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Introduction

Shannon (1948) was first to use the word “entropy” to measure an uncertain degree of
the randomness in a probability distribution. Entropy as a measure of fuzziness was
first introduced by Zadeh (1968). There is an intrinsic similarity between two equa-
tions however Shannon entropy measures the average uncertainty in bits associated
with the prediction of outcomes in a random experiment, whereas the entropy of fuzzy
set describes the degree of fuzziness in a fuzzy set. The concept of fuzzy sets proposed
by Zadeh (1968) has proven useful in the context of pattern recognition, image
processing, speech recognition, bioinformatics, fuzzy aircraft control, feature selection,
decision making, etc.

Entropy, as a very important notion for measuring fuzziness degree or uncertain
information in fuzzy set theory, has received a great attention. For example, Kullback
and Leibler (1951) obtained the measure of directed divergence between two probabil-
ity distributions. Bhandari and Pal (1993) presented some axioms to describe the meas-
ure of directed divergence between fuzzy sets, which is proposed corresponding to
Kullback and Leibler (1951) measure of directed divergence. Thereafter, many other
researchers have studied the fuzzy divergence measures in different ways and provide
their application in different areas. In 1999, Fan and Xie introduced the divergence
measure based on exponential operation and studied its relation with divergence
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measure introduced in Bhandari and Pal (1993). Montes et al. (2002) studied the special
classes of divergence measures and used the link between fuzzy and probabilistic uncer-
tainty. Parkash et al. (2006) proposed two fuzzy divergence measures corresponding to
Ferreri (1980) probabilistic measure of directed divergence. Ghosh et al. (2010) gave
the application of Bhandari and Pal (1993) divergence measure in the area of auto-
mated leukocyte recognition. Bhatia and Singh (2012) proposed the fuzzy divergence
measure corresponding to Taneja (2008) Arithmetic—geometric divergence measure.

In the recent years, many authors have introduced various divergence measures
between fuzzy sets. We introduce a sequence of fuzzy mean difference divergence mea-
sures and established the inequalities among them to explore the fuzzy inequalities.
The advantage of establishing the inequalities is to make the computational work much
simpler. The technique of inequalities provides a better comparison among fuzzy mean

divergence measures.

Preliminaries on fuzzy divergence measures

Fuzziness, a feature of uncertainty, results from the lack of sharp difference of being or
not being a member of the set, i.e., the boundaries of the set under consideration are
not sharply defined. A fuzzy set A defined on a universe of discourse X is given as
Zadeh (1965):

A= {(x,px)/xeX}

where py : X — [0, 1] is the membership function of A. The membership value p(x) de-
scribes the degree of the belongingness of x € X in A. When pu(x) is valued in {0, 1}, it
is the characteristic function of a crisp (non-fuzzy) set. Zadeh (1965) gave some notions
related to fuzzy sets, one of them which we shall need in our discussion, is as follows:

Compliment of a fuzzy setA: A = Compliment of Ao, (x)
= 1-p, (x)for allxe X. (1)

The measure of information defined by Shannon (1948) is given by
H(P) =->_p,logp, (2)
i=1

Taking into consideration the concept of fuzzy sets, De Luca and Termini (1972) intro-
duced the measure of fuzzy entropy corresponding to Shannon’s entropy given in (2) as

n

H(A) = =) [ia (xi) log p (x3) + (1= (x)) log (1 (x1))] (3)

i=1

Kullback and Leibler (1951) obtained the measure of directed divergence of probabil-
ity distribution P = (py, ps, ... p,,) from probability distribution Q = (q1, ¢, ... g,,) as

n p

D(P:Q) => p log (4)
i—1 i

Measure of fuzzy divergence between two fuzzy sets gives the difference between two

fuzzy sets and this measure of distance/difference between two fuzzy sets is called the
fuzzy divergence measure.
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Bhandari and Pal (1993) introduced the measure of fuzzy directed divergence corre-
sponding to (4) as

n

I(A,B) = ;[uA(x,)log () + (1-py () 1 gl—uB(xf) (5)

The fuzzy mean divergence measures corresponding to seven geometrical mean mea-
sures given in Taneja (2012) are presented in Table 1.

