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Benzimidazoles are important N-heteroaromatic compounds with various

biological activities and pharmacological applications. Herein, we present the first

iron-catalyzed selective synthesis of 1,2-disubstituted benzimidazoles via acceptorless

dehydrogenative coupling of primary alcohols with aromatic diamines. The tricarbonyl

(η4-cyclopentadienone) iron complex catalyzed dehydrogenative cyclization, releasing

water and hydrogen gas as by-products. The earth abundance and low toxicity of

iron metal enable the provision of an eco-friendly and efficient catalytic method for the

synthesis of benzimidazoles.
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INTRODUCTION

Benzimidazoles, which have been found in pharmaceuticals and natural products, are important
N-heteroaromatic structural motifs because of their biological activities (Bansal and Silakari,
2012; Chandrika et al., 2016; Suk et al., 2019). Of these, the 1,2-disubstituted benzimidazole is
considered a privileged scaffold in drug discovery. As shown in Figure 1, many drugs contain
this moiety in their structures, for example, maribavir (antiviral), mizolastine (antihistamine), and
telmisartan and candesartan (antihypertensive). Furthermore, 1,2-disubstituted benzimidazoles
show various biological activities, such as anticancer (Zimmermann et al., 2013, 2014) antibacterial
(Bandyopadhyay et al., 2011; Göker et al., 2016), antiallergic (Nakano et al., 2000), and anti-HIV
(Morningstar et al., 2007) traits along with cannabinoid-1 (CB1) and cannabinoid-2 (CB2)
receptors (Watson et al., 2011; Nanda et al., 2014). Based on their attractive biological profiles,
the synthesis of 1,2-disubstituted benzimidazoles has gained the interest of synthetic chemists.

Diverse synthetic approaches have been reported for the synthesis of 1,2-disubstituted
benzimidazoles (Scheme 1). The first is the respective substitution on the C-1 or N-2 position of
the preformed benzimidazoles, (i)N-alkylation of 2-substituted benzimidazoles (Ramla et al., 2007;
Martin et al., 2015) and (ii) Suzuki coupling of aryl boronic acids with 1-halo-2-alkylbenzimidazoles
(Wang and Smith, 2003; Martin et al., 2015). Another approach is the classic cyclocondensation
of (iii) N-alkyl-N-acyl-1,2-diaminobenzene (Smith and Krchnák, 1999; Takeuchi et al., 2000) or
(iv) N-alkyl-1,2-diaminobenzene with aldehyde (Smith and Krchnák, 1999; Özden et al., 2005).
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In addition, a large number of (v) direct one-pot
cyclocondensations of 1,2-diaminobenzene with aldehydes
have been reported (Chebolu et al., 2012; Girish et al., 2015;
Sharma et al., 2015). This appears to be a straightforward
approach; however, selectivity control between 2-substituted and
1,2-disubstituted benzimidazoles is often problematic.

During the past decade, the borrowing hydrogen (BH)
strategy has become a powerful tool for the benign and
sustainable construction of C–N bonds using abundant alcohols
as coupling reagents (Mutti et al., 2015; Yang et al., 2015).
C–N bond couplings through BH usually proceed in the
following sequence (Figure 2, blue): dehydrogenation of an
alcohol to the corresponding carbonyl compound, followed by

FIGURE 1 | Representative drugs containing 1,2-disubstituted benzimidazole.

FIGURE 2 | The general mechanism of the BH and ADC in the coupling of alcohol with amine.

condensation and reduction of imine using the borrowed H2

from the alcohol. If the imine participates in the aromatic system,
the last hydrogenation step is suppressed, and the hydrogen
gas is liberated (Figure 2, red), so it is called acceptorless
dehydrogenative coupling (ADC). ADCs are highly efficient and
environmentally benign methods to construct N-heteroaromatic
structures since water and hydrogen gas are the only valuable
by-products (Gunanathan and Milstein, 2013; Michlik and
Kempe, 2013; Nandakumar et al., 2015). In recent years,
considerable progress has been directed toward the synthesis of
benzimidazole involving dehydrogenative coupling (Scheme 2);
however, most of these methods use precious noble metals, such
as Ru- (Blacker et al., 2009; Li et al., 2018), Ir- (Hille et al.,
2014; Sharma et al., 2017), and Pd-based catalysts (Mori et al.,
2019). The replacement of noble-metal catalysts by inexpensive
and environmentally friendly earth-abundant base metals is an
important task for organic chemists. Among the base metals,
Cu- (Xu et al., 2017, 2018), Co- (Daw et al., 2017), Ni-

SCHEME 1 | Diverse synthetic strategies for 1,2-disubstituted benzimidazoles.
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SCHEME 2 | Transition metal catalyzed 1,2-disubstituted benzimidazole

synthesis via dehydrogenative coupling of alcohol.

