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Abstract: A simple method has been developed for the synthesis of cyclopropa[c]coumarins, which
belong to the donor-acceptor cyclopropane family and, therefore, are promising substrates for
the preparation of chromene-based fine chemicals. The method, based on the acetic acid-induced
intramolecular transesterification of 2-arylcyclopropane-1,1-dicarboxylates, was found to be efficient
for substrates containing hydroxy group directly attached to the aromatic ring.
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1. Introduction

The longstanding interest to coumarin derivatives stems from their wide distribution in Nature
and a broad spectrum of bioactivity, including anticoagulant, anticonvulsant, antidepressant, anti-HIV,
antiinflammatory, antimicrobial, antioxidative, antituberculosis, antitumor activities, etc. [1–11].
Coumarin derivatives are used in medicinal practice for the treatment of dementia [12], varicose
veins [13], hemorrhoids [13], etc. [14]; they are applied as rodenticides [15] and as fluorophores in
cell biology [16]. The high value of these compounds has stimulated their intensive investigation, i.e.
the synthesis of novel coumarin derivatives, the study of their transformations and screening of their
bioactivity, 3- and 4-substituted coumarins as well as their 3,4-dihydro derivatives being the most
interesting substrates for the medicinal applications.

Cyclopropa[c]coumarins, being the members of the donor-acceptor cyclopropanes subclass,
are highly potent substrates for the preparation of a large diversity of functionalized coumarin
derivatives due to a rich reactivity of the three-membered ring. Even though the first cyclopropanation
of 3-acylcoumarins and coumarin-3-carboxylates with α-haloketones was described by Widman
exactly 100 years ago (Scheme 1a) [17,18], cyclopropacoumarins remain poorly investigated due to
the absence of efficient methods for their synthesis. Since Widman’s study, a number of cyclopropa
[c]coumarins bearing diverse acceptor substituents at both C(1) and C(1a) atoms have been obtained by
the related cyclopropanations under phase transfer catalysis (Scheme 1a) [19] or using diazoketones
(Scheme 1b) [20–22]. Nevertheless, the application of diazoketones usually resulted in the
formation of complex mixtures and low yields of target products. Moreover, 1,1,1a-substituted
cyclopropa[c]coumarins were synthesized in reasonable yields by the treatment of coumarin-3-
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carboxylates and -carboxamides with α,α-dibromoketones and zinc (Scheme 1c) [23–25], trichloroacetic
acid [26], phenyliodonium (Scheme 1d) [27] and diphenylsulfonium ylides (Scheme 1e) [28].
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Oppositely, the reaction of much more reactive dimethylsulfoxonium methylide [29,30]
with 3-acylcoumarins, coumarin-3-carboxylates, the corresponding nitriles as well as sulfones
under the typical conditions of Corey-Chaykovsky cyclopropanation was found to afford
cyclopenta[b]-benzofuran derivatives as a result of the fast secondary reaction of the initially
formed cyclopropa[c]coumarins with a second equivalent of the Corey ylide [31–33]. The target
cyclopropa[c]coumarins were obtained in low-to-moderate yields when the reaction was performed at
0 ◦C (for 3-ethoxycarbonyl-, 3-pivaloyl- and 3-cyanocoumarins) or at −40 ◦C (for 3-acetyl and 3-benzoyl
derivatives) (Scheme 1f) [31]. Very recently it was proposed to perform this cyclopropanation using
very slow addition of the Corey ylide solution (5 mL for 6 h) to the corresponding coumarin derivative,
however, product yields were not given [34,35]. Therefore, the development of efficient procedure
for the synthesis of 1-unsubstituted cyclopropa[c]coumarins remains a challenging task for organic
chemists. Herein, we describe a new general approach to cyclopropa[c]coumarins based on the use of
2-(2-hydroxyphenyl)cyclopropane-1,1-dicarboxylates (Scheme 1) which can be easily obtained from
the corresponding salicylic aldehydes [36,37].

2. Results and Discussion

We started our research with a search for the optimal conditions for the transesterification
of 2-hydroxy- and 2-(methoxymethoxy)phenyl-substituted cyclopropane-1,1-dicarboxylates 1a,b
as model substrates using their treatment with base (K2CO3 or N,N-diisopropylethylamine,
DIPEA) or Brønsted acid (Table 1). We have found that the highest yield of the target methyl
cyclopropa[c]coumarin-3-carboxylate 2a was obtained when toluene solution of cyclopropane 1a
was heated under reflux with 2 equiv of acetic acid (Table 1, entry 8). The use of stronger acids such
as trifluoroacetic acid (TFA) or p-toluenesulfonic acid (TsOH) resulted in the formation of complex
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mixture of products; any attempts to isolate 2a were unsuccessful. Base-induced reaction produced the
desired product 2a in low yield only.

Table 1. Optimization of reaction conditions for the intramolecular transesterification of model
cyclopropanes 1a,b.
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Entry Initiator (mol %) R Solvent Temp (◦C) t (h) Yield, % 1

1 K2CO3 (130) 2 H DMSO 20 3 30
2 K2CO3 (130) 2 H DMSO 20 25 30
3 DIPEA (120) 3 H PhCl 100 5 45
4 TFA (110) 3 H PhCl reflux 7 - 4

5 TsOH (5) 3 H CHCl3 reflux 5 - 4

6 AcOH (200) 3 H PhMe 110 5 8 30
7 AcOH (200) 3 H PhMe reflux 6 46
8 AcOH (200) 3 H PhMe reflux 9 61
9 AcOH (100) 3 H PhCl reflux 6.5 55 6

10 AcOH (200) 3 H PhMe reflux 16 72
11 AcOH (200) 3 MOM PhMe reflux 16 -

1 Isolated yield. 2 0.1 M solution of 1a. 3 0.03 M solution of 1a,b. 4 Complex mixture of products. 5 Reaction was
performed under microwave irradiation. 6 Dimethyl (2,3-dihydrobenzofuran-2-yl)malonate was also formed as side
product. For details, see ref. [36].