We have the following Lemma in fuzzy context corresponding to the Lemma of
Taneja (2005):

Lemma 1: Let f:/c R, — R be a convex and differentiable function satisfying f (%) = 0.

Consider a function
(a,b) = af b a,b>0
§0f 9 - a ) Uy )

Then the function ¢g(a, b) is convex R?. Additionally, if f'(1/2) = 0, then the following
inequality holds:

0<gy(a, b)< (b;—a> o7 (a,b).

Lemma 2: Schwarz’s Lemma: Let f}, /> : /< R, — R be two convex functions satisfying
the assumptions:

) 16 =£13) =010 =6 =0
ii) f and f, are twice differentiable in R,;

iii) there exist the real constants «, 5 such that 0 <a < and aﬁfj—gg <B,f 2(z) > 0, for

all z> 0 then we have the inequalities:

Oﬁ(ﬂfz (ﬂ, b)S¢f1 ((Z, b)§ﬁ¢f2 ((l, b)

for all a4, b € (0, 1), where the function ¢()(a, b) is defined as

pr(a,b) = af(§>,a,b > 0.

Results and discussion

Sequence of fuzzy mean difference divergence measures

Corresponding to the fuzzy mean divergence measures defined in Table 1, we propose
a sequence of fuzzy mean difference divergence measures as follows:

DCS(AvB) = C(A7B)_S(A3B) (6)

" [ lui(xi) +uhn) | (o) + (1—u3<xi>>2]

— | (i) + pp(:) 2y (%) —pp (%)

) ) \/(l—uA(xi))Z (o)’ ]
2 2
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Table 1 Fuzzy mean divergence measures

Sr. no. Fuzzy mean divergence measure Definition
- i i) | 2=Ha(Xi)—pg(Xi
1. Fuzzy Arithmetic Mean Measure A(A,B) = <HA(X ) ;FHB(X) + MA(X; ol )>
i=1
2. Fuzzy Geometric Mean Measure G(A,B) = Z(\//JA(X[)UB(X/) + /(1w (x,-))(kyg(x,')))
i=1
3 F H ic M M H(A B) _ . (2/"’A(X/)MB(Xf) +2(]7MA(X/'))(]7NB(X/)))
. uzzy Harmonic Mean Measure ’ =\ s (x7) + Hg(x7) 2= (x1)—Hg (x;)
- i i i i 1- i 1- i 1- i 1— i
3 oy Heronian Mean Messre s (m(x) VBT + i), 0-tae) + /TCTI0pal) + (- )
=
n (2 2 2 2
. Ha ) + () | (=a () + (1=p(x))
5. Fuzzy Contra-harmonic Mean Measure C(A,B) = +
4 (4.8) pr <MA(X/‘) + g (x;) 2= (x1) =g (x1)
n 2 2 (. i ()2 —un(x))?
6. Fuzzy Root-mean-square Mean Measure S(A,8) = ( s (x7) + uz(xi) i (1=pa ()" + (1= (x)) )
’ 2 2
i=1
2 2
7. Fuzzy Centroidal Mean Measure R(A,B) = 2(3 (1) + 1a (x)is (051) + i5(061)) n 2(“ Hab))” + (=paC)) (15 (0)) + (115 () )
P 3(axi) + pp(xi)) 3(2—pa (x1) g (1))

€79/1/€/3uduod/wo snidiabunds mmmy//:diiy

€79:€ 'Y 10T snjd4abuuds uejyo pue tewo]

0T Jo 7 abed
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Den(A,B) = C(A,B)-N(A, B)

= zn: A o) + () (Lo () + (L (1))
| 1a(®i) + pp(x:) 2y (1) —pip (%)

| () + Vg ) g () + g () | 2-p (%) —pg (i) + \/(l_lle(xi))(l_PB(xi))
[ Tt ; |
(7)

Dcc(A, B) = C(A, B)-
)+ PB(xz (1- PA(xi))z + (1_P3(xi))2
4 (%) + HB(xz 2y (1) — g (:)
- Wm(xi)uB(x» +y/ <1—uA<xi>><1—uB<xi>>] }

(8)

Dex(A,B) = C(A,B)-R(A,B) = 3 [Eﬁ Ez; 1 :Ezg n (1—u3 (_x;i)(xg_(:;(i?)(xi)) }

23 (1) 4 py () g () + 13 (x:))
3(ka (%) + pp(x:))

