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In recent years, high-fat diet (HFD) has been widely applied in aquaculture, which reduces the intestinal
health of cultured fish. The current study evaluated the protective effects of nano-selenium (nano-Se) on
intestinal health of juvenile grass carp (Ctenopharyngodon idella) fed with HFD. A total of 135 experi-
mental fish were fed with a regular diet (Con), a HFD (HFD) and a HFD containing nano-Se at 0.6 mg/kg
(HSe) for 10 weeks. The results showed that dietary nano-Se significantly improved the survival rate and
feed efficiency which were reduced by HFD in juvenile grass carp (P < 0.05). Also, nano-Se (0.6 mg/kg)
supplement alleviated intestinal damage caused by the HFD, thus maintaining the integrity of the in-
testine. Moreover, it significantly up-regulated the expression of genes related to tight junction (ZO-1,
claudin-3 and occludin), anti-oxidization (GPx4a andGPx4b), and the protein of ZO-1 in the intestine of
juvenile grass carp, which were depressed by the HFD (P < 0.05). Furthermore, nano-Se supplementation
significantly suppressed the expressions of genes related to the inflammation, including inflammatory
cytokines (IL-8, IL-1b, IFN-g, TNF-a and IL-6), signaling molecules (TLR4, p38 MAPK and NF-kB p65), and
protein expression of NF-kB p65 and TNF-a in the intestine of juvenile grass carp which were induced by
the HFD (P < 0.05). Besides, dietary nano-Se normalized the intestinal microbiota imbalance of juvenile
grass carp caused by the HFD through increasing the abundance of the beneficial bacteria, e.g., Fuso-
bacteria. Finally, dietary nano-Se increased the production of short chain fatty acids (SCFA) in the in-
testine, especially for butyric acid and caproic acid, which were negatively related to the increase of
intestinal permeability and inflammation. In summary, supply of nano-Se (0.6 mg/kg) in HFD could
effectively alleviate intestinal injury of juvenile grass carp by improving intestinal barrier function and
reducing intestinal inflammation and oxidative stress. These positive effects may be due to the regulation
of nano-Se on intestinal microbiota and the subsequently increased beneficial SCFA levels.
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1. Introduction

Grass carp (Ctenopharyngodon idella) is one of the most popular
farmed fish species in China, with a production of 5.5 million tons in
2019 (Zhang et al., 2020). However, in the last few years, the aqua-
culture of grass carp has faced more and more challenges, including
the adverse effects caused by the increasing application of high-fat
diet (HFD) (Tang et al., 2019b; Zhao et al., 2019). Dietary fats play a
vital role in fish nutrition and provide essential fatty acids, fat-
ishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
s/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yuhaiboper@nwsuaf.edu.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aninu.2021.07.001&domain=pdf
www.sciencedirect.com/science/journal/24056545
http://www.keaipublishing.com/en/journals/aninu/
https://doi.org/10.1016/j.aninu.2021.07.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aninu.2021.07.001
https://doi.org/10.1016/j.aninu.2021.07.001


Table 1
The composition of the basal diet, including the regular diet (Con) and the high-fat
diet (HFD) (g/kg, air-dry basis).

Item Group

Con HFD

Ingredients
Fish meal 120 120
Soybean meal 240 240
Rapeseed meal 100 100
Cottonseed meal 100 100
Wheat flour 222 222
DDGS 50 50
Rice bran 70 70
Soybean oil 8 48
Bentonite 10 10
Ca(H2PO4)2 20 20
Microcrystalline cellulose 40 0
Vitamin mixture1 10 10
Mineral mixture2 10 10

Proximate composition
Moisture 134 131
Crude protein 300 300
Crude lipid 49 96
Ash 99 95
Basal Se level, mg/kg 0.3 0.3

DDGS ¼ distillers dried grains with solubles.
1 Vitamin premix provided per kilogram diet: vitamin A, 3,000 IU; vitamin E, 60

IU; vitamin D, 2,000 IU; vitamin C, 200 mg; thiamine, 5 mg; riboflavin, 10 mg;
menadione, 10 mg; pyridoxine HCl, 10 mg; cyanocobalamin, 0.02 mg; biotin, 1 mg;
calcium pantothenate, 40 mg; folic acid, 5 mg; niacin, 100 mg; inositol, 200 mg.
Cellulose was used as a carrier.

2 The mineral mix contained (g/kg of the total mineral): KAl(SO4)2$12H2O, 1.59;
CaCO3, 181.01; Ca(H2PO4)2, 446.01; CoCl2$6H2O, 0.70; MgSO4, 52.16; MnSO4�H2O,
0.70; KCl, 165.53; KI, 0.14; ZnCO3, 1.92; NaH2PO4, 136.05; Na2SeO3, 0.06;
CuSO4�5H2O, 0.75; ferric citrate, 13.38.

Table 2
Primers sequences.