With the optimized reaction conditions in hand, we studied the scope of this transesterification
and found that diverse substituents in the benzene ring (halogens, alkyl or nitro group) are tolerant to
the reaction conditions (Scheme 2). Oppositely, the reaction of 2-hydroxy-3-methoxyphenyl-substituted
cyclopropane 1g produced only trace amounts of the corresponding cyclopropa[c]coumarin 2g.
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To extend the scope of the reaction, we have studied reactions of cyclopropane 3 with a
2-(hydroxymethyl)phenyl group as a donor and its analogue 8 bearing a 3-hydroxymethyl-4-indolyl
substituent. However, in both cases we failed to obtain the corresponding products of intramolecular
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esterification. Thus, the heating of 3 with 2 equiv of acetic acid in both toluene and chlorobenzene did
not produce the desired oxepanone 4 at all. When a large excess of acetic acid was applied, benzyl
acetate 5 was obtained as a single low-molecular-weight product (Scheme 3). The use of a stronger acid
led to the formation of complex mixtures containing predominantly products of the three-membered
ring opening.
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Scheme 3. The attempt to synthesize benzoxepane 4. a Substrate concentration: 0.04 M.

Meanwhile, indolyl-substituted cyclopropane 8, which was obtained in two steps from the
reported cyclopropane 6 [38], under heating with acetic acid afforded bis(indolyl)methane 9
(Scheme 4). Similar AcOH-induced transformations of 3-indolylmethanols to bis(indolyl)methanes was
previously described [39–41]. Meanwhile, the presence of highly reactive donor-acceptor cyclopropane
functionality in the starting alcohol 8 and two such moieties in the product 9 provides non-trivial
nature this process.
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Scheme 4. Synthesis and acetic acid-induced dimerization of indolylmethanol 8.

The obtained cyclopropa[c]coumarins 2 are potent substrates for the synthesis of diverse coumarin
derivatives (Scheme 5). Thus, it was recently shown that such cyclopropacoumarins undergo
Ni(ClO4)2-catalyzed nucleophilic ring opening under treatment with indole affording 4-(indolylmethyl)
chroman-2-one-3-carboxylates [34].
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Nevertheless, our attempts to transform compounds 2 to the corresponding benzoxepan
derivatives via their reduction with Zn/AcOH system [42] or Lewis acid-induced isomerization [43]
were unsuccessful. Unexpectedly, the treatment of cyclopropacoumarin 2d with zinc and acetic
acid in methanol did not afford the products of three-membered ring reduction. Instead, it led to
the methanolysis of the lactone moiety in 2d producing cyclopropane 1d and a small amount of
acyclic product 10 formed by the reduction of 1d (Scheme 6). Moreover, this cyclopropacoumarin
remains intact under heating with both tin(II) triflate in dichloromethane and trimethylsilyl triflate
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in chlorobenzene for several hours. The absence of benzoxepane derivative in the reaction mixtures
together with the aforementioned literature data on the nucleophilic attack of cyclopa[c]coumarins at
the CH2 atom [34] demonstrate the decelerating effect of annulation on the reactivity of the C-C bond
between atoms connected to donor and acceptor substituents. The effect of the annulated ring nature
on the reactivity of donor-acceptor cyclopropanes deserve, evidently, a careful study.Molecules 2018, 23, x FOR PEER REVIEW  5 of 11 
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3. Experimental

3.1. General Information

The structures of synthesized compounds were elucidated with the aid of 1D NMR (1H, 13C)
and 2D NMR (HSQC and HMBC 1H-13C) spectroscopy. NMR spectra were acquired on Avance 500
(Bruker, Billerica, MA, USA) and 400-MR (Agilent, Santa Clara, CA, USA) spectrometers at room
temperature; the chemical shifts δ were measured in ppm with respect to solvent (1H: CDCl3, δ = 7.27
ppm; 13C: CDCl3, δ = 77.0). Splitting patterns are designated as s, singlet; d, doublet; m, multiplet; dd,
double doublet; br., broad. Coupling constants (J) are in Hertz. Infrared spectra were recorded on
an Infralum FT-801 spectrometer (Simex, Novosibirsk, Russia). High resolution and accurate mass
measurements were carried out using a micrOTOF-QTM ESI-TOF (Electrospray Ionization/Time of
Flight, Bruker, Billerica, MA, USA), LTQ Orbitrap (Thermo Fischer Scientific, Waltham, MA, USA) mass
spectrometers and a Triple TOF 5600+ instrument (AB Sciex, Darmstadt, Germany) using ESI modes.
Elemental analyses were performed with an EA-1108 CHNS elemental analyser instrument (Fisons,
Ipswich, UK). Melting points (mp) are uncorrected and were measured on a 9100 capillary melting
point apparatus (Electrothermal, Stone, UK). Analytical thin layer chromatography (TLC) was carried
out with silica gel plates (silica gel 60, F254, supported on aluminium); visualization was done using a
UV lamp (365 nm). Column chromatography was performed on silica gel 60 (230–400 mesh, Merck,
Darmstadt, Germany). All reactions were carried out using freshly distilled and dry solvents. Dimethyl
2-(2-hydroxyaryl)cyclopropane-1,1-dicarboxylate was synthesized by the published procedure [36,37].
Commercial reagents employed in the synthesis were analytical grade, obtained from Aldrich (St. Louis,
MI, USA) or Alfa Aesar (Ward Hill, MO, USA). Cyclopropanes 3 and 6 were obtained by the reported
procedures [36,38]. The 1H NMR, 13C NMR for synthesized compounds as well as 2D (HSQC and
HMBC) NMR spectra for selected compounds are available in the Supplementary Material.