(Bera et al., 2019), and Mn-based catalysts (Das et al., 2018;
Zhang et al., 2019) have been well-applied in the condensation of
alcohols with 1,2-diaminobenzene to benzimidazoles. However,
many of these metal complexes utilize quite expensive or labile
ligands to achieve higher product yields, which is a major
concern in comparison to the advantages of base metals. Iron
is the second most earth-abundant and highly desirable metal
catalyst in the synthesis of pharmaceuticals due to its low toxicity
(Bauer and Knölker, 2015; Fürstner, 2016). The tricarbonyl (η4-
cyclopentadienone) iron complexes were initially described by
Knölker (Knölker et al., 1999), and they have a core bifunctional
structure to mediate the BH process consisting of both a proton-
donor site (ligand) and a hydride-donor site (metal center)
(Ikariya and Blacker, 2007). Since it was first developed, Knölker’s
complex has been widely applied in C–N or C–C bond formation
through a BH strategy (Yan et al., 2014; Brown et al., 2017;
Reed-Berendt et al., 2019). Based on the previous results, we
envisioned the possibility of iron-catalyzed direct benzimidazole
formation starting from 1,2-diaminobenzene and alcohol via the
ADC strategy. To the best of our knowledge, the synthesis of
benzimidazoles directly from 1,2-diaminobenzene and alcohol
catalyzed by iron has not been reported. Herein, we describe a
selective method to synthesize 1,2-disubstituted benzimidazoles
using Knölker-type iron complexes as a catalyst.

MATERIALS AND METHODS

All catalytic reactions were carried out under nitrogen
atmosphere using a Schlenk flask. Fe complexes cat. I–V
(Moulin et al., 2013) and cat. VI (Dambatta et al., 2019) were
prepared according to the literature. All commercially available
reagents and solvents (purchased from Sigma-Aldrich, TCI,
Alfa-Aesar and Acros) were used without further purification

unless otherwise noted. Reactions were monitored by thin-
layer chromatography on silica gel 60 F254 plate using UV
illumination at 254 nm. Column chromatography was performed
on silica gel (230–400 mesh), using a mixture of hexane and
ethyl acetate as eluents. Nuclear magnetic resonance (1H-NMR
and 13C-NMR) spectra were measured on JEOL JNM-ECZ400s
[400 MHz (1H), 100 MHz (13C)], using CDCl3 as solvent. It
was reported in ppm relative to CDCl3 (δ 7.26) for 1H-NMR
and relative to the central CDCl3 (δ 77.16) for 13C-NMR.
Coupling constants (J) in 1H-NMR and 13C-NMR are in hertz.
All high-resolution mass spectra (HR-MS) were acquired under
fast atom bombardment (FAB) condition on a JMS-700MStation
mass spectrometer. Melting points were measured on a Büchi
B-540 melting point apparatus and were not corrected. X-ray
diffraction studies were carried out in a Super Nova, Dual, Mo at
home/near, Atlas S2 diffractometer.

General Procedure for the Synthesis of
1-Benzyl-2-aryl-1H-benzo[d]imidazoles (3)
In a 15-ml Schlenk flask, a mixture of 1,2-diaminobenzene (1a,
54.05mg, 0.5 mmol), alcohol (2, 1.5 mmol), tBuOK (84.16mg,
0.75 mmol), cat. I (8.36mg, 0.02 mmol), and TMAO (3.0mg,
0.04 mmol) was stirred at 150◦C in xylene (2ml) for 24 h
under a nitrogen atmosphere. Then, the reaction mixture was
cooled to room temperature and diluted with dichloromethane.
After removing the solvent, the resulting residue was further
purified by column chromatography on silica gel using 10–
30% ethyl acetate in hexane as an eluent to obtain the
desired benzimidazoles.

