1 for comparison.

Measles in Hagelloch, Germany, 1861

R initially decreased from an initial median value of 4.3
(95% credible interval (CI): 2.0–8.2) in the middle of the
third week to 3.0 (95% CI: 1.3–5.9) at the end of the same
week, and then increased to 11.5 (95% CI: 8.3–15.3) in the
middle of week 4, and finally decreased again until the end
of the epidemic, falling below 1 at the beginning of week 7.

The increase in R from weeks 3 to 4 suggests increasing
transmissibility. Previous studies have highlighted the impor-
tance of the structure (by classroom and household) of the
contact network in this epidemic and have suggested the
existence of early “superspreaders” (25). These characteris-
tics could explain the increase in R. Interestingly, just after
the first peak of incidence, R was still above 1, indicating that
the epidemic was not yet over; and indeed, a second peak was
still to come.

Pandemic influenza in Baltimore, Maryland, 1918

This epidemic curve was characterized by 2 days with
unusually high incidence, on the 1st and the 15th of October
1918 (days 31 and 45). This might be related to a recollec-
tion bias, because the data were collected after the epidemic.
Although we used a 1-week (τ = 7) time window to calculate
R, estimates still fluctuated. We found an initial median esti-
mate of R of 1.4 (95% CI: 1.0–1.9) at the end of week 2. Esti-
mates were then quite stable until R peaked at 2.4 (95% CI:
2.2–2.6) in the middle of week 5 (coincident with the
second highest peak in incidence). Estimates then decreased,
with R falling below 1 early in week 7, before the largest
peak in incidence (though around that peak, R estimates just
exceed 1 for a few days). At the very end of the epidemic,
the credible intervals widen because of low case numbers.

Table 1. Description of the 5 Data Sets Analyzed, Corresponding to 5 Epidemics Between 1861 and 2009

First Author, Year
(Reference No.)

Disease Location
Year of

Epidemic
Incidence ofa

Mean (SD)
Serial Interval,

days

Reference for Mean
(SD) Serial Interval

Groendyke, 2011 (37) Measles Hagelloch,
Germany

1861 Onset of early symptoms 14.9 (3.9) Derived from
Groendyke
et al. (37)b

White, 2008 (17); Fraser,
2011 (20); Frost, 1919
(38); Vynnycky,
2007 (39)

Pandemic
influenza

Baltimore,
Maryland

1918 Onset of symptoms 2.6 (1.5) Ferguson et al.
(40); Boelle
et al. (41)

Fenner, 1988 (26); Gani,
2001 (42)

Smallpox Kosovo 1972 Onset of symptoms 22.4 (6.1) Derived from Riley
and Ferguson
(43)b

Cori, 2009 (16) SARS Hong Kong 2003 Onset of symptoms 8.4 (3.8) Lipsitch et al. (44)

Cauchemez, 2011 (31) Pandemic
influenza

School in
Pennsylvania

2009 Onset of acute respiratory
illness among children
attending the school

2.6 (1.5) Ferguson et al.
(40); Boelle
et al. (41)

Abbreviations: SARS, severe acute respiratory syndrome; SD, standard deviation.
a Clinical characteristic considered to define the incidence. The incidence at time step t is the number of individuals showing this clinical

characteristic at time step t.
b Estimates of the mean and standard deviation of the generation time for measles and smallpox were not available directly from the literature.

Instead, we derived them indirectly from published estimates of the latency and infectious periods. Technical details about this derivation are

described in Web Appendix 13.
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Fraser et al. (20) found a similar temporal trend for R and
attributed the decrease in R to social distancing measures
that were undertaken aroundOctober 10 (day 40). This is con-
sistent with our analysis (given that we were looking at R esti-
mates over the past week) in which R fell below 1 on day 43.
Because the serial interval distribution for the 1918 pan-

demic is poorly documented, we explored a range of means
and standard deviations for the serial interval and derived esti-
mates of R by integrating over all these values (Web Appen-
dix4).The results are shown inFigure2.Themedianestimated
R in the presence of this uncertainty differed by 3% or less
from the estimates obtained with a fixed serial interval distri-
bution. However, the credible intervals were wider, reflecting
the increased uncertainty.
We also examined the choice of the assumed time window

width used to estimate R for this data set. Figure 3 shows
daily estimates of R for 1-day, 1-week, 2-week, and 4-week
windows, assuming a known serial interval distribution (as
in Table 1). The estimates varied substantially according to
the window size chosen. The 1-day window estimates were
so variable that it was hard to derive any trend from them. As
the window size grew, the median estimates were smoother,
and the credible intervals were narrower, as expected. For

4-week windows, the upper credible interval was below 1 at
the end of the epidemic. However, longer intervals delayed
the time atwhich themedian estimatedR fell below 1.Overall,
for this data set, a 1-week window represents a good com-
promise.