3.2. General Procedure for the Synthesis of Cyclopropa[c]coumarins

A toluene solution of cyclopropane 1 (0.03 or 0.04 M, 1 equiv) and glacial acetic acid (2 equiv) was
heated for the specified time under reflux or using backflow condenser without cooling with water
providing slow removal of the formed methanol. When 1 was completely converted (TLC control), the
reaction mixture was cooled, diluted with ether (10 mL), washed with saturated NaHCO3 solution
(3 × 15 mL), dried with Na2SO4 and concentrated in vacuo. The resulting residue was purified by
flash chromatography on silica gel (eluent: 10–50% ethyl acetate in petroleum ether) to afford the target
cyclopropacoumarin 2 (Figure 1).



Molecules 2019, 24, 57 6 of 11
Molecules 2018, 23, x FOR PEER REVIEW  6 of 11 

 

 

Figure 1. Atom numbering in compounds 2. 

Methyl (1aRS,7bRS)-6-chloro-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2b). Dimethyl 

2-(5-chloro-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1b) (120 mg, 0.42 mmol), AcOH (51 

mg, 48 µL, 0.84 mmol), toluene (12 mL), reflux, 10 h. Rf = 0.31 (ethyl acetate:petroleum ether 1:4). Yield 

71 mg (67%); colorless solid; mp = 111–112 °C (lit. 119–121 °C [34]). 1Н-NMR (CDCl3, 500 MHz) δ = 

1.41 (dd, 2J = 5.2 Hz, 3J = 6.4 Hz, 1H, CH2), 2.50 (dd, 2J = 5.2 Hz, 3J =9.2 Hz, 1H, CH2), 2.89 (dd, 3J = 9.2 

Hz, 3J = 6.4 Hz, 1H, CH), 3.86 (s, 3H, CH3O), 7.00 (d, 3J = 8.7 Hz, 1H, Ar), 7.24 (dd, 3J = 8.7 Hz, 4J = 2.3 

Hz, 1H, Ar), 7.37 (d, 4J = 2.3 Hz, 1H, Ar). 13С-NMR (CDCl3, 125 MHz) δ = 21.1 (CH2), 28.7 (CH), 29.7 

(C), 53.4 (CH3O), 118.6 (CH, Ar), 121.7 (C, Ar), 127.6 (CH, Ar), 128.6 (CH, Ar), 129.8 (С, Ar), 148.0 (C, 

Ar), 161.7 (CO), 167.7 (CO2Me). IR (сm−1) 3110, 3066, 2950, 2955, 2922, 2853, 1763, 1723, 1484, 1435, 

1369, 1319, 1283, 1259, 1107, 1085, 1052, 946. HRMS ESI-TOF: m/z = 253.0265 [M + H]+ (253.0262 сalcd 

for C12H10ClO4). 

Methyl (1aRS,7bRS)-6-bromo-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2c). Dimethyl 

2-(5-bromo-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1c, 200 mg, 0.61 mmol), AcOH (73 mg, 

70 µL, 1.2 mmol), toluene (15 mL), reflux, 18 h. Rf = 0.70 (ethyl acetate:petroleum ether 1:4). Yield 126 

mg (71%); colorless solid; mp = 114–115 °C (lit. 105–107 °C [34]). 1Н-NMR (CDCl3, 500 MHz) δ = 1.40 

(dd, 2J = 5.1 Hz, 3J = 6.4 Hz, 1H, CH2), 2.21 (dd, 2J = 5.1 Hz, 3J = 9.2 Hz, 1H, CH2), 2.89 (dd, 3J = 9.2 Hz, 
3J = 6.4 Hz, 1H, CH), 3.85 (s, 3H, CH3O), 6.92 (d, 3J = 8.7 Hz, 1H, Ar), 7.38 (dd, 3J = 8.7 Hz, 4J = 2.3 Hz, 

1H, Ar), 7.50 (d, 4J = 2.3 Hz, 1H, Ar). 13С-NMR (CDCl3, 125 MHz) δ = 21.1 (CH2), 28.3 (C), 28.5 (CH), 

53.3 (CH3O), 117.0 (C, Ar), 118.8 (CH, Ar), 122.1 (C, Ar), 130.4 (CH, Ar), 131.5 (CH, Ar), 148.5 (С, Ar), 

161.5 (CO), 167.6 (CO2Me). IR (сm−1) 3256, 2956, 1762, 1673, 1498, 1440, 1415, 1352, 1276, 1196, 1154, 

1108, 1074. HRMS ESI-TOF: m/z = 296.9757 [M + H]+ (296.9757 сalcd for C12H10BrO4). 

Methyl (1aRS,7bRS)-6-fluoro-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2d). Dimethyl 

2-(5-fluoro-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1d, 200 mg, 0.75 mmol), AcOH (90 mg, 

85 µL, 1.49 mmol), toluene (11 mL), boiling with backflow condenser, 8 h; then an extra portion of 

AcOH (90 mg, 85 µL, 1.49 mmol), reflux, 7 h. Rf = 0.69 (ethyl acetate:petroleum ether 1:2). Yield 150 

mg (75%); colorless solid; mp = 90–91 °C (lit. 93–95 °C [34]). 1Н-NMR (CDCl3, 400 MHz) δ = 1.40 (dd, 
2J = 5.1 Hz, 3J = 6.3 Hz, 1H, CH2), 2.59 (dd, 2J = 5.1 Hz, 3J =9.0 Hz, 1H, CH2), 2.88 (dd, 3J = 9.0 Hz, 3J = 6.3 

Hz, 1H, CH), 3.84 (s, 3H, CH3O), 6.93–7.02 (m, 2H, Ar), 7.07 (dd, 3J = 8.2 Hz, 4JHF = 3.0 Hz, 1H, Ar). 13С- 

NMR (CDCl3, 100 MHz) δ = 21.2 (CH2), 28.3 (C), 29.0 (CH), 53.5 (CH3O), 114.5 (d, 2JCF = 24 Hz, CH, 

Ar), 115.5 (d, 2JCF = 24 Hz, CH, Ar), 118.7 (d, 3JCF = 9 Hz, CH, Ar), 121.7 (d, 3JCF = 8 Hz, C, Ar), 145.6 (C, 

Ar), 158.5 (d, 1JCF = 243 Hz, C, Ar), 162.1 (CO), 167.9 (CO2Me). IR (сm−1) 1759, 1724, 1579, 1496, 1441, 

1375, 1325, 1288, 1250, 1197, 1149, 1107, 1057, 987, 966, 931. HRMS ESI-TOF: m/z = 237.0555 [M + H]+ 

(237.0558 сalcd for C12H10 FO4).  