Gene Sequences of primers

b-actin Forward: 50-GACCTGACTGACT
Reverse: 50-CGAAGTCAAGAGC

ZO-1 Forward: 50-ACTTTGACCGCCGA
Reverse: 50-GAGCAACAGGGTT

Occludin Forward: 50-TCCACTGCTGGCTG
Reverse: 50-GCTCATGCCGAATC

Claudin-3 Forward: 50-TGGGTTTGCTGCTG
Reverse: 50-GTAGAGCGTGGGG

TLR2 Forward: 50-AGTCCTTCGCTGAG
Reverse: 50-GATGGGACGGGCT

TLR4 Forward: 50-GCTCAGTCCCGGT
Reverse: 50-ACTCAAAGGGTCCC

p38 MAPK Forward: 50-CTCTCGCGCACCCG
Reverse: 50-CGTGAGCCGTTTCC

NF-kB p65 Forward: 50-GAAGAAGGATGTG
Reverse: 50-TGTTGTCGTAGATG

IL-8 Forward: 50-GCTCTACCCTCCTA
Reverse: 50-GGGAGCAGTAGGG

IL-1b Forward: 50-CCAAGTGCCACCC
Reverse: 50-AGGGGAAGAACCA

IFN-g Forward: 50-ATGATGCTGCTGTG
Reverse: 50-TCTCGCTTTTGGAC

TNF-a Forward: 50-TGATGGTGTCGAG
Reverse: 50-TTGAGCGTGAAGCA

IL-6 Forward: 50-AGCCAGCTCCAGG
Reverse: 50-GACGGCTCTGCATG

GPx4a Forward: 50-ACACATCCTGGCCT
Reverse: 50-TCGCCGTTCACGTC

GPx4b Forward: 50-AACCGAGGCGGAG
Reverse: 50-TCCCAGAGTCCCCT

Hif-1a Forward: 50-CAAGACCTTCCTTA
Reverse: 50-CACCGACCTGTTCA

ZO-1 ¼ zonula occludens-1; TLR ¼ toll-like receptors; MAPK ¼ mito
IL ¼ interleukin; IFN-g ¼ interferon g; TNF-a ¼ tumor necrosis factor
factor-1a.
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soluble vitamins, phospholipids and cholesterol needed for normal
growth, development and healthmaintenance of fish (Jobling, 2011).
It has been reported that dietary lipids exerted a protein-sparing
effect, and the principle was to replace the protein that can be
used to produce energy (Du et al., 2006). Therefore, in recent years,
HFD has beenwidely used in aquaculture. However, excessive lipid in
the diet often bringsmany adverse effects. Four percent of lipid in the
diet showed the protein-sparing effect, but 6% of lipid in the diet
negatively affected growth performance and body composition of
juvenile grass carp (Du et al., 2005). The HFD leads to unnecessary
liver fat deposition (Wang et al., 2013) and oxidative stress (Huang
et al., 2018; Ma et al., 2018), which might consequently affect the
health of fish and reduce the yield of fish (Zhao et al., 2019).

Consumption of HFD also causes an increase of intestinal per-
meabilization, impairs mucosal defenses, and induces intestinal
inflammation (Ding et al., 2010; Ma et al., 2018). High-fat diet (15%)
fed to Nile tilapia for 8 weeks significantly shortened the length of
intestinal villi, reduced the number of goblet cells in intestinal
epithelial cells, downregulated the mRNA expressions of tight
junction protein, i.e., occludin and claudin, and induced the
expression of intestinal inflammatory factor IL-1b (Ma et al., 2018).
Furthermore, excessive intake of lipid could affect the diversity of
intestinal microflora and lead to an ecological imbalance of intes-
tinal microflora (Al-muzafar and Amin, 2017; Tomas et al., 2016). In
addition, an HFD severely affected the composition of the micro-
biota in mice, characterized by the expansion of Firmicutes
(appearance of Erysipelotrichi), Proteobacteria (Desulfovibrionales)
and Verrucomicrobia, and decrease of Bacteroidetes and Candidatus
arthromitus (Tomas et al., 2016). High-fat diet in association with
commensal gut microbiota promoted intestinal inflammation in
mice (Ding et al., 2010).
Accession number

ACCTCAT-30 M25013
CACATAG-30

AGCT-30 KF193852.1
GATCTTCTC-30

ACTATCCC-30 KF193855
TCCACAGG-30

CTGTTCTG-30 KF193858.1
CGGAGTAG-30

GGTGGTTC-30 FJ542042.1
GCTTTCAAG-30

TTGTGATGG-30 FJ542043.1
TGCTCCAC-30

TACTTTG-30 KM112098
ACTCTTCG-30

GGAGATG-30 KJ526214
GGCTGAG-30

GCCCTCAC-30 JN255694.1
TCCAGACAG-30

CGAATGC-30 JQ692172
TCCGACTCG-30

TGGACTTCTG-30 FJ695519.1
CGTCGAAATC-30

GAGGAAGGC-30 HQ696609
GACAGCAG-30

TGAGTGAAG-30 KC535507.1
TGTCGATC-30

TCCCATCC-30 KU255598
AATCTTGC-30

ATCAAGGAG-30 KU255599
TGCCTTTG-30

GCCGTCACAC-30 AY450269.2
GCAGATCATC-30

gen-activated protein kinase; NF-kB ¼ nuclear factor kappa-B;
a; GPx4 ¼ glutathione peroxidase 4; Hif-1a ¼ hypoxia inducible



Fig. 1. Effect of dietary nano-Se on growth performance of juvenile grass carp (Ctenopharyngodon idella) fed with high-fat diet (HFD). (A) SGR ¼ specific growth rate; (B) FI ¼ feed
intake; (C) FCR ¼ feed conversion ratio; (D) SR ¼ survival rate. Values are presented as mean ± SD (n ¼ 3). a, b Significant differences are indicated by different letters (P < 0.05).

Fig. 2. Effects of dietary nano-Se on intestinal morphology of juvenile grass carp fed with high-fat diet (HFD). VH ¼ villus height; VW ¼ villus width; CD ¼ crypt depth;
MT ¼ intestinal epithelial muscle thickness. Arrows represent goblet cells. Circles represent intestinal mucous membrane shedding. Triangles represent intestinal villi fall off. The
pentagram represents intestinal villus adhesion. Scale bar, 200 mm.
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Dietary supplements have been proven to improve gut health
and reduce the negative effects of HFD in fish. Adding berberine to
the HFD could mitigate oxidative stress, inhibit apoptosis and
enhance disease resistance of fish (Chen et al., 2017). Dietary so-
dium butyrate could repair or prevent intestinal damage caused by
the oxidized oil diet of juvenile common carp (Liu et al., 2014).
Selenium, as an essential trace mineral, is vital to fish health. Se-
lenium is an antioxidant and active thyroid hormone production
catalyst (€Ozkan-Yılmaz et al., 2014; Winther et al., 2015). Numerous
studies have indicated that selenium deficiency has led to reduced
growth, decreased feed intake, damaged cellular oxidative,
decreased immunity and increased mortality (Gao et al., 2019; Liu
et al., 2018). Adequate selenium supplementation could enhance
the immune system of juvenile grass carp, thus reducing the gen-
eration of oxidative stress (Liu et al., 2018). Nano-Se has been
developed to supplement selenium due to its good water solubility
and low toxicity (Yang et al., 2014a). A study showed that nano-Se
had a greater impact on the growth performance and even
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antioxidant defense system of carp than other forms of selenium
(Saffari et al., 2016). The protective effects of selenium on the in-
testinal mucosa and the integrity of intestinal barriers have been
reported in animals (Baldwin and Wiley, 2002; Placha et al., 2014;
Xu et al., 2018), but its mechanism is still unclear. Besides, our
previous studies have reported that the addition of 0.3 and 0.6 mg/
kg of nano-selenium alleviated hepatopancreatic injury and
improved the survival rate of grass carp, and that the addition of
0.6 mg/kg of nano-seleniumwas more effective (Liu et al., 2021; Yu
et al., 2020). At present, it is not clear whether selenium (including
nano-Se) can alleviate the intestinal damage of fish caused by HFD.