Smallpox in Kosovo, 1972

The analysis of the smallpox outbreak in Kosovo in 1972
illustrates the potentially long delay between the first case
and the time when it is reasonable to start estimating R.
Here, for a small epidemic with a long mean serial interval,
that delay was as long as 4 weeks. We found that R increased
from a median value of 3.4 (95% CI: 0.8–9.3) early in the
fourth week to 23.9 (95% CI: 19.0–29.5) in the middle of
week 6 and then decreased again until the end of the epi-
demic, falling below 1 only in the beginning of week 8.
The initial increase in R is consistent with a report that

identified that transmission during the “second generation of
cases” was unusually high, which the authors assumed to be
“associated with inadequate protection from vaccination”
(26). Estimates stayed above 1 until very late in the epi-
demic, indicating the limited success of control measures.
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Figure 1. The first row shows daily epidemic curves (from left to right) for measles in Hagelloch, Germany, October 1861–January 1862; pan-
demic influenza in Baltimore, Maryland, September–November 1918; smallpox in Kosovo, February–April 1972; severe acute respiratory syn-
drome (SARS) in Hong Kong, February–June 2003; and pandemic influenza in a school in Pennsylvania, April–May 2009. The second row shows
daily estimates of the instantaneous reproduction numbers R over sliding weekly windows; the black lines show the posterior medians and the
grey zones show the 95% credible intervals; the horizontal dashed lines indicate the threshold value R = 1. The third row shows daily estimates of
the case reproduction numbers Rc over sliding weekly windows; the black dots show the mean estimates, and the bars show the 95% confidence
intervals; the horizontal dashed lines indicate the threshold value Rc = 1. The fourth row shows the serial interval distributions used for estimation
of R and Rc.
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Vaccination, which started on March 16 (day 31) was slow
(95% coverage was achieved only by the end of April,
around day 70) and sometimes ineffective (26).

SARS in Hong Kong, 2003

For the SARS outbreak in Hong Kong in 2003, we find 2
successive peaks in R. The first occurred in the middle of
week 3 with a median estimate of 12.2 (95% CI: 10.0–14.7),

and the second occurred at the end of week 6 with a median
estimate of 2.6 (95% CI: 2.4–2.9). R then fell below 1 by the
end of week 7.

These 2 peaks coincide with the occurrence of known
superspreading events, the first occurring in weeks 3 and 4,
and the second occurring between weeks 5 and 6 (16, 27,
28). It is notable that R falls below 1 very quickly after the
epidemic peak,while incidence is still quite high. Similar trends
were found in previous analyses of this epidemic (13, 14).
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Figure 2. Estimated reproduction number for pandemic influenza in Baltimore, Maryland, September–November 1918. A) Daily epidemic curve;
B) daily estimates of the reproduction number R over sliding weekly windows (the black line shows the posterior medians and the grey zones show
the 95% credible intervals; the horizontal dashed line indicates the threshold value R = 1); C) histogram of the mean serial intervals explored; and
D) histogram of the standard deviations of the serial interval explored.
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grey zones show the 95% credible intervals; the horizontal dashed lines indicate the threshold value R = 1.

A New Framework to Estimate Reproduction Numbers 1509

Am J Epidemiol. 2013;178(9):1505–1512



Pandemic influenza in a school in Pennsylvania, 2009

We estimated that R was relatively constant over the whole
secondweek of the epidemic, with amedian around 1.7 (early
in the week, 95% CI: 1.0–2.6; late in the week, 95% CI:
1.2–2.2).R thendecreased, fallingbelow1early inweek4.This
could reflect the impact of control measures or could be due to
the depletion of susceptibles in the school population. In the
last days of the epidemic, 2 new cases appeared, probably as a
result of reintroduction of infection from outside the school,
resulting in estimates of R increasing again from a minimum
value of 0.2 (95% CI: 0.1–0.5) to 0.9 (95% CI: 0.3–2.0).