Methyl (1aRS,7bRS)-4-methyl-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2e). 

Dimethyl 2-(3-methyl-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1e, 180 mg, 0.64 mmol), 

AcOH (158 mg, 160 µL, 2.6 mmol), toluene (12 mL), reflux, 10 h. Rf = 0.75 (ethyl acetate:petroleum 

ether 1:2). Yield 113 mg (76%); colorless solid; mp = 82–83 °C. 1Н-NMR (CDCl3, 500 MHz) δ = 1.37 (dd, 
2J = 4.9 Hz, 3J = 6.7 Hz, 1H, CH2), 2.30 (s, 3H, CH3), 2.46 (dd, 2J = 4.9 Hz, 3J =9.2 Hz, 1H, CH2), 2.90 (dd, 
3J = 9.2 Hz, 3J = 6.7 Hz, 1H, CH), 3.84 (s, 3H, CH3O), 7.03 (dd, 3J = 7.6 Hz, 3J = 7.4 Hz, 1H, Ar), 7.11 (br. 

d, 3J = 7.6 Hz, 1H, Ar), 7.18 (br. d, 3J = 7.4 Hz, 1H, Ar). 13С-NMR (CDCl3, 125 MHz) δ = 15.6 (CH3), 20.9 

(CH2), 28.6 (C), 29.3 (CH), 53.1 (CH3O), 119.6 (C, Ar), 124.0 (CH, Ar), 125.2 (CH, Ar), 126.5 (C, Ar), 

130.0 (CH, Ar), 147.7 (C, Ar), 162.4 (CO), 168.1 (CO2Me). IR (сm−1) 3106, 3040, 2957, 2924, 2853, 1746, 

1730, 1471, 1434, 1395, 1327, 1292, 1230, 1192, 1116, 1098, 1057, 1039, 946, 925. HRMS ESI-TOF: m/z = 

233.0810 [M + H]+ (233.0808 сalcd for C13H13O4). 

Methyl (1aRS,7bRS)-4,6-dibromo-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2f). 

Dimethyl 2-(3,5-dibromo-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1f, 200 mg, 0.49 mmol), 

Figure 1. Atom numbering in compounds 2.

Methyl (1aRS,7bRS)-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2a). Dimethyl 2-
(2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1a, 120 mg, 0.48 mmol), AcOH (58 mg, 55 µL,
0.96 mmol), toluene (12 mL), reflux, 16 h. Rf = 0.55 (ethyl acetate:petroleum ether 1:2). Yield 75 mg
(72%); colorless solid; mp = 98–100 ◦C (lit. 100–102 ◦C [34,35]; oil [37]). Spectral data are consistent
with the reported ones [34,35].

Methyl (1aRS,7bRS)-6-chloro-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2b). Dimethyl
2-(5-chloro-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1b) (120 mg, 0.42 mmol), AcOH (51 mg,
48 µL, 0.84 mmol), toluene (12 mL), reflux, 10 h. Rf = 0.31 (ethyl acetate:petroleum ether 1:4). Yield 71
mg (67%); colorless solid; mp = 111–112 ◦C (lit. 119–121 ◦C [34]). 1H-NMR (CDCl3, 500 MHz) δ = 1.41
(dd, 2J = 5.2 Hz, 3J = 6.4 Hz, 1H, CH2), 2.50 (dd, 2J = 5.2 Hz, 3J =9.2 Hz, 1H, CH2), 2.89 (dd, 3J = 9.2 Hz,
3J = 6.4 Hz, 1H, CH), 3.86 (s, 3H, CH3O), 7.00 (d, 3J = 8.7 Hz, 1H, Ar), 7.24 (dd, 3J = 8.7 Hz, 4J = 2.3 Hz,
1H, Ar), 7.37 (d, 4J = 2.3 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 21.1 (CH2), 28.7 (CH), 29.7 (C),
53.4 (CH3O), 118.6 (CH, Ar), 121.7 (C, Ar), 127.6 (CH, Ar), 128.6 (CH, Ar), 129.8 (C, Ar), 148.0 (C, Ar),
161.7 (CO), 167.7 (CO2Me). IR (cm−1) 3110, 3066, 2950, 2955, 2922, 2853, 1763, 1723, 1484, 1435, 1369,
1319, 1283, 1259, 1107, 1085, 1052, 946. HRMS ESI-TOF: m/z = 253.0265 [M + H]+ (253.0262 calcd for
C12H10ClO4).