1-Benzyl-2-phenyl-1H-benzo[d]imidazole (3a)
Following the general procedure with 1a and 2a, 3a was obtained
as white solid (121mg, 85% yield). m.p. 128–130◦C. 1H-NMR
(400 MHz, CDCl3) δ 7.88 (d, J = 7.8Hz, 1H), 7.69 (dd, J = 7.5,
1.6Hz, 2H), 7.46 (dd, J = 13.0, 5.7Hz, 3H), 7.29–7.33 (m, 4H),
7.23 (q, J = 7.5Hz, 2H), 7.11 (d, J= 6.9Hz, 2H), 5.46 (s, 2H). 13C-
NMR (100MHz, CDCl3) δ 154.24, 143.27, 136.46, 136.14, 130.15,
129.99, 129.31, 129.12, 128.83, 127.84, 126.02, 123.10, 122.74,
120.06, 110.61, 48.43. HRMS (FAB+) m/z calcd for C20H17N2

[M+H]+: 285.1392, found: 285.1382.

RESULTS AND DISCUSSION

In a preliminary study, we explored the feasibility of
benzimidazole formation between 1,2-diaminobenzene 1a

and benzyl alcohol 2a using standard Knölker complex cat.

I (Table 1). The reaction was carried out in toluene, and
trimethylamine N-oxide (TMAO) was used to activate cat. I and
liberate a vacant site in situ. In the first trial, no benzimidazole
products were formed in the absence of a base (entry 1). Based
on previous reports (Xu et al., 2017; Das et al., 2018), we
expected that a stoichiometric amount of base is required for
benzimidazole formation. Various kinds of bases were screened
in the reaction system, and tBuOK was found to be a more
effective base than KOH and K2CO3 for the formation of
1,2-disubstituted benzimidazoles 3a (entries 2–4). Surprisingly,
we could not detect any 2-mono-substituted benzimidazole
product in the reaction. Higher conversion was achieved when
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TABLE 1 | Optimization of the reaction conditionsa.

Entry Alcohol (eq) base (eq) Solvent T (◦C) Yieldb (%)

1 3 – Toluene 130 –

2 3 K2CO3 (1.5) Toluene 130 Trace

3 3 KOH (1.5) Toluene 130 21

4 3 tBuOK (1.5) Toluene 130 42

5 3 tBuOK (1.5) Toluene 150 61

6 3 tBuOK (1.5) Dioxane 150 31

7 3 tBuOK (1.5) Xylene 150 85

8 3 tBuOK (1.5) Neat 150 53

9c 3 tBuOK (1.5) Xylene 150 –

10 3 tBuOK (1.2) Xylene 150 81

11 2.5 tBuOK (1.5) Xylene 150 80

12d 1 tBuOK (1.5) Xylene 150 17

aReaction conditions: 1a (0.5 mmol), 2a (0.5–1.5 mmol), base (0.6–0.75 mmol), cat. I

(0.02 mmol), TMAO (0.04 mmol), and solvent (2ml) in a Schlenk flask under N2, 24 h.
b Isolated yield.
cNo catalyst loading.
d2-Mono-substituted benzimidazole product was obtained with 3a in 6% yield.

the reaction temperature was increased from 130 to 150◦C
(entries 4 and 5). Next, we examined the efficacy of different
solvents and neat conditions, and the best yield of 3a (85%) was
obtained in xylene (entries 5–8). The control experiment was
also performed, and it was revealed that no desired product was
obtained in the absence of a catalyst, demonstrating a crucial
role of iron complex in the dehydrogenative coupling (entry 9).
Additionally, we tried to reduce the amount of alcohol 2a and
base in the reaction; however, slightly lower yields were observed
(entries 10 and 11). To investigate a feasibility for the selective
synthesis of 2-mono-substituted benzimidazole, 1.0 equivalent
of 2a was reacted with 1a. Unfortunately, 1,2-disubstituted and
2-substituted benzimidazoles were obtained in 17 and 6% yields,
respectively (entry 12).

As we were optimizing the reaction conditions, the effect
of the amount of catalysts was also investigated (Table 2).
Decreasing the loading of catalyst from 4 to 3 mol% resulted
in 80% yield of desired product 3a, and a small amount of
diamine substrate 1a remained. Interestingly, when we increased
the catalyst loading to 5 mol%, a significantly decreased yield
of 3a and increased formation of N, N-dibenzylbenzene-1,2-
diamine 4 were observed. We supposed that a large amount
of catalyst accelerated imine reduction competitively with the
annulation process. Various Knölker-type complexes were also
explored to estimate their activity in the reaction, and the results
are shown in Table 2. The cat. VI gave desired product 3a in
good yield (80%), similar to that of cat. I. However, the cat. II

and IV showed moderate efficiency and cat. III andV resulted in
low efficiency. Based on the above results, we choose the optimal
dehydrogenative coupling conditions as diamine 1 (1.0 equiv.),
alcohol 2 (3.0 equiv.), cat. I (4 mol%), TMAO (8 mol%), and
tBuOK (1.5 equiv.) in xylene (2ml) at 150◦C under N2 for 24 h.