Intestinal flora is involved in nutrient harvest, energy regulation,
intestinal barrier and inflammation (Lin et al., 2014). For example, in
mice fedwith HFD, the bacterium Akkermansia muciniphila improves
the integrity of the intestinal barrier and changes the metabolism of
adipose tissue, thus preventing obesity and inflammation (Everard
et al., 2013). Moreover, short chain fatty acids (SCFA), which are
major products of dietary fibres fermentation by gut microbiota in



Fig. 3. Effects of dietary nano-Se on intestinal morphological parameters of juvenile
grass carp fed with high-fat diet (HFD). (A) VH ¼ villus height; (B) VW ¼ villus width.
Values are presented as mean ± SD. a, b Significant differences are indicated by
different letters (P < 0.05).
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the large intestine, play an essential role in maintaining intestinal
barrier function (Chen et al., 2017). Studies indicate that the gut
microbiota of poultry can be changed by selenium nanoparticles in
feed (Gangadoo et al., 2018), and the improvement of dietary sele-
nium yeast (SY) on goat colon fermentation mode increases total
SCFA concentration (Benazir et al., 2016). However, it is not clear
whether selenium (including nano-Se) can regulate the intestinal
microbiota and their metabolites SCFA in fish and consequently
alleviate intestinal damage caused by HFD.

Hence, in this study, the protective effects of nano-Se supple-
mentation on intestinal morphology and intestinal integrity of ju-
venile grass carp that are fed with HFD were evaluated. Then the
mRNA expression levels of genes related to tight junction (zonula
occludens-1 [ZO-1], claudin-3 and occludin), inflammation (IL-8, IL-
1b, interferon g [IFN-g], tumor necrosis factor-a [TNF-a], IL-6, toll-
like receptor 4 [TLR4], p38 MAPK, NF-kB p65) and anti-oxidization
(glutathione peroxidase 4a [GPx4a] and GPx4b), and the proteins
expression levels of ZO-1, NF-kB p65 and TNF-a in the intestine
were detected. Further, the intestinal microbiota and the concen-
tration of SCFA were further determined, aiming to explore the
possible mechanism of adding nano-Se to alleviate intestinal
damage induced by HFD.
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2. Materials and methods

2.1. Animal ethics

All experimental procedures were carried out in accordance
with the Guidelines for Experimental Animals by the Animal Care
and Use Committee of Northwest A&F University, China.

2.2. Experimental design

The regular diet (Con), the HFD, and the HFD with added nano-
Se (0.6 mg/kg) (HSe) were prepared. The compositions of the basal
diet are shown in Table 1. The crude fat content of the regular diet
and HFD were 49 and 96 g/kg, respectively (Li et al., 2016). The
addition level of nano-Se was according to our previous study (Liu
et al., 2021). The nano-Se (>99% purity) was purchased from
Guangzhou Bosar Biochemical Technology Research Co., Ltd
(Guangzhou, Guangdong Province, China).

2.3. Fish management and feeding

Healthy juvenile grass carp were purchased from a fishing
ground in Ankang City, Shanxi Province, China. Before the start of
the experiment, the experimental fish were cultured in a circu-
lating water system. After 2 weeks acclimatization, a total of 135
juvenile grass carp individuals, with the size of 11.85 ± 0.10 g, were
randomly divided into 9 tanks. Every 3 tanks (triplicate) were
randomly assigned to one kind of experimental diet, and the
feeding trial lasted 10 weeks. During the feeding trial, the experi-
mental fish were fed artificially 3 times a day (08:30, 12:30 and
16:30), and the feeding amount was recorded. The water environ-
ment was as follows: water temperature, 28 ± 1 �C; dissolved ox-
ygen concentration >6.0 mg/L; pH, 7.0 ± 0.5. Water quality
parameters were monitored daily to ensure the stability of the
water environment.

2.4. Sample collection

At the end of the trial, the fish were anaesthetized with MS-
222 (90 mg/L) and weighed and sampled 24 h after the last
feeding. Three fish were randomly taken from each tank, and their
intestines were quickly separated on the ice. The same parts of the
intestines of different fish were cut carefully and immediately
place in 4% neutral formaldehyde for histopathological examina-
tion (about 1 to 2 cm lengths). The intestinal contents were gently
scraped with tweezers and placed in a 1.5-mL DNase-/RNase-free
centrifuge tube. These samples were transferred to liquid nitrogen
and then stored at �80 �C. The rest of the intestinal tissues were
quickly wrapped in tin foil and put into a 2-mL freezing tube,
frozen in liquid nitrogen and transferred to �80 �C for storage
until further analysis.

The growth performance parameters were calculated as follows.

Specific growth rate (SGR, %/day) ¼ 100 � (ln Final weight � ln
Initial weight)/Days

Feed intake (FI, %/day) ¼ 100 � {Amount of feed intake/[(Final
weight þ Initial weight)/2]}/Days

Feed conversion rate (FCR) ¼ Amount of feed intake/Body weight
gain

Survival rate (SR, %) ¼ 100 � Final number of fish/Initial number of
fish



S. Liu, H. Yu, P. Li et al. Animal Nutrition 8 (2022) 235e248

239
2.5. Intestinal histological analysis

After paraffin embedding, the collected intestinal segments
were cut into slices about 5 mm thick. They were then stained with
hematoxylin and eosin (H&E) and observed under an optical mi-
croscope (Meng et al., 2017). Then, the height (VH) and width (VW)
of intestinal villi in different groups were measured by ImageJ. VH
was measured from the tip of the villi to the mouth of the crypt and
VW was measured at the midpoint of each villus.