Methyl (1aRS,7bRS)-6-bromo-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2c). Dimethyl
2-(5-bromo-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1c, 200 mg, 0.61 mmol), AcOH (73 mg,
70 µL, 1.2 mmol), toluene (15 mL), reflux, 18 h. Rf = 0.70 (ethyl acetate:petroleum ether 1:4). Yield
126 mg (71%); colorless solid; mp = 114–115 ◦C (lit. 105–107 ◦C [34]). 1H-NMR (CDCl3, 500 MHz) δ =
1.40 (dd, 2J = 5.1 Hz, 3J = 6.4 Hz, 1H, CH2), 2.21 (dd, 2J = 5.1 Hz, 3J = 9.2 Hz, 1H, CH2), 2.89 (dd, 3J =
9.2 Hz, 3J = 6.4 Hz, 1H, CH), 3.85 (s, 3H, CH3O), 6.92 (d, 3J = 8.7 Hz, 1H, Ar), 7.38 (dd, 3J = 8.7 Hz, 4J =
2.3 Hz, 1H, Ar), 7.50 (d, 4J = 2.3 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 21.1 (CH2), 28.3 (C), 28.5
(CH), 53.3 (CH3O), 117.0 (C, Ar), 118.8 (CH, Ar), 122.1 (C, Ar), 130.4 (CH, Ar), 131.5 (CH, Ar), 148.5 (C,
Ar), 161.5 (CO), 167.6 (CO2Me). IR (cm−1) 3256, 2956, 1762, 1673, 1498, 1440, 1415, 1352, 1276, 1196,
1154, 1108, 1074. HRMS ESI-TOF: m/z = 296.9757 [M + H]+ (296.9757 calcd for C12H10BrO4).

Methyl (1aRS,7bRS)-6-fluoro-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2d). Dimethyl
2-(5-fluoro-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1d, 200 mg, 0.75 mmol), AcOH (90 mg,
85 µL, 1.49 mmol), toluene (11 mL), boiling with backflow condenser, 8 h; then an extra portion of
AcOH (90 mg, 85 µL, 1.49 mmol), reflux, 7 h. Rf = 0.69 (ethyl acetate:petroleum ether 1:2). Yield 150 mg
(75%); colorless solid; mp = 90–91 ◦C (lit. 93–95 ◦C [34]). 1H-NMR (CDCl3, 400 MHz) δ = 1.40 (dd, 2J =
5.1 Hz, 3J = 6.3 Hz, 1H, CH2), 2.59 (dd, 2J = 5.1 Hz, 3J =9.0 Hz, 1H, CH2), 2.88 (dd, 3J = 9.0 Hz, 3J = 6.3
Hz, 1H, CH), 3.84 (s, 3H, CH3O), 6.93–7.02 (m, 2H, Ar), 7.07 (dd, 3J = 8.2 Hz, 4JHF = 3.0 Hz, 1H, Ar).
13C- NMR (CDCl3, 100 MHz) δ = 21.2 (CH2), 28.3 (C), 29.0 (CH), 53.5 (CH3O), 114.5 (d, 2JCF = 24 Hz,
CH, Ar), 115.5 (d, 2JCF = 24 Hz, CH, Ar), 118.7 (d, 3JCF = 9 Hz, CH, Ar), 121.7 (d, 3JCF = 8 Hz, C, Ar),
145.6 (C, Ar), 158.5 (d, 1JCF = 243 Hz, C, Ar), 162.1 (CO), 167.9 (CO2Me). IR (cm−1) 1759, 1724, 1579,
1496, 1441, 1375, 1325, 1288, 1250, 1197, 1149, 1107, 1057, 987, 966, 931. HRMS ESI-TOF: m/z = 237.0555
[M + H]+ (237.0558 calcd for C12H10 FO4).
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Methyl (1aRS,7bRS)-4-methyl-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2e). Dimethyl
2-(3-methyl-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1e, 180 mg, 0.64 mmol), AcOH (158 mg,
160 µL, 2.6 mmol), toluene (12 mL), reflux, 10 h. Rf = 0.75 (ethyl acetate:petroleum ether 1:2). Yield
113 mg (76%); colorless solid; mp = 82–83 ◦C. 1H-NMR (CDCl3, 500 MHz) δ = 1.37 (dd, 2J = 4.9 Hz, 3J =
6.7 Hz, 1H, CH2), 2.30 (s, 3H, CH3), 2.46 (dd, 2J = 4.9 Hz, 3J =9.2 Hz, 1H, CH2), 2.90 (dd, 3J = 9.2 Hz, 3J
= 6.7 Hz, 1H, CH), 3.84 (s, 3H, CH3O), 7.03 (dd, 3J = 7.6 Hz, 3J = 7.4 Hz, 1H, Ar), 7.11 (br. d, 3J = 7.6 Hz,
1H, Ar), 7.18 (br. d, 3J = 7.4 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 15.6 (CH3), 20.9 (CH2), 28.6
(C), 29.3 (CH), 53.1 (CH3O), 119.6 (C, Ar), 124.0 (CH, Ar), 125.2 (CH, Ar), 126.5 (C, Ar), 130.0 (CH, Ar),
147.7 (C, Ar), 162.4 (CO), 168.1 (CO2Me). IR (cm−1) 3106, 3040, 2957, 2924, 2853, 1746, 1730, 1471, 1434,
1395, 1327, 1292, 1230, 1192, 1116, 1098, 1057, 1039, 946, 925. HRMS ESI-TOF: m/z = 233.0810 [M + H]+

(233.0808 calcd for C13H13O4).

Methyl (1aRS,7bRS)-4,6-dibromo-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2f).
Dimethyl 2-(3,5-dibromo-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1f, 200 mg, 0.49 mmol),
AcOH (30 mg, 28 µL, 0.49 mmol), toluene (11 mL), boiling with backflow condenser, 5 h, then an extra
portion of AcOH (60 mg, 56 µL, 0.98 mmol), reflux, 4 h. Rf = 0.52 (ethyl acetate:petroleum ether 1:4).
Yield 90 mg (49%); colorless solid; mp = 77–78 ◦C. 1H-NMR (CDCl3, 500 MHz) δ = 1.45 (dd, 2J = 5.2 Hz,
3J = 6.4 Hz, 1H, CH2), 2.51 (dd, 2J = 5.2 Hz, 3J =9.2 Hz, 1H, CH2), 2.90 (dd, 3J = 9.2 Hz, 3J = 6.4 Hz,
1H, CH), 3.86 (s, 3H, CH3O), 7.47 (d, 4J = 2.3 Hz, 1H, Ar), 7.67 (d, 4J = 2.3 Hz, 1H, Ar). 13C-NMR
(CDCl3, 125 MHz) δ = 21.1 (CH2), 28.8 (C), 29.0 (CH), 53.7 (CH3O), 112.0 (C, Ar), 117.2 (C, Ar), 123.5 (C,
Ar), 129.8 (CH, Ar), 134.9 (CH, Ar), 146.0 (C, Ar), 160.6 (CO), 167.5 (CO2Me). IR (film, cm−1) 3447,
3078, 3005, 2954, 2924, 2851, 1777, 1725, 1453, 1439, 1368, 1324, 1239, 1207, 1071, 1045, 991, 985. HRMS
ESI-TOF: m/z = 374.8856 [M + H]+ (374.8862 calcd for C12H9Br2O4).