2 (1 (50))” + (1=pa () (1=t (x2)) + (l—ug(xt))z)}

- B2y (x0)—Hp (1)
)
DCA(A B )
_ PA(’Cz + pp(x (1- PA(xi))Z + (I_Pg(xi))z
b () + pp (o 2y () —pp (i)
] l(m(x» Fip(s) | z—uA<xi>—uB<xi>1 }
2 2
(10)

Dcii(A,B) = C(A,B)-H(A, B)

)-H(
N | HAG) + pE (s )+(1—uA(xi))2+(1—uB(xi))2
| [ pa () + pp (i) 2y (1) g (x:)

| 2w () pp (i) N 2(1-py (1)) (1-pp (i)
ba (i) + pp(x:) 2—py (1) ~pp (%:)
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Dsa(A,B) = S(A,B)-A(A,B)

_ Z [ [\/ o) \/ (o (1—u3(xf>)2)]

_[m(xl-)w(xl)) (21, () - m;(x;))”
2 2

Dsy(A,B) = S(A,B)-N(A, B)

Il
[
—
—
= =
BN
PounY
&
SN~—
|+
=
ST
—
R
v
S—
+
%
—
—_
r
—
8
S—
S~—
)
—
—_
=
W
—
&
S~—
Nl
N
[ |

+ 2 (1) —pp (x:)

_ - l”A(xi)+ Hy () g (%) + pp(x:)
- 3

+\/(1—PA(xi))(1—H3(xi))]
3

DsG(A,B) = S(A, B)-G(A, B)

n sz+Bxl 1-p g, (x; 2+ l—Bxi2
Z“\/u 2u<>)+\/<< o)+ u()))]

: Wmm)ug(xi) +y/ <1—uA<xi>>(<1—uB<xi>>] ]

Dsi(A,B) = S(A,B)-H(A, B)

[ feEe ) [0 )
- i=1 2 i 2

| 20 () pp (i) n 21—y (o)) (1-pg (2))
Ha () + pp(:) 2y (%) —pp(x:)

Dra(A,B) = R(A,B)-A(A, B)
| 205 () 4 g () g (3:) + g (i)
3(py (%) + pplxi))

i=1

+

2((1pa (31))” + (=g (20)) (1=t (1)) + (1-pp(x2))°)
3(2-py (%) —pp(x:))

Z [(m(xi) Fhal) <z—uA<xg—uB<xi>>]

(13)

(14)

(15)
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Drn(A,B) = R(A,B)-N(A, B)

203 () + g () g (i) + p3(x0))
: 3(ky (i) + pp(x:))

i=

+

2((1-p () + (1-prg () (1-pg (%)) + (1-pip(x:))°)
3(2-py (1) —pp (%))

& l”A(xi) + /i () pp () + pg (1)
- 3

+

2y, ()~ () + ¢<1—uA<xi>><1—uB<xi>>]

3
(17)
Drg(A,B) = R(A, B)-G(A, B)
N [ 2(HE () + (i) up () + (i)
=1 3k (i) + pp(xi)
+2((1—HA(xi))2 + (1= (%) (1-pp(%)) + (1-pg(x:))*)
3(2-py (%) —pp(x:))
| [V st + 1) 1y )|
(18)
Dri(A, B) = R(A, B)-H(A, B)
| 200 ) (i () + p ()
i=1 3(|>1A(xi) + HB(xl'))
+2((1_p‘A(xi))2 + (1 () (1= pp(x:)) + (1-pg(:)*)
3(2-py (%) —mp(%:))
_ - [ 24 (1) g (%) 2(1_|4A(xi))(1_l13(xi))}
Py b (i) + pp(x:) 2y () —pp(x:)
(19)

DAN(A,B) _ A(A,B)—N(A,B) _ 4” |:(uA(xl) ;— HB(xl)) + (2_HA(xi2)_”B(xi)):|

3 {wn + i () () + (1)
. 3

n
i=1

+

2y (%) —pp (i) + \/(l_p'A(xi))(l_uB(xi)):|
3

(20)
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Dac(4,B) = A(4, B)-G(4, B)
: [[ b (5)-+ b)) | <2—uA<xi>—uB<x,»>>}

i=1 2

- [m(xoug(xi) +y/ <1—uA<xi>>(1—uB<xi>>”