Comparison between instantaneous reproduction

number R and case reproduction number Rc

Figure 1 shows the instantaneous (R) and case (Rc) repro-
duction numbers estimated for the 5 epidemics. Rc was esti-
mated by using the Wallinga and Teunis method (13), but
on weekly windows (Web Appendix 5).
The estimates of Rc on weekly windows are smoother than

the estimates ofRonweeklywindows.Moreover, they are ahead
of the estimates of R by amean serial interval.When the serial
interval is short (e.g., for influenza or SARS), this delay is small,
and the smoothing effect is not very strong. However, when
the serial interval is long (e.g., for measles or smallpox), both
effects are more dramatic, and the curves have very different
interpretations. For the measles outbreak in Hallegoch, Ger-
many, the highest estimate of Rc is early in the epidemic, on
theweekendingonday11,which reflects high transmissibility
2 weeks later (i.e., on the week ending on day 25), coincid-
ing exactly with the peak in the estimated R. This means that
the high transmissibility around day 25 is due to cases who
have shown symptoms, on average, 2 weeks earlier. Simi-
larly, for the smallpox epidemic in Kosovo, the peak in Rc is
on theweek ending on day 15, and the peak inR is on theweek
ending on day 38 (i.e., 23 days later), which is the mean serial
interval we have assumed. Transmissibility, measured by the
instantaneous reproduction number, was very high during the
second generation of cases, around day 38, but thiswas caused
by the first generation of cases, who had symptoms around
day 15.

DISCUSSION

We have developed a simple and generic method to esti-
mate time-varying instantaneous reproduction numbers from
incidence time series. A simulation study presented in Web
Appendix 6 shows that our method is able to detect changes
in the reproduction number, for instance, following a control
measure. We applied this method to analyze the time course
of transmissibility for 5 historical outbreaks. Our estimates
of the instantaneous reproduction number are consistent
with estimates of the case reproduction number despite con-
siderable differences in interpretation. Our analyses are also in
agreement with previously published results obtained with
generally more complicated and less general methods.
For instance, although our estimates of the reproduction

number for the 1918 influenza pandemic in Baltimore, Mary-
land, are similar to the maximum likelihood estimates obtained

by Fraser et al. (20), it is much easier to produce credible
intervals with our method than to produce confidence inter-
vals with the previously used maximum likelihood estimates
approach. Our method is also easier to implement and more
flexible than the parametric estimation used by White and
Pagano (17) on the same data set.
Similarly, for the 2003 SARS epidemic in Hong Kong,

Wallinga andTeunis (13), aswell as Cauchemez et al. (14), found
temporal trends for the case reproduction number similar to
our estimates of the instantaneous reproduction number but
with lower peak values. The case reproduction number (which
is the quantity derived in those studies) is estimated over a
generation of infection (i.e., over 8.4 days on average for SARS).
When the instantaneous reproduction number is estimated
on time windows shorter than the average generation time
(which is the case for our weekly windows), we expect the
case reproduction to be smoother than the instantaneous repro-
duction number, which could explainwhywefind higher peaks.
Again, it is more straightforward to produce credible intervals
with our method than it is with those approaches.
Robust estimation of R provides important insights into

temporal changes in transmission during an epidemic. However,
interpreting the temporal trends is not always straightforward.
Changes in R can be due to changes in underlying transmis-
sibility (e.g., due to seasonality), changes in contact patterns
in the population affected, the impact of control measures,
or the depletion of the size of the susceptible population. For
instance, we found thatR decreased very early during the SARS
epidemic in Hong Kong. However, because many control mea-
sures were put in place at different times during the SARS epi-
demic (29, 30), it is difficult to relate the decrease seen directly
to a specific control measure from this analysis alone.
Likewise, we estimated that, for the outbreak of 2009 pan-

demic influenza in a school in Pennsylvania, there was again
an early decrease in R. But just estimating R does not allow
us to determine whether this reflects a true reduction in trans-
missibility, possibly due to the school closure between May
14–20 (days 17–23) or the depletion of susceptibles. By using
a more complex analysis, Cauchemez et al. (31) showed that
the second of these explanations was more likely.
The method developed here relies on knowledge of the

serial interval distribution but is able to directly incorporate
uncertainty in serial interval distribution estimates. Allowing
the mean and variance of the serial interval distribution to vary
round average values affects median R estimates to a limited
extent but increases the credible intervals around those estimates.
The estimates of R obtained with our method are quite