Methyl (1aRS,7bRS)-6-nitro-2-oxo-1,7b-dihydrocyclopropa[c]chromene-1a(2H)-carboxylate (2h). Dimethyl
2-(5-nitro-2-hydroxyphenyl)cyclopropane-1,1-dicarboxylate (1h, 200 mg, 0.68 mmol), AcOH (81 mg,
78 µL, 1.35 mmol), toluene (17 mL), boiling with backflow condenser, 7 h, then an extra portion of
AcOH (81 mg, 78 µL, 1.35 mmol), reflux, 10 h. Rf = 0.63 (ethyl acetate:petroleum ether 1:4). Yield 97 mg
(55%); colorless solid; mp = 146–147 ◦C. 1H-NMR (CDCl3, 500 MHz) δ = 1.49 (dd, 2J = 5.3 Hz, 3J =
6.4 Hz, 1H, CH2), 2.59 (dd, 2J = 5.3 Hz, 3J =9.2 Hz, 1H, CH2), 3.06 (dd, 3J = 9.2 Hz, 3J = 6.4 Hz, 1H, CH),
3.88 (s, 3H, CH3O), 7.19 (d, 3J = 9.0 Hz, 1H, Ar), 8.18 (dd, 3J = 9.0 Hz, 4J = 2.8 Hz, 1H, Ar), 8.33 (br. d, 4J
= 2.8 Hz, 1H, Ar). 13C-NMR (CDCl3, 125 MHz) δ = 21.2 (CH2), 28.3 (C), 28.4 (CH), 53.5 (CH3O), 118.2
(CH, Ar), 121.3 (C, Ar), 123.8 (CH, Ar), 124.3 (CH, Ar), 144.2 (C, Ar), 153.7 (C, Ar), 160.6 (CO), 167.2
(CO2Me). IR (film, cm−1) 3117, 2957, 2923, 2854, 1778, 1730, 1591, 1527, 1492, 1443, 1337, 1316, 1252,
1128, 1107, 1048, 979. HRMS ESI-TOF: m/z = 264.0502 [M + H]+ (264.0503 calcd for C12H10NO6).

Dimethyl 2-[2-(acetoxymethyl)phenyl]cyclopropane-1,1-dicarboxylate (5). A solution of cyclopropane 3
(190 mg, 0.72 mmol) and glacial acetic acid (1.6 mL, 28 mmol, 40 equiv.) in chlorobenzene (14 mL)
was refluxed for 16 h, cooled, diluted with CH2Cl2 (10 mL), washed with saturated NaHCO3 solution
(3 × 15 mL), dried with Na2SO4 and concentrated in vacuo. The resulting residue was purified by
flash chromatography on silica gel (eluent: 10–30% ethyl acetate in petroleum ether) to afford acetate 4
as colorless oil. Rf = 0.57 (ethyl acetate:petroleum ether 1:3). Yield 148 mg (67%). 1H-NMR (CDCl3,
400 MHz) δ = 1.74 (dd, 2J = 5.2 Hz, 3J = 9.2 Hz, 1H, CH2), 2.07 (s, 3H, CH3CO), 2.28 (dd, 2J = 5.2 Hz, 3J
= 8.2 Hz, 1H, CH2), 3.28 (s, 3H, CH3O), 3.30 (dd, 3J = 9.2 Hz, 3J = 8.2 Hz, 1H, CH), 3.78 (s, 3H, CH3O),
5.12 (AB system, 2J = 12.7 Hz, 1H, CH2O), 5.27 (AB system, 2J = 12.7 Hz, 1H, CH2O), 7.07–7.10 (m, 1H,
Ar), 7.23–7.27 (m, 2H, Ar), 7.30–7.33 (m, 1H, Ar). 13C-NMR (CDCl3, 100 MHz) δ = 18.2 (CH2), 20.8
(CH3), 29.9 (CH), 36.6 (C), 52.1 (CH3O), 52.8 (CH3O), 64.2 (CH2O), 127.5 (CH, Ar), 127.7 (CH, Ar), 128.1
(CH, Ar), 129.3 (CH, Ar), 133.1 (C, Ar), 136.2 (C, Ar), 166.7 (MeCO2), 169.8 (CO2Me), 170.7 (CO2Me).
IR (cm−1) 3066, 3027, 3005, 2954, 2904, 2848, 2256, 1741, 1735, 1496, 1438, 1378, 1332, 1282, 1230, 1207,
1134, 1026, 968, 920. HRMS ESI-TOF: m/z = 307.1176 [M + Na]+ (307.1176 calcd for C16H19O6).
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Dimethyl 2-(3-formyl-1-methyl-1H-indol-4-yl)cyclopropane-1,1-dicarboxylate (7). DMF (1 mL) and POCl3
(0.3 mL, 3.2 mmol) were mixed at 10 ◦C under argon atmosphere. After 20 min to the resulting mixture
cyclopropane 6 (840 mg, 2.9 mmol) in DMF (1 mL) was added. The obtained mixture was stirred
at room temperature for 2 h and poured into ice-cold water (15 mL). The formed clear solution was
treated with aq. NaOH (620 mg in 3 mL). Product was extracted with ethyl acetate. Combined organic
fractions were washed with brine (4 × 10 mL) and dried with Na2SO4. Solvent was evaporated.
Product was obtained as brown crystals (850 mg, 92%). Analytical sample was obtained by column
chromatography on silica gel as yellow crystals. Rf = 0.54 (ethyl acetate); mp 192–193 ◦C. 1H-NMR
(CDCl3, 500 MHz) δ = 1.95 (dd, 2J = 5.0 Hz, 3J = 9.0 Hz, 1H, CH2), 2.40 (dd, 2J = 5.0 Hz, 3J = 8.1 Hz,
1H, CH2), 3.18 (s, 3H, CH3O), 3.87 (s, 6H, CH3N, CH3O), 4.01 (dd, 3J = 9.0 Hz, 3J = 8.1 Hz, 1H, CH),
7.07 (br.d, 3J = 7.3 Hz, 1H, Ind), 7.24 (dd, 3J = 8.2 Hz, 3J = 7.3 Hz, 1H, Ind), 7.31 (br.d, 3J = 8.2 Hz, 1H,
Ind), 7.83 (s, 1H, Ind), 10.13 (s, 1H, CHO). 13C-NMR (CDCl3, 125 MHz) δ = 19.2 (CH2), 33.2 (CH), 33.8
(CH3N), 37.5 (C), 51.8 (CH3O), 52.7 (CH3O), 109.8 (CH, Ind), 119.1 (C, Ind), 122.1 (CH, Ind), 123.1 (CH,
Ind), 125.9 (C, Ind), 128.3 (C, Ind), 138.1 (C, Ind), 138.5 (CH, Ind), 167.2 (CO2Me), 170.1 (CO2Me), 184.3
(CHO). IR (Nujol, cm−1): 2938, 2873, 1726, 1657, 1530, 1462, 1447, 1356, 1296, 1214, 1081, 1042. Anal.
calcd for C17H17NO5: C, 64.75; H, 5.43; N, 4.44. Found: C, 64.59; H, 5.21; N, 4.35.