Dan(A,B) = A(A,B)-H(A, B)

_ - (ta () + pp(x) | (2=pa (1) —pp(%:))
0] (S e

i=1

B [ 20 (%1) g (%) + Z(I_HA(xi))(l_lle(xi))]
Ha () + pg(x:) 2y (%)~ g ()

(22)

Dng(A,B) = N(A,B)-G(A, B)

b () + /g (%) g (%) + pp(x:)

2 (%) ~pip(x:) + ¢<1—uA<xi>><1—uB<xi>>]
3

_i [\/HA(&)PB(M) + \/(I_MA(xi))(l_F‘B(xi))l
(23)

Theorem 1: All the proposed measures (6) - (23) are valid measures of fuzzy mean
difference directed divergence.

Proof: (a) Non-negativity: From one of inequality in Taneja (2012), for two fuzzy
sets A and B, we have H(A, B) < G(A,B) < N(A,B) <A(A,B) <R(A,B) < S(A, B) < C(A, B).

Hence, the condition of non-negativity of measures (6) - (23) is proved.

Also clearly, Dy g (A,A) =0 for all measures from (6) - (23) where A; and B; be-
longs to the fuzzy mean divergence measures given in Table 1.

(b) Invariant under complementation: From the notion of compliment of a fuzzy
set given in (1) we can easily check for measures (6) - (23) that Da,p,(A,B) = Dy,p,
(A,B).

(c) Convexity: Now we shall prove the condition of convexity of measures (6) - (23)
with the help of Lemma 1.

For simplicity, Let us write Da,p = bf 4 g where f,  (2) = f4,(2)~f5, (z) with A; >
B,.

Let us take pq =z=pp=1-z. So, corresponding to measures (6) - (23) we have the
following generating functions:

fes(z) =2 [22 + (1-2)*- M (24)

Page 8 of 20
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fenl(z) =2

2+ (1-z

2 1+ \/z(l—z)]
3

feo(®) = 2|2 + (1-2'~V/2(1-2)|

fer(®) = 2|2 + (1-2)*- 2(2* + (1—2 + Z(l—z))‘|
fea®) =22+ (1= - 5]

fenlz) =2[2 + (1—z)2—2z(1—z)]

24 (0-27 2+ (l—z)]

.mw=4 . :

i 2+ (1-2)* z+ /z(1-2) + (1-2)
2 3

2

Z““'Z)Z—m——z)}

2+ (1-2)°

5 —2z(1—z)}

2(22+ (1-2)° +2(1-2)) z+ (l—z)]

[2(22 + (1-2)* + 2(1-2))
3

—22(1—2)1

2+ (I-z) 1+ \/z(l—z)]
3

fag(z) =2 -7_—

Sfsn(z) =2
fsglz) =2
Sfsu(z) =2
Sfralz) =2
Sfrn(2) =2
Sfra(2) =2
Sfru(2) =2
fan(z) =2
fanle) =2

(33)

(34)

Page 9 of 20
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Srng(z) =2

1+\/;(1—2)_m] (41)

Now in all the cases from (24) - (41), we can easily check that £, 5 (3) =f, (3) /5,
() =1-1=0.Itis understood that z € [0, 1].

The first and second order derivatives of the functions (24) - (41) are as follows:

2(2z-1) . 4

f&s(z) = 4(2z-1)- Ses(z) = 8- 32 0 (42)
2+ (127 2+ (1-2)
o (2271) 4
fanle) =405 + T fo(e) =8+ >0 (43)
Feole) =821+ O o) = 8 L (a4)
farld =2 ED fm =250 (45)
fVCA(Z) = 4’(22—1)>fCA(Z) =8>0 (46)
Fen(®) = 822-1).f ylz) = 16 > 0 (47)
N o Ry % PR R (48)
2(22 + (1-2)°) (2 + (1-2)%)
, 2(2z-1) (2z 1) V2
fonle) = Sonle) =2 (49)
s \/2(22 +(1-2)%) 3\/Z 2 (22 + (1-2)%) /
4
+—77>=>0
6(z—22)*/?
frole) =220 Gl g )
\/2(22 +(1-2)%) Vz-z
= * + ! >0 (50)
(2(2 + (1-2)°))"*  2(z-22)°?
Son@ = 22D e pie - —2 o0 1)
2(2% + (1-2)%) (22 + (l—z)z))
fu@ =D f =250 (52)
funte) =5 T ) =5 5| ] 0 (53)
Frol®) = "5 T o) =5+ >0 (54)
16(2z 1) 32

fRH() fRH():?>O (55)