sensitive to the size of the sliding window over which the esti-
mates are calculated. Small windows can lead to highly vari-
able estimates with wide credible intervals, whereas longer
windows lead to smoothed estimates with narrower credible
intervals. InWebAppendix 2, we discuss an interesting result
on the minimum number of cases that need to be included in
a time window to achieve a given precision in the estimate of
R. Because the beginning of an epidemic has few incident cases,
we used this result to provide guidance on when it is reason-
able to start estimating R.
Finally, our method makes several assumptions that would

benefit from reiteration. First, we applied our method to time
series of onset of symptoms, and we used the serial interval
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distribution as an approximation for the infectivity profilews.
We showed in Web Appendix 12 that for diseases for which
infectiousness starts only at the time of symptom onset, with
an infectiousness profile after symptom onset independent
of the incubation period, this leads to exact, but time-lagged,
estimates of the reproduction number. Although formany dis-
eases, including those studied here (21–24), this assumption
is sensible, it does not hold for pathogens such as human immu-
nodeficiency virus, for which infectiousness precedes symp-
toms (32).

In such cases, and if data on the incubation period (delay
between infection and symptom onset) are available, a possi-
ble strategy would be to use the incubation period distribu-
tion to back-calculate the incidence of infections from the inci-
dence of symptoms and then apply our method to estimate the
reproduction number from those inferred data (19). However,
this approachmay lead to oversmoothed incidence time series
compared with the true infection incidence (19).

Second, we assumed that all cases were detected.We showed
in a simulation study that this should not dramatically affect
estimates as long as the proportion of asymptomatic cases and
the reporting rate are constant through time (Web Appendix
8). As an example, an early precursor of the method applied
herewas used to analyze time series of polio disease incidence,
in which approximately 1 in 200 infections was symptomatic
(33). In some situations, the reporting rate is likely to change
over the course of an epidemic, for instance, as a result of
improved case ascertainment or case definitions or changes
in health care–seeking behavior over time. If data on report-
ing are available, it is possible to extend our method to take
variable reporting rates into account (6).

We assumed that there were no imported cases, so that each
incident case could be attributed to a previous case in the inci-
dence time series. However, if imported cases were identified
as such, our method could easily be adapted to account for
them, as was done in previous studies by using other estima-
tion methods (12, 34–36).

Finally, we assumed that the serial interval distribution was
constant throughout the epidemic. However, if there were
independent data (e.g., from contact tracing studies) suggest-
ing evidence of changes in the serial interval distribution, our
method could be applied with different serial interval distri-
butions for different time periods of the epidemic.

Despite these assumptions,we feel the simplicityof themethod
we have presented here outweighs the limitations highlighted
above. We hope our method will be adopted by epidemiolo-
gists and public health organizations. This will be facilitated
by the R package and, more importantly, the simple Micro-
soft Excel tool and the web interface we have developed and
releasedwiththispaper.Thesesoftwareprogramsshouldallow
rapid analysis of incidence time series of any infectious dis-
ease within the scope described above and should be valuable
tools for future outbreak investigations.

ACKNOWLEDGMENTS

Author affiliation: Department of Infectious Disease Epi-
demiology, MRC Centre for Outbreak Analysis and Modelling,

Imperial College London, London, United Kingdom (Anne
Cori, Neil M. Ferguson, Christophe Fraser, Simon Cauchemez).

This work was supported by the United KingdomMedical
Research Council methodology project G0800596, the FP7
European Management Platform for Emerging and Re-
emerging InfectiousDisease Entities project, and theNational
Institute of General Medical Sciences Models of Infectious
DiseaseAgent Study program for support. S.C.was supported
by the Research Council United Kingdom. C.F. holds a fel-
lowship supported by the Royal Society.

We thank Dr. Thibaut Jombart for his help in developing
the R package EpiEstim, and Dr. David Aanensen for his
help in setting up the web interface.

Professor Christophe Fraser and Dr. Simon Cauchemez
contributed equally to this work.

Conflict of interest: none declared.

REFERENCES

1. Anderson R, May R. Infectious Diseases of Humans:
Dynamics and Control. Oxford, United Kingdom: Oxford
University Press; 1991.

2. Ferguson NM, Cummings DA, Fraser C, et al. Strategies for
mitigating an influenza pandemic. Nature. 2006;442(7101):
448–452.

3. Fraser C, Riley S, Anderson RM, et al. Factors that make an
infectious disease outbreak controllable. Proc Natl Acad Sci
U S A. 2004;101(16):6146–6151.

4. Anderson RM, May RM. Directly transmitted infectious
diseases: control by vaccination. Science. 1982;215(4536):
1053–1060.

