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tation is usually obtained by either a real 
teacher (e.g. the physical therapist), or a vir-
tual teacher (such as in virtual  reality-based 
rehabilitation), thus triggering an instance 
of the learning-by- imitation scheme. If the 
rehabilitation exercises are administered in a 
game fashion, which means asking the player 
to choose a solution in terms of movement 
execution out of a number of discrete possi-
ble alternatives, we can hypothesize that this 
is an example of a reinforcement-learning 
scheme (Sutton and Barto, 1998).

The internal model hypothesis, i.e. the 
presence of an internal representation of 
the dynamics and kinematics of movement 
at the neural level, is acknowledged as one 
of the leading theories of motor control 
and learning in neuroscience (Jordan and 
Rumelhart, 1992), and many authors pro-
posed different mathematical proxies of this 
empirical paradigm (see e.g. Tin and Poon, 
2005). In the framework of rehabilitation, 
it is assumed that, in the brain (the con-
troller), this internal representation is re-
trained by changing its functional structure 
over time through interaction with modifi -
cations either in the environment or in the 
affordances of the body. It is acknowledged 
that most of the computational models that 
can simulate this ability towards change are 
based on the presence of rules (needed to 
adjust the parameters of the controller), 
where the interaction between the con-
troller and the controlled plant (the body) 
allows some kind of modifi cation. Among 
them, reinforcement learning is one of 
those machine-learning approaches where 
an entity decides a strategy that will maxi-
mize some reward function, as a result of 
the actions (Minsky, 1961). The controller, 
which is called the agent in machine learn-
ing defi nitions, is not actually told which 
actions need to be taken, but learns to adapt 
the policy, based on the obtained reward. 
Algorithms able to analytically provide this 
kind of  training are now at hand (Williams, 
1992), and the mechanism itself has been 

fully studied in behavioural analyses of 
games (see e.g. Zaghloul et al., 2009), where 
simple reinforcement learning schemes have 
been demonstrated as effi cient in respecting 
both the law of effect, for which choices that 
carry positive effects in the short term tend 
to be repeated in the future, and the power 
law of practice, for which the performance 
of a natural system when facing unseen con-
ditions tends to increase with a decreasing 
rate over time (Erev and Roth, 1998).

In the framework of motor control, this 
approach has been hypothesized as the only 
one that grants consistent improvement in 
general learning-by-doing schemes. At the 
same time, the implementation of rein-
forcement learning is generally based on the 
presence of a discrete number of different 
choices (a number of primitives), among 
which the agent is able to choose. The avail-
ability of (non-strictly) determined games 
that involve decision making and execution 
of a discrete and fi nite number of motor 
tasks is fostering new scenarios for enhanc-
ing re-training based on reinforcement. It 
is indeed acknowledged that the prefrontal 
motor cortex serves as the command gen-
erator that sends input to the descending 
pathways. The way this system chooses the 
pattern of commands based on the desired 
action can be represented as the function 
of a planner, whereas a controller at a lower 
hierarchical level transforms these neural 
commands into actual movers. If no mech-
anism intended to modify the parameters 
of the planner is present, the controller 
will only be able to adapt to modifi cations 
based on the nature of the planner, in a 
short-term paradigm based on the differ-
ence between the intended action and the 
executed one. If, instead, some measure of 
long-term reward is used to let the plan-
ner modify its behaviour, the latter will 
adapt its parameters based on how much 
the reward differs from the reward it was 
expecting. Once this difference is negligi-
ble, the planner will be trained to drive the 

This opinion article wishes to highlight 
the importance of applying reinforcement 
learning in games designed for therapeutic 
or educational purposes and is directed in 
particular to the medical community.
Games provide enjoyment: people learn 
and keep on playing just for the sake of it, 
because it is fun. In addition the intrinsic 
presence of competition and confrontation 
in any game might be critical in social behav-
iour. Playing also represents a powerful tool 
for individual growth and development. In 
fact games might fulfi l different objectives, 
such as supporting maturation in child, or 
enhancing educational programs and ulti-
mately facilitating recovery from diverse 
pathologies. For example, when focussing 
on motor activities, it is widely accepted 
that the repetition of sessions of movement 
therapy plays a key role in the modifi cation 
of motor outcomes (Kwakkel et al., 2004). 
In this context, games, due to their ability to 
improve patients’ compliance to treatments, 
are increasingly being exploited to strengthen 
and validate training programs directed to 
improve motor outcomes (Johnson, 2006; 
Mirelman et al., 2009).

The role of games in improving motor 
outcomes during rehabilitation is quite 
obvious, however the rationale behind game 
clinical effi cacy in rehabilitation programs 
which include games, when compared to the 
conventional ones (Broeren et al., 2008), has 
not been developed in a theoretical frame-
work. Certainly, game-based rehabilitation 
is more effective due to its “more engaging” 
nature. In this framework, it may be help-
ful to take into consideration the theory 
behind machine learning and artifi cial 
intelligent systems, for which the outputs 
of motor re-training represent a valid rep-
lica: it is indeed demonstrated that repetitive 
task-oriented practice in an un-supervised 
scenario (which mimics a learning-by-doing 
paradigm) in motor re-training represents a 
viable and valid method for rehabilitation, 
and that another means to convey rehabili-
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lower hierarchy blocks in such a way that 
the actions are the ones needed to correctly 
perform the task, and obtain the reward 
which was expected.

This mechanism is the basis of training 
in games, where the Value Function inner 
block in Figure 1 replicates the mechanism 
of “acting to maximize the reward”. If no 
games are present, the training is per-
formed based on the difference between 
the intended action and the obtained one, 
with no long-term goal. As a result, if this 
were the case of rehabilitation programs 
for humans, the absence of reward mecha-
nisms can lead to a “less adaptive” behav-
iour where no changes in the parameters 
of the planner appear due to long-term 
rewards. On the contrary, a system able to 
excite the reward mechanism (such as the 
case of games in a training session) will 
facilitate modifi cations of the planner, 
improve retention of the actions that grant 
a reward, and  possibly facilitate generaliza-
tion ability. It is here speculated that, also 
in real life activities, the same mechanism 
appears, where the human brain is able to 
extract some sort of reward function based 
on the performance of the executed task, 
in terms of accomplishment of the desired 
objective (see e.g. Cohen, 2008). Keeping 
this in mind when planning training and 

rehabilitation programs, it is no surprise 
that the increase in effi cacy in terms of 
motor outcomes when games are present is 
a clear-cut consequence of a more effi cient 
training strategy.

In conclusion, games might represent 
an effective way of strengthening rehabili-
tation programs, not only as the result of 
an increased motivational effect, but also 
because they entail and trigger a more 
effi cient learning paradigm, based on rein-
forcement learning. Experimental data tar-
geted to dissect motivational aspects from 
learning factors might help in supporting/
confuting this hypothesis.
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FIGURE 1 | Schema of the Reinforcement Learning structure for motor 

training. Through the interaction with the teacher or with the 
environment, humans sense some variables and estimate the state; this 
is input to the Value Function block, which is able to estimate the expected 

reward based on the state. The error-signal between the expected reward 
and the obtained reward is used both to adapt the planner parameters 
to generate the required commands, and to train the Value Function 
estimator.