Page 10 of 20
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, (22-1) 1
Sfan(2) = 3\/— 7fAN( )= 76(2—22)3/2 >0 (56)
, (22-1) 1
fac(z) = \/— fAG( z) = 7(2_;52)3/2 >0 (57)
fan(2) = 4(22-1),f 4 (2) =8 > 0 (58)

: 2(2z-1) 2(22 + (1-2)%)
SFnelz) = EWk Srne(@) = 73(‘2_22)3/2 >0 (59)

We see that in the entire cases second order derivative are positive and satisfies f{;h B,
(%) =0 for all z€ [0, 1]. Thus according to the Lemma 1 and equation (42) - (59), we
get the convexity of the measures (6) - (23).

Hence all the defined measures (6) - (23) are valid measures of fuzzy mean difference

directed divergence.

Inequalities among fuzzy mean difference divergence measures
Theorem 2: The fuzzy mean difference divergence measures defined in (6) - (23) admit

the following inequalities:

3 3D ) Dc33
7DSN DN = D <D
Du<{ | 4 3 < 7 36 = clre <3Dux
—Dgy<-D 1 3
3 SH = R §D5GS gDRG

i.e.,, we have the following inequalities:

i) Dsa<2Dsny<2Dcn<Des<3Dan,

i) Dsa<%Dsy<2Dcr<}DsG<2Drg<3Dan,

iii) Dsa<%Dsy<3Dcrs2DensiDegs2Dre<3Dans
iV) Dgu< %DSNS %DSGS %DRGSBDAN.

Proof: The proof of the above theorem is based on Lemma 2 and is given in parts in
the following propositions.
Proposition 1: We have Ds4<2 Dgy

Proof: Let us consider the function

gor sule) =152 _ 6v2(z-2)"
SN fsn(2) 6v2(z-22)** + ((22 + (l—z)z))a/2
This gives
: - 3v2(22-1)(z-22)"* (222 -2z + 1) (422-4z-1) ( > 0forz<1/2
8sa-sn(2) = { <0forz>1/2

2
6v2(z-22)>? + (222-22 + 1)3/2]

And we have

Page 11 of 20
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B= sup g sn(2) = gsa_sn <%> = Z (60)

z€[0,1]

Applying Lemma 2 for the difference of fuzzy means Dsy(A, B) and Dgy(A, B) and
using (60), we get

3
Dgsy<—Dgy.
4% 3 SN

Proposition 2: We have Dsy<1Dsy

Proof: Let us consider the function

ff;A(Z) _ V2

8sa_su(2) =775 — = :
ST fon(2) 8(222-22 +1)*% + /2
This gives
= 12v2(222-2z + 1) (42-2) [ > 0 forz < 1/2
8sa-su\Z) = <0forz>1/2

[8(222—22 +1)%2 4 \/ir

And we have

B = sup gSAgH(Z) = 8sasH (%) = % (61)

z€[0,1]
Applying Lemma 2 for the difference of fuzzy means Dg4(A, B) and Dgy(A, B) and
using (61), we get
1

Dgy< gDSH-

Proposition 3: We have Dsy<2 Dcp

Proof: Let us consider the function

f;H(Z) 24(222_2Z + 1)3/2 4 3\/5
Zsr_cr(z) = =

T fi(@) 16(222-2z + 1)*/*
This gives
, )= - 46+/2(2z-1) > 0forz < 1/2
8sn_cr\Z) = 4902222z + 1)72 | < 0forz>1/2

And we have

1 9
B= sup goy_cr(2) = &sp_cr <_> =7 (62)
z€(0,1] 2 4

Applying Lemma 2 for the difference of fuzzy means Dgy(A, B) and Dcr(A, B) and
using (62), we get

9
Dgy< ZLDCR.

Proposition 4: We have Dcp<2Dcy

Proof: Let us consider the function
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fal®) 320
Cfen(@) 48(z-22) 41

gcr_cn(?)