5. Riley S, Fraser C, Donnelly CA, et al. Transmission dynamics
of the etiological agent of SARS in Hong Kong: impact of
public health interventions. Science. 2003;300(5627):
1961–1966.

6. Fraser C, Donnelly CA, Cauchemez S, et al. Pandemic
potential of a strain of influenza A (H1N1): early findings.
Science. 2009;324(5934):1557–1561.

7. Ferguson NM, Donnelly CA, Anderson RM. Transmission
intensity and impact of control policies on the foot and
mouth epidemic in Great Britain. Nature. 2001;413(6855):
542–548.

8. Amundsen EJ, Stigum H, Rottingen JA, et al. Definition and
estimation of an actual reproduction number describing past
infectious disease transmission: application to HIV epidemics
among homosexual men in Denmark, Norway and Sweden.
Epidemiol Infect. 2004;132(6):1139–1149.

9. Bettencourt LM, Ribeiro RM. Real time Bayesian estimation
of the epidemic potential of emerging infectious diseases.
PLoS One. 2008;3(5):e2185.

10. Cintron-Arias A, Castillo-Chavez C, Bettencourt LM, et al.
The estimation of the effective reproductive number from
disease outbreak data.Math Biosci Eng. 2009;6(2):
261–282.

11. Howard SC, Donnelly CA. Estimation of a time-varying force
of infection and basic reproduction number with application to
an outbreak of classical swine fever. J Epidemiol Biostat.
2000;5(3):161–168.

12. Kelly HA, Mercer GN, Fielding JE, et al. Pandemic (H1N1)
2009 influenza community transmission was established in
one Australian state when the virus was first identified in North
America. PLoS One. 2010;5(6):e11341.

A New Framework to Estimate Reproduction Numbers 1511

Am J Epidemiol. 2013;178(9):1505–1512



13. Wallinga J, Teunis P. Different epidemic curves for severe
acute respiratory syndrome reveal similar impacts of control
measures. Am J Epidemiol. 2004;160(6):509–516.

14. Cauchemez S, Boelle PY, Donnelly CA, et al. Real-time
estimates in early detection of SARS. Emerg Infect Dis.
2006;12(1):110–113.

15. Cauchemez S, Boelle PY, Thomas G, et al. Estimating in real
time the efficacy of measures to control emerging
communicable diseases. Am J Epidemiol. 2006;164(6):
591–597.

16. Cori A, Boelle PY, Thomas G, et al. Temporal variability and
social heterogeneity in disease transmission: the case of SARS
in Hong Kong. PLoS Comput Biol. 2009;5(8):e1000471.

17. White LF, Pagano M. Transmissibility of the influenza virus in
the 1918 pandemic. PLoS One. 2008;3(1):e1498.

18. Hens N, Van Ranst M, Aerts M, et al. Estimating the effective
reproduction number for pandemic influenza from notification
data made publicly available in real time: a multi-country
analysis for influenza A/H1N1v 2009. Vaccine. 2011;29(5):
896–904.

19. Fraser C. Estimating individual and household reproduction
numbers in an emerging epidemic. PLoS One. 2007;2(1):e758.

20. Fraser C, Cummings DA, Klinkenberg D, et al. Influenza
transmission in households during the 1918 pandemic. Am
J Epidemiol. 2011;174(5):505–514.

21. Lau LL, Cowling BJ, Fang VJ, et al. Viral shedding and
clinical illness in naturally acquired influenza virus infections.
J Infect Dis. 2010;201(10):1509–1516.

22. Peiris JS, Chu CM, Cheng VC, et al. Clinical progression and
viral load in a community outbreak of coronavirus-associated
SARS pneumonia: a prospective study. Lancet. 2003;
361(9371):1767–1772.

23. Simpson REH. Infectiousness of communicable diseases in
the household (measles, chickenpox, and mumps). Lancet.
1952;2(6734):549–554.

24. Eichner M, Dietz K. Transmission potential of smallpox:
estimates based on detailed data from an outbreak. Am
J Epidemiol. 2003;158(2):110–117.

25. Groendyke C, Welch D, Hunter DR. A Network-based
Analysis of the 1861 Hagelloch Measles Data. University
Park, PA: Department of Statistics, Pennsylvania State
University; 2011.

26. Fenner F, Henderson DA, Arita I, et al. Smallpox and its
Eradication. Geneva, Switzerland: World Health
Organization; 1988.