2.6. Gene expression analysis

Gene sequences were found from the National Center for
Biotechnology Information (NCBI) and primers were designed. The
sequences of primers used in this paper are shown in Table 2.
Samples were taken from the �80 �C refrigerator, and 50 to100 mg
of tissues were used to extract RNA. The RNA extraction reagent: AG
RNAex Pro Reagent from Accurate Biotechnology (Hunan) Co., Ltd;
the concentration and purity of RNA were determined by spectro-
photometry (NanoDrop 1000, Thermo Scientific). Reverse tran-
scription reagent: HiScript II Q Select RT SuperMix for qPCR (þ
gDNA wiper), reverse transcriptase was prepared according to the
instructions; qPCR reagent: ChamQ SYBR qPCR Master Mix. The
reaction mixture for PCR consisted of 5 mL 2 � SYBR Green PCR
Master Mix, 1 mL of synthesized cDNA, 1.5 mL each specific primer to
a final volume of 10 mL. The amplification was carried out in a real-
time PCR detection system (CFX96, Bio-Rad) and the PCR condi-
tions were as follows: 95 �C for 2min, followed by 40 cycles of 95 �C
for 5 s, 62 �C for 30 s, andmelting temperature from 65 to 95 �C. The
Ct value was obtained, and the relative changes of each target gene
expression between the experimental groups were calculated by
2�DDCt method (Livak and Schmittgen, 2001). The amplification
efficiency of each pair of primers ranged from 97% to 102%.

2.7. Western blot

Protein extraction was performed with a protein extraction kit
(RIPA buffer, Solarbio, China) and the content was determined with
a BCA protein assay kit (Solarbio, China). The protein marker used
in this experiment was sourced from ThermoFisher Scientific
(26634). Proteins were separated with 8% to 10% sodium dodecyl
sulfate gels (40 mg per sample), and wet transferred and blotted on
polyvinylidene fluoride membrane (YA1701, 0.45 mm, Solarbio,
China). After blocking with 5% skimmed milk powder for 1.5 h at
room temperature in TBST, they were washed 4 times with TBST for
8 min. The following antibodies were used in blocking buffer
overnight at 4 �C: glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) used as the control protein of total protein, rabbit anti-
GAPDH (1:2,000, Servicebio, China), antieNFekB p65 (1:800,
Wanlei Bio., China), anti-TNF-a (1:800,Wanlei Bio., China) and anti-
ZO-1 (1:800, Wanlei Bio., China). Samples were then washed with
TBST 4 times, for 8 min, incubated with goat anti-rabbit IgG (H þ L)
HRP (Biosharp, China) (1:2,000) in TBST for 1 h, then washed 4
times with TBST for 8 min each time. The membrane was then
incubated in ECL Super Sensitive Kit (DiNing, China) for 30 s and
exposed to X-ray film. ImageJ was used to analyze the gray level of
Fig. 4. Effects of dietary nano-Se on mRNA expression of intestinal tight junction
protein in juvenile grass carp fed with high-fat diet (HFD). (A) ZO-1; (B) occludin; (C)
claudin-3. Values are presented as mean ± SD (n ¼ 3). a, b Significant differences are
indicated by different letters (P < 0.05). ZO-1 ¼ zonula occludens-1.
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the image. The relative expression level was calculated based on the
ratio of the gray value of the target protein to the GAPDH protein.

2.8. Intestinal contents DNA extraction and sequencing

To evaluate the effect of nano-Se on the composition of gut
microbiota, the V4eV5 region of bacterial 16 S rDNAwas amplified
and sequenced by Illumina MiSeq platform. Frozen intestinal con-
tents were used to detect the richness of intestinal flora in different
experimental groups. The experimental steps were mainly divided
into the following aspects: the extraction of genetic DNA, PCR
amplification, Miseq library construction and computer sequencing
by Illumina MiSeq. Finally, the sequences of the template DNA
fragment were obtained based on the fluorescence signal.

2.9. Short chain fatty acid content tested by GCeMS

About 200 mg of intestinal contents were taken to measure the
content of SCFA. Seven kinds of SCFA were tested by targeted detec-
tion based on the gas chromatography-mass spectrometer (GCeMS)
detectionplatform, according to themethodof Furuhashi et al. (2018).
The 7 kinds of SCFA are acetic acid, propionic acid, isobutyric acid,
butyric acid, isovaleric acid, valeric acid and caproic acid.

2.10. Statistical analysis

All data were statistically analyzed with SPSS 20.0 software
(SPSS). A one-way ANOVA and then a least significant difference
(LSD) post hoc test to analyze the data. Prior to applying ANOVA,
the mean square error of all data was tested by the Levene test, and
the normal distribution was tested by the KolmogoroveSmirnov
test. The significant difference level was set at P < 0.05. Further-
more, GraphPad Prism 8.0 was used for mapping.