Dimethyl 2-(3-hydroxymethyl-1-methyl-1H-indol-4-yl)cyclopropane-1,1-dicarboxylate (8). To a stirred
solution of cyclopropane 7 (381 mg, 1.2 mmol) in MeOH (1.2 mL) and CHCl3 (5 mL), NaBH4 (51 mg,
1.3 mmol) was added at 0 ◦C and stirred for 10 min. Then the mixture was allowed to warm to room
temperature and stirred for 5 h until full conversion (TLC control). The solvent was removed in vacuo
and the slurry was transferred to a separatory funnel with water and CH2Cl2. The product solution
was extracted with CH2Cl2 (3 × 5 mL), the organic fractions were washed with water (3 × 5 mL) and
dried with Na2SO4 affording the title compound. Yield 314 mg (82%). 1H-NMR (CDCl3, 500 MHz) δ =
1.84 (dd, 2J = 5.0 Hz, 3J = 8.9 Hz, 1H, CH2), 2.32 (dd, 2J = 5.0 Hz, 3J = 7.9 Hz, 1H, CH2), 3.05 (br. s, 1H,
OH), 3.20 (s, 3H, CH3), 3.76 (s, 3H, CH3), 3.87 (s, 3H, CH3), 3.92 (dd, 3J = 8.9 Hz, 3J = 7.9 Hz, 1H, CH),
4.73 (d, 2J = 12.5 Hz, 1H, CH2), 4.97 (d, 2J = 12.5 Hz, 1H, CH2), 6.85 (br. d, 3J = 7.3 Hz, 1H, Ar), 7.13 (s,
1H, Ar), 7.14 (dd, 3J = 8.2 Hz, 3J = 7.3 Hz, 1H, Ar), 7.22 (br. d, 3J = 8.2 Hz, 1H, Ar). 13C-NMR (CDCl3,
125 MHz) δ = 18.3 (CH2), 31.4 (CH3N), 32.8 (CH), 37.4 (C), 52.1 (CH3O), 53.0 (CH3O), 57.1 (CH2O),
109.3 (CH, Ar), 115.0 (C, Ar), 118.6 (CH, Ar), 121.2 (CH, Ar), 126.1 (C, Ar), 126.9 (C, Ar), 129.9 (CH,
Ar), 137.5 (C, Ar), 167.8 (CO2Me), 170.6 (CO2Me). IR (cm−1) 3476, 3022, 3003, 2951, 2925, 2855, 1726,
1674, 1455, 1437, 1334, 1281, 1210, 1132. HRMS ESI-TOF: m/z = 340.1159 [M + Na]+ (340.1155 calcd for
C17H19NNaO5).