27. Lee N, Hui D, Wu A, et al. A major outbreak of severe acute
respiratory syndrome in Hong Kong. N Engl J Med. 2003;
348(20):1986–1994.

28. Leung GM, Hedley AJ, Ho LM, et al. The epidemiology of
severe acute respiratory syndrome in the 2003 Hong Kong
epidemic: an analysis of all 1755 patients. Ann Intern Med.
2004;141(9):662–673.

29. SARS Expert Committee of HKSAR Government.
Chronology of the SARS epidemic in Hong Kong. 2003.

Hong Kong: SARS Expert Committee. (http://www.sars-
expertcom.gov.hk/english/reports/reports/files/e_app3.pdf).
(Accessed May 3, 2013).

30. World Health Organization. SARS: chronology of a serial
killer. 2003. Geneva, Switzerland: World Health Organization.
(http://www.who.int/csr/don/2003_07_04/en/print.html).
(Accessed May 3, 2013).

31. Cauchemez S, Bhattarai A, Marchbanks TL, et al. Role of
social networks in shaping disease transmission during a
community outbreak of 2009 H1N1 pandemic influenza. Proc
Natl Acad Sci U S A. 2011;108(7):2825–2830.

32. Babiker A, Darby S, De Angelis D, et al. Time from HIV-1
seroconversion to AIDS and death before widespread use of
highly-active antiretroviral therapy: a collaborative re-analysis.
Lancet. 2000;355(9210):1131–1137.

33. Grassly NC, Fraser C, Wenger J, et al. New strategies for the
elimination of polio from India. Science. 2006;314(5802):
1150–1153.

34. Cowling BJ, Lau MS, Ho LM, et al. The effective reproduction
number of pandemic influenza: prospective estimation.
Epidemiology. 2010;21(6):842–846.

35. Nishiura H, Roberts MG. “Estimation of the reproduction
number for 2009 pandemic influenza A(H1N1) in the presence
of imported cases” [letter]. Eurosurveillance. 2010;15(29):
19–20.

36. Paine S, Mercer GN, Kelly PM, et al. Transmissibility of
2009 pandemic influenza A(H1N1) in New Zealand:
effective reproduction number and influence of age,
ethnicity and importations. Eurosurveillance. 2010;15(24):
9–17.

37. Groendyke C, Welch D, Hunter DR. Bayesian inference for
contact networks given epidemic data. Scand J Stat. 2011;
38(3):600–616.

38. Frost WH, Sydenstricker E. Influenza in Maryland:
preliminary statistics of certain localities. Public Health Rep.
1919;34(11):491–504.

39. Vynnycky E, Trindall A, Mangtani P. Estimates of the
reproduction numbers of Spanish influenza using morbidity
data. Int J Epidemiol. 2007;36(4):881–889.

40. Ferguson NM, Cummings DA, Cauchemez S, et al. Strategies
for containing an emerging influenza pandemic in Southeast
Asia. Nature. 2005;437(7056):209–214.

41. Boelle PY, Ansart S, Cori A, et al. Transmission parameters of
the A/H1N1 (2009) influenza virus pandemic: a review.
Influenza Other Respi Viruses. 2011;5(5):306–316.

42. Gani R, Leach S. Transmission potential of smallpox in
contemporary populations. Nature. 2001;414(6865):
748–751.

43. Riley S, Ferguson NM. Smallpox transmission and control:
spatial dynamics in Great Britain. Proc Natl Acad Sci U S A.
2006;103(33):12637–12642.

44. Lipsitch M, Cohen T, Cooper B, et al. Transmission dynamics
and control of severe acute respiratory syndrome. Science.
2003;300(5627):1966–1970.

1512 Cori et al.

Am J Epidemiol. 2013;178(9):1505–1512

http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.sars-expertcom.gov.hk/english/reports/reports/files/e_app3.pdf
http://www.who.int/csr/don/2003_07_04/en/print.html
http://www.who.int/csr/don/2003_07_04/en/print.html
http://www.who.int/csr/don/2003_07_04/en/print.html
http://www.who.int/csr/don/2003_07_04/en/print.html
http://www.who.int/csr/don/2003_07_04/en/print.html
http://www.who.int/csr/don/2003_07_04/en/print.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 175
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50286
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG2000
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 175
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50286
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG2000
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 20
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages true
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 175
  /MonoImageDepth 4
  /MonoImageDownsampleThreshold 1.50286
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