3. Results

3.1. Growth and FCR

The effects of dietary nano-Se on SGR, FI, FCR and SR of juvenile
grass carp are presented in Fig. 1A, B, C and D. High-fat diet signifi-
cantly decreased SGR and SR of juvenile grass carp and increased FI
and FCR compared with the regular diet (P < 0.05). Nevertheless,
nano-Se supplementation significantly increased the SR but
decreased the FCR of juvenile grass carp in comparisonwith the HFD
(P < 0.05). However, no significant changes were observed in the SR
and FCR of juvenile grass carp in the HSe and Con groups (P > 0.05).
Fig. 5. Effects of dietary nano-Se on the protein expression of intestinal tight junction prot
mean ± SD (n ¼ 3). a, b Significant differences are indicated by different letters (P < 0.05).
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3.2. Intestinal morphology

By observing the microstructure of the intestine, the effects of
the supplement of nano-Se on the intestinal morphology and
function in juvenile grass carp were evaluated (Figs. 2 and 3).
Compared with the control group, the intestinal villi in the HFD
group were structurally disordered and showed intestinal villi at-
rophy, intestinal villi adhesion and intestinal villi shedding. In
contrast, the addition of nano-Se in HFD showed that the above
intestinal injury could be effectively alleviated (Fig. 2). Also, the
intestinal epithelial cells of the HSe and control groups were ar-
ranged closely and orderly compared with HFD group, and there
were apparent gaps (Fig. 2). Compared with the regular diet, HFD
markedly decreased the intestinal villus height (VH) and width
(VW) of juvenile grass carp. However, dietary nano-Se resulted in
taller (P < 0.05) VH as well as longer (P < 0.05) VW in comparison
with the HFD group (Fig. 3A and B).
3.3. The expressions of the tight junction, inflammation and anti-
oxidization related genes and proteins

First, as shown in Fig. 4, HFD significantly reduced the expres-
sion of tight junction protein genes of the intestine, including ZO-1
(Fig. 4A), occludin (Fig. 4B) and claudin-3 (Fig. 4C) (P < 0.05).
Moreover, dietary nano-Se significantly increased the mRNA
expression of ZO-1, occludin and claudin-3 compared with HFD
(P < 0.05). Compared with the regular diet, protein expression level
of ZO-1 in the intestine significantly decreased in the HFD group.
However, dietary nano-Se significantly enhanced the protein
expression level of ZO-1 (Fig. 5, P < 0.05).

Secondly, as presented in Fig. 6, the mRNA expression levels of
TLR4 (Fig. 6B), p38MAPK (Fig. 6C),NF-kBp65 (Fig. 6D), IL-8 (Fig. 6E), IL-
1b (Fig. 6F), IFN-g (Fig. 6G) and TNF-a (Fig. 6H) elevated significantly
due to the HFD (P < 0.05). However, the mRNA levels of TLR4, p38
MAPK, NF-kB p65, IL-8, IL-1b, IFN-g, TNF-a and IL-6 (Fig. 6I) were
significantly reduced owing to the nano-Se supplement (P < 0.05).
Meanwhile, as shown in Fig. 7, the protein expression levels of NF-kB
p65 and TNF-a significantly increased in the HFD group, and signifi-
cantly decreased in the HSe group compared with Control (P < 0.05).

Furthermore, HFD significantly increased the mRNA levels of
Hif-1a (Fig. 8) compared with the regular diet (P < 0.05). But nano-
se supplementation markedly reduced the mRNA expression level
of Hif-1a compared with that in the HFD group (P < 0.05).

Finally, as presented in Fig. 9, the mRNA expression levels of
GPx4a and GPx4b significantly (P < 0.05) decreased in the intestine of
juvenile grass carp that were fed with HFD. But, nano-Se
ein (ZO-1) in juvenile grass carp fed with high-fat diet (HFD). Values are presented as
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supplementation in the HFD group markedly induced the mRNA
expressions of the GPx4a and GPx4b of the intestine in juvenile grass
carp.
Fig. 6. Effects of dietary nano-Se on mRNA expression of intestinal inflammatory
factors in juvenile grass carp fed with high-fat diet (HFD). (A) TLR2; (B) TLR4; (C) p38
MAPK; (D) NF-kB p65; (E) IL-8; (F) IL-1b; (G) IFN-g; (H) TNF-a; (I) IL-6. Values are
presented as mean ± SD (n ¼ 3). a, b, c Significant differences are indicated by different
letters (P < 0.05). HSe ¼ nano-Se group; TLR ¼ toll-like receptors; MAPK ¼ mitogen-
activated protein kinase; NF-kB ¼ nuclear factor kappa-B; IL ¼ interleukin; IFN-
g ¼ interferon g; TNF-a ¼ tumor necrosis factor a.
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3.4. Intestinal microbiota

The V4 and V5 regions of the bacterial 16 S rDNAwere amplified
and sequenced on the Illumina MiSeq platform to evaluate the
impact of nano-Se on the composition of gut microbiota. After the
quality screening, each of the 9 samples (3 duplicate samples for
each group) received at least a good sequence (clean tags) of
70,932. Clean tags were clustered (or denoised) to generate
operational taxonomic unit (OTU), and a total of 720 OTU were
observed in all samples. As shown in Fig. 10A, B and C, compared
with group C, the observed species and the Chao-1 index reflecting
species richness and diversity were reduced in group H, and the
Shannon index also decreased. In contrast, the richness and di-
versity of the gut microbiota of juvenile grass carp fed with HFD
added with nano-Se (0.6 mg/kg) were enhanced (Fig. 10A, B and C).
In addition, non-metric multidimensional scaling (NMDS) was used
to analyze the beta diversity shown in Fig. 10D. Nano-Se group
(HSe) clustered separately from the HFD group, and was similar in
their microbiota profiles to the Con group.

The composition of gutmicrobiota at the phylumand genus levels
in juvenile grass carp in Con, HFD and HSe groups are presented in
Fig. 11A and B. Most of the gut microbiota belongs to Proteobacteria
(31.03%, 21.31% and 16.14%), Fusobacteria (10.12%, 3.49% and 34.46%),
Actinobacteria (16.87%, 12.12% and 11.89%), Chloroflexi (18.28%,
19.02% and 3.03%), Planctomycetes (11.29%, 11.06% and 10.13%), Bac-
teroidetes (1.07%, 19.42% and 11.29%), Firmicutes (4.80%, 12.03% and
9.70%), Chlamydiae (3.61%,1.12% and 1.21%), Verrucomicrobia (2.62%,
0.28% and 2.07%) in Con, HFD, and HSe groups, respectively.

On the other hand, at the genus level, HFD decreased the per-
centage of Cetobacterium, Leifsonia and Pirellula compared with the
regular diet. In contrast, the percentage of Bacteroides, Gemmo-
bacter, Planctomyces was higher than that in the Con group, and all
these variations above were reversed by the dietary nano-Se
intervention (Fig. 11B).