We applied the optimized conditions on a variety of diamines
1 and alcohols 2 to explore the reaction scope. First, a wide

TABLE 2 | Catalyst screeninga,b.

aReaction conditions: 1a (0.5 mmol), 2a (1.5 mmol), tBuOK (0.75 mmol), cat. I (0.02

mmol), TMAO (0.04 mmol), and xylene (2ml) in Schlenk flasks under N2, 24 h, 150
◦C.

b Isolated yield in parentheses.
cCat. I (0.015 mmol) and TMAO (0.03 mmol).
dCat. I (0.025 mmol) and TMAO (0.05 mmol).

range of alcohol 2 was employed for annulation with 1a

(Table 3). Benzyl alcohols containing electron-donating groups
in the phenyl ring showed good yields (3b–f, 75–83%). The
steric effect slightly influenced the formation of the desired
product, depending on the position of the substituent. Substrates
with substituents at the ortho position showed slightly lower
yields than those of meta- and para-substituted analogs (yield
sequence order: para > meta > ortho). 4-Chlorobenzyl alcohol
afforded excellent yield for the corresponding product (3g,
92%), whereas low yield was obtained in the case of bromo-
and iodo-substituted analogs with loss of one halogen atom
(3h and 3i, 52–59%). This partial dehalogenation might be
involved in the hydrogenative activity of the hydrogenated
iron complex, which could be formed in situ. The molecular
structure of 3i was confirmed by X-ray crystal structure as
shown in Table 3. XRD data showed that the N-substituted
benzyl group has iodine and C-2-substituted phenyl ring loose
iodine. A series of alcohols containing heterocycles, such as
furan, thiophene, and pyridine, were well-applied and afforded
the desired products in good yields (3j–l, 72–82%). In the case
of 1,3-benzodioxole-5-methanol and 4-trifluoromethyl benzyl
alcohol, the desired products were obtained in moderate yield
even if a longer reaction time is needed for full conversion (3m
and 3n, 67–68%). Additionally, 1-naphthalene methanol was
also applied in the reaction system and gave the corresponding
product in high yield (3o, 85%). For further expansion of
the alcohol scope, aliphatic alcohols such as 1-hexanol and
3-phenyl propanol were also investigated. Aliphatic alcohols
could participate in dehydrogenative coupling; however, desired
products were obtained in low yields (3p–q, 38–40%). After
the screening of alcohols, the scope of diamine 1 was
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TABLE 3 | Scope of alcoholsa,b.

aReaction conditions: 1a (0.5 mmol), 2 (1.5 mmol), tBuOK (0.75mmol), cat. I (0.02mmol),

TMAO (0.04 mmol), and xylene (2ml) in a Schlenk flask under N2, 24 h, 150
◦C.

b Isolated yield in parentheses.
cReaction time: 30 h.

TABLE 4 | Scope of diaminesa,b.

aReaction conditions: 1 (0.5 mmol), 2a (1.5 mmol), tBuOK (0.75mmol), cat. I (0.02mmol),

TMAO (0.04 mmol), and xylene (2ml) in Schlenk flasks under N2, 24 h, 150
◦C.

b Isolated yield in parentheses.
cMixture could not be isolated.