Dimethyl 2-[3-({4-[2,2-bis(methoxycarbonyl)cyclopropyl]-1-methyl-1H-indol-3-yl}methyl)-1-methyl-1H-indol-
4-yl]cyclopropane-1,1-dicarboxylate (9). Cyclopropane 8 (170 mg, 0.53 mmol), AcOH (32 mg, 30 L,
0.53 mmol), toluene (13 mL), boiling with backflow condenser, 6 h. Rf = 0.63 (ethyl acetate:petroleum
ether 1:2). Yield 75 mg (48%); colorless solid; mp = 79–80 ◦C. Mixture of diastereoisomers in the A:B
ratio of 62:38; 1H-NMR (CDCl3, 500 MHz) for mixture of isomers: δ = 1.74 (dd, 2J = 5.0 Hz, 3J = 9.0
Hz, 2H, CH2, A), 1.83 (dd, 2J = 5.2 Hz, 3J = 9.4 Hz, 2H, CH2, B), 2.40 (dd, 2J = 5.2 Hz, 3J = 8.2 Hz, 2H,
CH2, B), 2.45 (dd, 2J = 5.0 Hz, 3J = 8.4 Hz, 2H, CH2, A), 3.23 (s, 6H, CH3O, B), 3.29 (s, 6H, CH3O, A),
3.37 (s, 6H, CH3O, B), 3.56 3.29 (s, 6H, CH3O, A), 3.68 (s, 6H+6H, CH3N, A, B), 3.82 (dd, 3J = 9.0 Hz, 3J
= 8.4 Hz, 2H, CH, A), 3.85 (dd, 3J = 9.4 Hz, 3J = 8.2 Hz, 2H, CH, B), 6.66 (broad signal, ν1/2 = 34 Hz,
2H, Ind, A), 6.69 (br. d, 3J = 7.3 Hz, 2H, Ind, B), 6.76 (br. s, 2H, Ind, B), 6.79 (br. d, 3J = 7.3 Hz, 2H, Ar,
A), 7.07–7.13 (m, 2H + 2H, Ind, A, B), 7.18–7.21 (m, 2H + 2H, Ind, A, B). 13C-NMR (CDCl3, 125 MHz)
for mixture of isomers: δ = 18.3 (2 × CH2, A), 19.7 (2 × CH2, B), 24.6 (CH2, A), 25.7 (CH2, B), 31.2 (2
× CH, A), 31.5 (2 × CH, B), 32.7 (2 × CH3N, B), 32.8 (2 × CH3N, A), 38.4 (2 × C, A), 38.7 (2 × C, B),
52.1 (2 × CH3O + 2 × CH3O, A, B), 52.2 (CH3O + CH3O, A, B), 52.4 (CH3O + CH3O, A, B), 108.9 (2 ×
CH, Ind, B), 109.0 (2 × CH, Ind, A), 114.9 (2 × C + 2 × C, Ind, A, B), 116.4 (2 × CH, Ind, A), 117.7 (2 ×
CH, A, B), 120.87 (2 × CH, Ar, B), 120.94 (2 × CH, Ind, A), 127.0 (2 × C, Ind, A), 127.4 (2 × C, Ind, B),
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127.6 (2 × C, Ind, B), 127.7 (2 × C, Ind, A), 128.5 (2 × CH, Ind, A), 129.2 (2 × CH, Ind, B), 137.9 (2 × C
+ 2 × C, Ind, A, B), 167.27 (2 × CO2Me, B), 167.33 (2 × CO2Me, A), 169.8 (2 × CO2Me, B), 170.0 (2 ×
CO2Me, A). IR (cm−1) 3618, 3442, 3055, 3022, 2950, 2924, 2852, 2254, 1728, 1608, 1570, 1550, 1456, 1437,
1371, 1330, 1281, 1209, 1128, 1103, 910. HRMS ESI-TOF: m/z = 587.2390 [M + H]+ (587.2388 calcd for
C33H35N2O8).

Dimethyl 2-[2-(5-fluoro-2-hydroxyphenyl)ethyl]malonate (10). To a solution of cyclopropane 1d (236 mg,
1 mmol) in MeOH (10 mL) Zn dust (0.69 g, 0.01 mol) and glacial acetic acid (0.29 mL, 5 mmol)
were added. The reaction mixture was refluxed for 1 h, cooled, remaining Zn was filtered off and
washed with ethyl acetate (5 mL). Filtrates were combined and diluted with water (8 mL), MeOH was
evaporated under reduced pressure and aqueous phase was extracted with ethyl acetate (3 × 10 mL).
Combined organic fractions were washed with saturated NaHCO3 solution (2 × 5 mL), dried with
Na2SO4 and concentrated in vacuo. The resulting residue was purified by flash chromatography on
silica gel (eluent: 10–50% ethyl acetate in petroleum ether) to afford product 10 as a colorless liquid;
Rf = 0.63 (ethyl acetate:petroleum ether 1:2). 1H-NMR (CDCl3, 400 MHz) δ = 2.11–2.17 (m, 2H, CH2),
2.61–2.65 (m, 2H, CH2), 3.44 (dd, 3J = 7.6 Hz, 3J = 6.5 Hz, 1H, CH), 3.77 (s, 6H, 2 × CH3O), 6.10 (br. s,
1H, OH), 6.76–6.81 (m, 3H, Ar). 13C-NMR (CDCl3, 100 MHz) δ = 28.0 (CH2), 28.8 (CH2), 50.6 (CH), 53.0
(2 × CH3O), 114.1 (d, 2JCF = 23 Hz, CH, Ar), 116.5 (d, 2JCF = 23 Hz, CH, Ar), 116.9 (d, 3JCF = 8 Hz, CH,
Ar), 127.9 (d, 3JCF = 7 Hz, C, Ar), 150.4 (C, Ar), 157.4 (d, 1JCF = 238 Hz, C, Ar), 170.3 (2 × CO2Me). IR
(cm−1) 3442, 3394, 2954, 1730, 1620, 1510, 1437, 1342, 1273, 1230, 1186, 1101, 1079, 1045. HRMS ESI-TOF:
m/z = 271.0968 [M + H]+ (271.0976 calcd for C13H16 FO5).

4. Conclusions

The simple method for the synthesis of cyclopropa[c]coumarins based on the acid-induced
intramolecular transesterification of 2-(2-hydroxyaryl)cyclopropane-1,1-dicarboxylates has been
developed. Various functional groups in the aromatic ring including alkyl, halogen and nitro
functionalities were shown to be tolerant to the optimized reaction conditions. The proposed method
was, however, found to be inefficient for the preparation of the corresponding lactones with a larger
ring size. The investigation of the reactivity of the synthesized compounds is in progress.

Supplementary Materials: Copies of 1H NMR and 13C NMR spectra for synthesized compounds as well as 2D
(HSQC and HMBC) NMR spectra for selected compounds are available online.
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