3.5. Concentration of short chain fatty acid

As presented in Fig. 12, among the 6 kinds of SCFA detected in all
3 groups, acetic acid, propionic acid and butyric acid had the
highest concentrations. High-fat diet reduced the concentration of
6 kinds of SCFA compared with the regular diet. However, nano-Se
supplementation in the HFD increased acetic acid, isobutyric acid,
butyric acid, isovaleric acid and caproic acid concentration levels
and reduced the concentration level of propanoic acid.

3.6. Correlation between the abundance of gut microbiota and SCFA
levels

A heatmap of Spearman's correlation between the abundance of
gut microbiota (at the genus level) and SCFA levels is presented in
Fig. 13. Cetobacterium was significantly positively correlated with
isobutyric acid and caproic acid, but Planctomyces and Alpinimonas
were opposite (P < 0.01). The abundance of Pirellula, Nocardioides,
Meganema, Luteolibacter was significantly positively correlated
with the butyric acid.

4. Discussion

4.1. Nano-Se supplementation decreased mortality rate and FCR of
juvenile grass carp fed with high-fat diet

A previous study found that the growth reaction increased with
the increase of dietary lipid level until the optimal demand level was
reached, and after that it decreased as the lipid level in the diet
increased (Meng et al., 2018). In the present study, HFD significantly



Fig. 7. Effects of dietary nano-Se on proteins expression of intestinal inflammatory factors in juvenile grass carp fed with high-fat diet (HFD). Values are presented as mean ± SD
(n ¼ 3). a, b, c Significant differences are indicated by different letters (P < 0.05). HSe ¼ nano-Se group; NF-kB ¼ nuclear factor kappa-B; TNF-a ¼ tumor necrosis factor a.

Fig. 8. Effects of dietary nano-Se on mRNA expression of Hif-1a in the intestine of
juvenile grass carp fed with high-fat diet (HFD). Values are presented as mean ± SD
(n ¼ 3). a, b Significant differences are indicated by different letters (P < 0.05).
HSe ¼ nano-Se group; Hif-1a ¼ hypoxia inducible factor-1a.

Fig. 9. Effects of dietary nano-Se on expression of GPx4a and GPx4b in the intestine of
juvenile grass carp fed with high-fat diet (HFD). Values are presented as mean ± SD
(n ¼ 3). a, b, c Significant differences are indicated by different letters (P < 0.05).
HSe ¼ nano-Se group; GPx4 ¼ glutathione peroxidase 4.
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decreased the SGR and the SRof juvenile grass carp and increased the
FCR compared with the regular diet, indicating the adverse effects of
excessive fat intake. Liu et al. (2018) reported that the optimal level of
dietary selenium (0.83 mg/kg) significantly improved the growth
performance of grass carp. But in the present study, the addition of
nano-Se (0.6mg/kg) in theHFDdid not reveal a significant increase in
the SGR of the juvenile grass carp. The different level of dietary Se or
lipid may explain such diverse results.

Interestingly, nano-Se supplementation significantly increased
the SR of the juvenile grass carp fed with HFD, and significantly
decreased the FCR of the juvenile grass carp fed with HFD. The
results were similar to the study in which a significant dose-
dependent improvement in FCR and SR were observed in Meagre
(Argyrosomus regius) fed different levels of Se-yeast (Mansour et al.,
2017). The above results indicated that dietary supplementation of
nano-Se could significantly increase the yield and reduce the pro-
duction cost of juvenile grass carp fed with HFD by decreasing
mortality and improving the feed utilization efficiency of the ju-
venile grass carp.
4.2. Dietary nano-Se alleviated HFD induced histopathological
damage in intestine of juvenile grass carp

The intestinal epithelial barrier consists of epithelial cells,
tightly coupled proteins, and intestinal secretions that prevent
luminal substances and antigens from passing through the para-
cellular space (Yan and Ajuwon, 2017). Goblet cells synthesize
secretory mucin glycoproteins and bioactive molecules to form the
intestinal mucin layer, which form the front line of natural host
defense (Cornick et al., 2015; Kim and Ho, 2010). The indicators for
evaluating a healthy intestine include goblet cell count, intestinal
villus height (VH), villus width (VW) and so on (Kuebutornye et al.,
2020). Many studies have reported that HFD decreased the health
status of the intestine (Ding et al., 2010; Meng et al., 2018). The
present study also observed that the intestine of juvenile grass carp
fed with HFD showed structural disorder and a decrease in VH and
VW, which might consequently result in the increase of the FCR.

However, nano-Se supplementation significantly reduced in-
testinal villi damage and enhanced the morphological parameters
of the intestine (VH and VW), thus improving the integrity of the
intestinal mucosa. This positive effect has been reported by Tang
et al. (2019a), in which dietary selenium alleviated the intestinal
epithelial cell injury in mammals induced by heat stress. The in-
crease in the structural integrity of intestinal villi reduces the
colonization rate of pathogenic microorganisms, thus increasing



Fig. 10. Effects of dietary nano-Se on alpha and beta diversity of gut microbiota in juvenile grass carp fed with high-fat diet (HFD). Alpha diversity was evaluated by index of (A)
observed species, (B) Chao-1 and (C) Shannon. (D) Beta diversity was evaluated by non-metric multidimensional scaling (NMDS) (n ¼ 3).
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the disease resistance of fish (Xia et al., 2019). Therefore, the mor-
tality rate of juvenile grass carp fed with HFD that were supple-
mented with nano-Se was observed. Moreover, an increase in VH
and VM led to the increase of the intestinal absorption surface
(Kuebutornye et al., 2020), which could consequently increase the
feed utilization efficiency. Hence, the increased FCR of juvenile
grass carp in the diet of juvenile grass carp fed with nano-Se was
observed.
4.3. Nano-Se supplement modulated the mRNA expression levels of
genes associated with the tight junction, inflammation and
oxidative stress in the intestine of juvenile grass carp fed with HFD