This gives

B 48(z—z2)1/2(1—2z) >0 for z<1/2

gVCR7CN(Z) = 2{
48(z—z2)3/2+1} <0 for z>1/2

And we have

B= sup gcr_cn(2) =&cr_cn (%) = ; (63)

z€[0,1]

Applying Lemma 2 for the difference of fuzzy means Dcg(A, B) and Dcn(A, B) and
using (63), we get

4
Dcp< ;DCN~

Proposition 5: We have Dcr<2Dsg

Proof: Let us consider the function

ferlz) | 16(422-4z + 2)3/2(2_22)3/2

z) =~ =
&cr_cn(2) fec(@) 24(2_22)3/2 + 3(dz2-4z + 2)3/2
This gives
, 8(22-1)(z-22)"* (42>-4z + 2)"/* [32(z—z2)5/ '~ (4?42 + 2)5/2] >0 forz < 1/2
8cr_sg(2) = { <0 forz>1/2

2
[S(Z—zz)s/2 + (42%-4z + 2)3/2}

And we have

B= sup gcr_s6(2) =gcr_sc <%> = % (64)

z€(0,1

Applying Lemma 2 for the difference of fuzzy means Dcg(A, B) and Dsg(A, B) and
using (64), we get

2
Dcp< g Dgg.
Proposition 6: We have Dsy<2%Dcy
Proof: Let us consider the function
3/2

_fonl@) | 24(z-2)"? + (422-42 + 2)
fen(@)  [a8(z-22)*2 + 1} (4z2-az + 2)°

gSN7CN(Z)

This gives

Page 13 of 20
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72(z-22)"* (422 -4z + 2)*(1-22) {1 +96(z-22)" - (422 -4z + 2)5/2] { > 0forz < 1/2

<0forz>1/2

g;’N7CN(Z) = 2
(48(z—z2)3/ 24 1) (422-4z + 2)°

And we have

B= sup gon_cn(2) = &sn_cn <%> = ; (65)

z¢€(0,1]

Applying Lemma 2 for the difference of fuzzy means Dgs(A, B) and DcadA, B) and
using (65), we get

4
Dgn< ; Dcy.

Proposition 7: We have Dgy<2Dsg

Proof: Let us consider the function

g (2) :f%N(z) _ 24(z-22)" + (42%-4z + 2)*°
NG fo(2)  24(z-22)2 + 3(422-4z + 2)*?
This gives
- 144(z-22) " (422-42 + 2) > (1-22) [ > 0 forz < 1/2
Ssn-sale) = < 0forz>1/2

2
[24(z—z2)3/ 2 4 3(422-4z +2)% 2]
And we have

B= sup geov_s6(2) = gsn_sc (;) = % (66)

z¢€(0,1]

Applying Lemma 2 for the difference of fuzzy means Dgy(A, B) and Dgg(A, B) and
using (66), we get

2
Dgn< gDsg.

Proposition 8: We have Dcy<ZDcs

Proof: Let us consider the function

fex(@) 1 a1
Zen_cs(z) =7 = [8+6( ] [8 )3/21

- fes(@) z-22)*/? B (422-4z + 2

This gives

(22-1)(42>~4z + 2)" 2{(422—42 +2) [8(4z2—4z +2)¥ 2—4] 16(z-2%) [4s(z—z2)3/ 24 1} }

g’CNfcs(z) = 2
4(z-22)°? [8(4z2—4z +2)¥ 2-4]

_ [ >0forz<1/2
T <O0forz>1/2

And we have

Page 14 of 20
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B= sup gey_cs(2) =gen_cs (%) = g (67)

z€[0,1]

Applying Lemma 2 for the difference of fuzzy means Dcpy(A, B) and Dcs(A, B) and
using (67), we get

7
Dcn< gDcs.

Proposition 9: We have Dcs< 3D N
Proof: Let us consider the function

fes)  [8(a2-4z+2)*7 -4l s
8cs_an(?) N [ (4z2—4z + 2)°2 ] [6(2 z’) ]

This gives

36(22—1)(z—zz){4(2—22)1/2—(422—42 +2) [2(422-4z + 2)3/2-1] } > 0forz < 1/2
Zcs_an(2) = {

(422-4z + 2)°/? < O0forz>1/2

And we have

B= sup gcs_an(2) = &cs_an <%) =3 (68)

z€[0,1]
Applying Lemma 2 for the difference of fuzzy means Dcs(A, B) and Dn(A, B) and
using (68), we get
Dcs<3Dyn.