TABLE 5 | Synthesis of 1,2-disubstituted benzimidazoles from 6a,b.

aReaction conditions: 6 (0.25 mmol), 2 (0.325 mmol), tBuOK (0.25 mmol), cat. I (0.005

mmol), TMAO (0.01 mmol), and xylene (2ml) in a Schlenk flask under N2, 24 h, 150
◦C.

b Isolated yield in parentheses.

also investigated (Table 4). Under the same conditions, the
reaction of 4,5-dimethyl-1,2-diaminobenzene with 2a proceeded
smoothly and afforded the product inwas also investigated
good yield (5a, 81%). On the other hand, 3,4-diaminotoluene
and 4-chloro-1,2-diaminobenzene gave a mixture of 1-benzyl-
2-phenyl-benzimidazole products (5b and 5c). To explore
the possibility of imidazole formation, we employed 1,2-
diphenyl-1,2-ethylenediamine as a substrate. Unfortunately, the
corresponding imidazole product was obtained in very low yield
(5d, 20%).
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The above successful results led us to further investigate
the reaction generality. N-Benzyl-1,2-diaminobenzene 6 was
designed for the selective introduction of a substituent on
the N-1 or C-2 position of benzimidazole. As shown in
Table 5, benzylic alcohol 2 usually participates in the annulation

SCHEME 3 | Failure on N-alkylation of benzimidazole.

SCHEME 4 | Synthesis of 2-phenylbenzo[d]thiazole. Reaction conditions: 9

(0.5 mmol), 2a (1.5 mmol), tBuOK (0.75 mmol), cat. I (0.02 mmol), TMAO (0.04

mmol), and xylene (2ml) in Schlenk flasks under N2, 24 h, 150
◦C.

SCHEME 5 | Plausible mechanism for the synthesis of 1,2-disubstituted benzimidazoles.

process and is located on C-2 and its substituents on the
benzimidazole product (7a–e). In contrast, five-membered
heteroaromatic methyl alcohols gave N-1-heteroarylmethyl-C-
2-phenyl-benzoimidazole products (7f and 7g). This opposite
selectivity is expected to depend on the electron density of
the aromatic group. Furthermore, we applied the iron complex
to achieve the direct N-alkylation of benzimidazole 8 with 2a

(Scheme 3). Unfortunately, no desired product was observed;
however, this result suggests that the reaction mechanism did
not proceed through benzimidazole as an intermediate. Besides
benzimidazole, 2-phenyl benzothiazole 10 was also successfully
synthesized in high yield (87%) using 2-aminobenzenethiol 9
under optimized reaction conditions (Scheme 4).

Based on the above observations and previous reports (Xu
et al., 2017, 2018; Das et al., 2018), we proposed a plausible
mechanism as shown in Scheme 5. Initially, aldehyde A was
generated from alcohol via iron-catalyzed dehydrogenation.
Then, the formation of bisimine intermediate B took place
through the condensation of diamine 1 with aldehyde A.
Bisimine B underwent intramolecular cyclization, followed by
rearrangement to give 1,2-disubstituted benzimidazole 3 (Path
a) (Chebolu et al., 2012). As mentioned in Table 2, we also
identified diamine 4 as a side product, which might be generated
from bisimine B through Fe-H2-mediated hydrogenation. On
the other hand, N-benzyl-1,2-diaminobenzene 6 also reacted
with the aldehyde A and generated imine intermediate D
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(Path b). Cyclic intermediate E was formed by an intramolecular
nucleophilic attack, followed by iron-catalyzed dehydrogenation
and aromatization, leading to the formation of 1,2-disubstituted
benzimidazoles (7a–e). In the case of alcohols substituted
with electron-rich heteroaromatic groups, such as furan and
thiophene, an intramolecular nucleophilic attack of D might
be less favored. Thus, it is rearranged quickly to intermediate
F, and a regioisomer (7f and 7g) was produced following a
similar process.

CONCLUSION

In conclusion, we have reported the first iron-catalyzed synthesis
of 1,2-disubstituted benzimidazoles using alcohol oxidation-level
substrates via the ADC strategy. The Knölker-type catalysts,
tricarbonyl (η4-cyclopentadienone) iron complexes, were
successfully employed in the dehydrogenative coupling of
alcohol with 1,2-diaminobenzene, followed by annulation to
give the 1,2-disubstituted benzimidazole products in good
yields. Under the developed conditions, the reaction of
N-benzyl-1,2-diaminobenzene with alcohols also provided
1,2-disubstituted benzimidazoles, and the regioselectivity of
the substituents depends on the electron density of the alcohol
substrate. In addition to benzoimidazole, benzothiazole was
also synthesized well using the developed method. Iron is an
earth-abundant and low-toxicity metal, and water and hydrogen
gas are liberated as by-products in the reaction. Therefore,
this methodology provides an eco-friendly alternative for
the selective synthesis of 1,2-disubstituted benzimidazoles.

Further extension using the Knölker-type complex to access
other types of N-heterocycles is under investigation in our
research group.
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