Tight junction is a complex dynamic structure composed of the
transmembrane protein occludin, junctional adhesion molecule,
claudin family members, and linker proteins such as ZO-1
(Dokladny et al., 2016; Zhang and Guo, 2009). Decreased expres-
sion of intestinal tight junction protein interrupted the tight junc-
tion barrier and led to increased intestinal permeability (He et al.,
2019). Studies have shown that HFD could down-regulate the
expression of tight junction proteins, increase intestinal perme-
ability, and consequently promote the diffusion of LPS, which plays
a key role in inducing intestinal and systemic inflammatory re-
sponses (Kawano et al., 2016;Murakami et al., 2016; He et al., 2019).
In this study, HFD significantly suppressed the mRNA expression of
epithelial tight junction protein genes (ZO-1, occludin and claudin-
3) and the protein expression of ZO-1, leading to the increase in
intestinal permeability of juvenile grass carp. Previous studies have
confirmed that selenium treatment can increase relocation to
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endothelial cellecell junctions of the tight-junction proteins
occludin and ZO-1 (He and Xu, 2017; Pan et al., 2018). The current
research also observed that the mRNA expressions of ZO-1, occludin
and claudin-3 and the protein expression of ZO-1 in the intestine of
juvenile grass carp were significantly up-regulated by the dietary
nano-Se, which indicated that the addition of nano-Se prevented
the increase of intestinal permeability caused by HFD.

Dysfunction of the intestinal barrier is often associated with
inflammatory bowel disease (McGuckin et al., 2009; Salim and
Soderholm, 2011). Toll-like receptors (TLR) are involved in the
recognition of invading pathogens and trigger inflammatory re-
sponses, including the production of pro-inflammatory cytokines
(Shih et al., 2018). Molecular mechanisms that stimulate inflam-
matory responses through TLR involve activation of intracellular
signaling pathways, including MAPK and NF-kB (Goral and Kovacs,
2005; Hotamisligil, 2006; Han et al., 2019; Kim et al., 2012). It has
been reported that increased expression of TLR4 gene in intestinal
epithelial cells leads to a change in tight connectivity permeability
and an increase in intestinal inflammation (Serre et al., 2010). High-
fat diet can cause intestinal inflammation and increased TNF-a, IL-1,
and IL-6 mRNA expression levels in mice (Cani et al., 2008; Moran-
Ramos et al., 2017). The current study also found that HFD signifi-
cantly induced the expression of intestinal inflammation-related
genes, including TLR4, p38MAPK, NF-kB p65, IL-8, IL-1b, IFN-g and
TNF-a (P < 0.05), and also significantly induced the proteins
expression of NF-kB p65 and TNF-a, which might lead to the in-
crease of intestinal permeability and damage (P < 0.05).

Studies have reported that selenium may inhibit the activation
of NF-kB (Duntas, 2009; Liu et al., 2016), and the intake of a low-



Fig. 11. Effects of dietary nano-Se on the species composition of gut microbiota in juvenile grass carp fed with high-fat diet (HFD) at (A) phylum and (B) genus levels (n ¼ 3).
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selenium diet was often accompanied by the increase of IL-6, IL-1b,
and TNF-a (Tsuji et al., 2015; Zhou et al., 2014), thus aggravating
gastrointestinal inflammatory lesions (Gao et al., 2016; Liu et al.,
2016). In this study, a marked reduction in the expression of TLR4
in the intestine of juvenile grass carp supplied with HFD containing
nano-Se, followed by a significant decrease in the expression of p38
MAPK and NF-kB p65 was observed. As a result, the expression of
proinflammatory factors (IL-8, IL-1b, IFN-g, TNF-a and IL-6) in in-
testine was also significantly reduced (Fig. 6), indicating that nano-
Se can alleviate intestinal inflammation induced by HFD.

Research has shown that IFN-g up-regulated the expression of
hypoxia-inducible factor-1 alpha (Hif-1a) through the NF-kB
pathway, thereby inducing the loss of epithelial barrier function
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and the disruption of tight junction proteins (Yang et al., 2014b).
Meanwhile, the role of Hif-1a in protectingmucosa in vivo has been
confirmed by a growing volume of literature (Hindryckx et al.,
2010; Tambuwala et al., 2010). As such, the mRNA expression of
Hif-1a was further tested in this research, and the result revealed
that nano-Se supplementation markedly reduced the mRNA level
of Hif-1a (Fig. 8) which was induced by HFD, indicating that nano-
Se supplementation might prevent the loss of epithelial barrier
function and disruption of tight junction proteins induced by HFD
by regulating the NF-kB-Hif-1a pathway. However, this needs
further verification.

Glutathione peroxidase 4, as a member of the GPx family, cat-
alyzes the reduction of hydrogen peroxide and lipid



Fig. 12. Effect of dietary nano-Se on intestinal SCFA concentration in juvenile grass
carp fed with high-fat diet (HFD) (red, high concentration; green, low concentration)
(n ¼ 3). HSe ¼ nano-Se group.

Fig. 13. Heatmap of Spearman's correlation between the abundance of gut microbiota
(at the genus level) and short chain fatty acid levels. The intensity of the colors rep-
resented the degree of association (red, positive correlation; blue, negative correla-
tion). Significant correlations are marked by *P < 0.05; **P < 0.01.
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hydroperoxides by GSH (Ezea, 2013). Moreover, GPx4 plays essen-
tial roles in the prevention of selenium-dependent gastrointestinal
oxidative injury in mammals (Speckmann et al., 2011). In the cur-
rent study, the HFD suppressed the expression of GPx4a and GPx4b
in the intestine, which might lead to the decline of antioxidant
capacity and the aggravation of oxidative stress. However, expres-
sions of GPx4a and GPx4b increased significantly in the intestine of
the juvenile grass carp in group H, indicating that nano-Se sup-
plementation might reduce the intestinal oxidative stress caused
by HFD. Similar results were also found in a previous study inwhich
the optimal level of dietary selenium up-regulated the expression
of GPx4 in the liver of chicken (Zoidis et al., 2010). Moreover, many
studies have revealed that selenium supplementation in the diet
significantly enhanced the activity of GPx (Boostani et al., 2015; Cai
et al., 2012; Chen et al., 2013; Markovi�c et al., 2018). The improved
antioxidant capacity by dietary nano-Se might also contribute to
the decrease in intestinal inflammation and injury, and conse-
quently an improvement of intestinal barrier function.