Proposition 10: We have Dey<ZDcg
Proof: Let us consider the function
on(®)

gcn_c6(?) :% =1-2 {48 (Z‘ZZ)

-1
3/2 n 3}

This gives

16(1-22)(z-29)"” [ > 0forz < 1/2

e [16(z—z2)3/2 + 1]2 { <0forz>1/2

And we have

B= sup gey_c(2) =&en_ce (;) = g (69)

z€(0,1]

Applying Lemma 2 for the difference of fuzzy means Dcn(A, B) and Dcg(A, B) and
using (69), we get

7
Dcn< §DCG-

Proposition 11: We have Dsg<2Dpg

Proof: Let us consider the function
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_Js6(2) _ 24(2-22)"" + 3(422-4z + 2)

3/2

&5G_rG (2)

This gives

 fs6(2) (422-4z + 2)* [8(z—z2)3/2 + 3}

9(2z-1){ [(422—42 +2)"%-32(z-2%)" 2} [8(2—22)3/ 2y 3] -3 [8(2—22)3/2 + (42242 + 2)3/2] (422-4z + 2)}

g’scfzzc;(@ =

>0 forz<1/2
T <0 forz>1/2

And we have

1 6
B= sup gsc_rc(2) = &s6_ra 2) 75

z¢€[0,1]

2
2(4z%-4z + 2)5/2(z—z2) [8(2—22)3/2 + 3}

(70)

Applying Lemma 2 for the difference of fuzzy means Dsg(A, B) and Dpg(A, B) and

using (70), we get
6
Dgg< EDRG-

Proposition 12: We have Dcg<2 Dpg

Proof: Let us consider the function

gCG_RG(Z) = L(Z) = 6-45 [8 (z—zz)?’/2 + 3] B

7f1;G(Z)

This gives

Table 2 Computed values of fuzzy mean difference divergence measures D,g(P;, Q)

with k={1, 2, 3}

P P, Ps

Q 02741© 028779 0.13859
058257 064307 031277
0.8002® 0.8400® 0.4064®
034239 036319 017729
0513519 054469 0.2659"9
1.0270"" 108927 053187
0238512 0.2569"? 0.127412
03340 03553 0.17420%
0525219 0552319 0.2679""9
0.75201 0.8015" 039331
0171209 0.1815"% 0.0887"¢
0.2667"" 027997 0.135517
045791 04769 0229219
0684717 0726117 03546
0.0955% 009847 0.0468"
0.2867%" 0.2954% 0.1405%"
0513532 0544622 0.2659%?
0.1912¢¥ 0.1970%¥ 00937

For convenience, we use the notation *? in Table 2 to present the divergence/distance value computed from equation i.

Page 16 of 20
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e 540(z-2%)"*(1-22) [ > 0 forz < 1/2
8cG-rG\%) = 8(z—22)3/2 +3 <O0forz>1/2

And we have

1 9
B= Sup]gCG_RG(Z) =84cG_RrG <2> =3 (71)

ze(0,1

Applying Lemma 2 for the difference of fuzzy means Dcg(A, B) and Dgg(A, B) and
using (71), we get

9
Dcg< gDRG'

Proposition 13: We have Dy < 5D4n
Proof: Let us consider the function
Sfrc(2)

&r_an(?) = m = 8(z-2")

3/2_’_3

This gives
> 0forz <1/2

, 3/2
8ro_an(?) =8(z-2°)"" + 3{ < 0forz>1/2

And we have

B= sup grc_an(2) = &re_an <%> =5 (72)

z¢€(0,1]

Applying Lemma 2 for the difference of fuzzy means Drg(A, B) and Dan(A, B) and
using (72), we get

Dpg<5DyN.

Application of fuzzy mean difference divergence measures to pattern recognition

We now present the application of the proposed fuzzy mean difference divergence
measures in the context of pattern recognition. Next, an example related to pattern
recognition is given to demonstrate the results obtained by the fuzzy mean difference
divergence measures (6) - (23).