These results indicated that the alleviating the effects of dietary
supplementation of nano-Se on intestinal pathological injury of ju-
venile grass carp caused by HFD (revealed by pathologic section)
might be achieved by upregulating the expression of genes involved
in tight junction and anti-oxidization, and reducing the expression of
inflammation-related genes and signal molecules. However, the
specific regulatory mechanism needs further exploration.
4.4. Dietary nano-Se modulated composition and function of gut
microbiota

Intestinal flora colonize the intestinal tract, forming a biological
barrier in the intestinal tract, promoting the expression and
secretion of mucin by intestinal cells, and maintaining the integrity
of the intestinal barrier function (Chen et al., 2017). It has been
reported that HFD could cause intestinal flora imbalance in mice
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(Liu et al., 2011; Zhou et al., 2020) and humans (Li and Cui, 2013). It
has also been reported that HFD reduced species richness, accom-
panied by a significant reduction in the diversity of the gut
microbiota in eels (Peng et al., 2019). Similarly, in the present study,
results of 16 S rDNA sequencing revealed that HFD reduced the
alpha diversity of gut microbiota, including the observed species,
and reflected species richness and diversity index (Chao-1 index
and Shannon index). Moreover, the beta diversity of gut microbiota,
which is often used to measure the similarity of community
composition between different treatments, was also shifted by HFD
in juvenile grass carp (analyzed by NMDS). When the intestinal
microecology is disordered, the increase in abundance of harmful
microorganismwill reduce the expression level of intestinal mucin,
increase intestinal permeability, and promote the occurrence and
development of host system inflammation and inflammatory in-
testinal diseases (Etienne-Mesmin et al., 2017; Thevaranjan et al.,
2017). As expected, an increase in intestinal inflammation and the
dysfunction of the intestinal barrier in juvenile grass carp induced
by HFD were observed in this study.

Diet can rapidly and reproducibly alter the structure of the gut
microbial community, regardless of its genetic influence (Zhang
et al., 2020). Some studies in mice have shown that dietary sele-
nium supplementation can affect the intestinal barrier and immune
responses by regulating the gut microbiota (Kasaikina et al., 2011;
Zhai et al., 2018). In the current study, dietary nano-Se supplemen-
tation increased the alpha diversity of gut microbiota, including the
observed species, Chao-1 and Shannon index, and mitigated the loss
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of species richness and diversity of gut microbiota induced by HFD.
Further, dietary nano-Se partially recovered the beta diversity of gut
microbiota that was shifted by the HFD. Moreover, nano-Se affected
the composition of intestinal flora. At the phylum level, HFD
increased the abundance of Bacteroides and (https://fanyi.so.com)
Firmicutes and decreased the abundance of Fusobacteria, but nano-
Se decreased the abundance of Bacteroides, Firmicutes (https://fanyi.
so.com), Proteobacteria and Chloroflexi, and increased the abun-
dance of Fusobacteria which had a positive effect on fish health by
participating in the synthesis of vitamins and butyric acid (Huda
et al., 2020). At the genus level, HFD increased the abundance of
Bacteroides and decreased the abundance of Cetobacterium, which is
considered a beneficial bacterium in fish (Noor-Ul et al., 2020), but
nano-Se decreased the abundance of Bacteroides, Gemmobacter and
increased the abundance of Cetobacterium.

Intestinal microorganisms catabolized carbohydrates that
cannot be used by the host to produce SCFA, mainly acetic acid,
propionic acid and butyric acid. Short chain fatty acids not only
supply energy to a host, but also influence the intestinal immune
cells through a variety of protein inflammatory complexes to
regulate the immune response (Laszczy�nska et al., 2019). Moreover,
SCFA are closely related to the health of the intestinal barrier,
especially butyric acid (Ohata et al., 2005). Studies have shown that
the increase of intestinal SCFA levels induced by the increase of
Bifidobacterium abundance inhibited the growth of pathogenic
bacteria, reduced intestinal permeability, maintained the integrity
of intestinal barrier and reduced inflammatory reaction (Cani et al.,
2009; Moreira et al., 2012). Further, another study has documented
that selenium in the diet significantly promoted gastrointestinal
fermentation and resulted in increased levels of SCFA (Benazir et al.,
2016). The current data also showed that nano-Se supplementation
increased the concentrations of intestinal butyric acid and iso-
butyric acid that were reduced by the HFD (Fig. 12). As such, the
decrease in intestinal inflammation and the improvement of in-
testinal barrier function in grass carp supplied with HFD containing
nano-Se were observed.

Short chain fatty acid levels in the intestinal tract are influenced
by the composition of the intestinal microbiota (Rooks and Garrett,
2016). In order to further confirm the relationship between the
change of intestinal flora structure (at genus level) and the change
of intestinal SCFA levels, the spearman's correlation analysis was
carried out (Fig. 13). The result revealed that Cetobacterium was
significantly positively correlated with isobutyric acid and caproic
acid, but Planctomyces and Alpinimonas were opposite (P < 0.01).
The abundance of Pirellula, Nocardioides, Meganema, Luteolibacter
was significantly positively correlated with the butyric acid
(P < 0.01). Hence, dietary nano-Se could promote the colonization
of beneficial bacteria and consequently increase the production of
SCFA, so as to alleviate intestinal damage caused by HFD. Further-
more, it provided a potential target to regulate the fish health, and
it also provided a reference for the development of probiotics.
5. Conclusion

This study explored the alleviative effects of dietary nano-Se on
the intestinal damage induced by HFD in grass carp. The above
results demonstrated that supply of nano-Se (0.6 mg/kg) in HFD
effectively protected the intestine of juvenile grass carp by
improving intestinal barrier function and reducing intestinal
inflammation and oxidative stress, and consequently improved
both the survival rate of juvenile grass carp and feed utilization
efficiency. These positive effects may be due to the regulation of
nano-Se on intestinal microbiota and the subsequently increased
beneficial SCFA levels.
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