In order to demonstrate the application of the introduced fuzzy mean difference diver-
gence measures to pattern recognition, suppose that we are given three known patterns
P,, P, and P; which have classifications C;, C; and Cj respectively. The patterns are repre-
sented by the following fuzzy sets in the universe of discourse X = {xy, xy, x3, x4}:

P1 = {<x1, 05>, <JC2, 06>, <X3, 02), <x4,03>}
Pg = {<x1, 08>, <QC2, 07), <9C3, 03>, <x4, 04>}

P3 = {<x17 07>, <JC2, 05>7 <9C3, 01), <x4,07>}

Given an unknown pattern Q, represented by the fuzzy set



Table 3 Divergence/distance values calculated by Egs. (6) - (23)

L. M.LL. V.L. V.V.L L. M.L.L. V.L. V.V.L. L. M.L.L. V.L. V.V.L L. M.L.L. V.L. V.V.L
L. M.L.L. V.L. V.V.L.
000009  00884°  01304° 042509  00884° 000009 045239 08566  01304°  04523© 00000  01114° 042509 08566 01114 00000
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Q = {(#1,0.5), (%2, 0.3), (x3,0.4), (x4,0.9)}.

Our aim is to classify Q to one of the classes C;, C, and Cs. According to the
principle of minimum divergence/discrimination information between fuzzy sets, the

process of assigning Q to Cy+ is described by
k" = arg rrll(in{DAB(ka Q)}-

Table 2 presents Dyp(Pr, Q), k={1,2,3}. It is observed that Q has been classified to
C; correctly.

Numerical example
We now establish that the proposed fuzzy mean difference divergence measures (6) -
(23) are reliable in applications with compound linguistic variables.

Example: Let F={(x, ur(x))/x € X} be a fuzzy set in X. Tomar and Ohlan (2014) de-
fined for any positive real number n, from the operation of power of a fuzzy set: F* =

{(x, [urx)]")/x € X].
Using the above operation, the concentration and dilation of a fuzzy set F are as follows:

Concentration : CON(F) = F?,
Dilation : DIL(F) = F'/2.

CON (F) and DIL (F) are treated as “very (F)” and “more or less (F)”, respectively.
We consider F in X = {x1, x5, X3, X4, x5} defined as:

F= {(O.3,x1), (0.6,962), (0.9,963), (0.5,964)7 (OI,X5)}

By taking into account the characterization of linguistic variables, we regard F as
“LARGE” in X. Using the operations of concentration and dilation

F? may be treated as “More or less LARGE”,
F* may be treated as “Very LARGE”,
F* may be treated as “Vey very Large”.

The proposed fuzzy mean difference divergence measures are used to calculate the
degree of divergence/distance between these fuzzy sets. The divergence/distance values
have been calculated by Egs. (6) - (23) between different fuzzy sets. The comparative
results are summarized in Table 3. For convenience, we use the notation * @ in Table 3
to present the divergence/distance value computed from equation i. The following ab-

breviated notions are used in Table 3.

L.: LARGE

M.L.L.: More or less LARGE
V.L.: Very LARGE

V.V.L.: Very very LARGE

From the viewpoint of mathematical operations and the characterization of linguistic
variables, the divergence/distance between the above fuzzy sets has the following

requirements:
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D (L,MLL) <D(L,V.L) <D(L., V.V.L), (73)
D(M.LL.,L)<DMLL,V.L) < D(MLL.,V.V.L), (74)
D(V.L,V.V.L) < D(V.L,L) < D(V.L.,M.LL.), (75)
D(V.V.L,V.L) < D(V.V.L,L) < D(V.V.L,MLL). (76)

From the numerical results presented in Table 3, we see that the proposed fuzzy mean
difference divergence measures (6) - (23) satisfy the requirement (73) - (76). Therefore,
the proposed fuzzy mean difference divergence measures are consistent in the application
with compound linguistic measures.

Conclusion

To sum up, we present a sequence of fuzzy mean difference divergence measures. We
also establish a sequence of inequalities among some of the proposed fuzzy mean dif-
ference divergence measures. An application of the proposed divergence measures in
the field of pattern recognition is established. A numerical example is used to present
the consistency of these divergence measures in application with compound linguistic
variables. Numerical results show that the fuzzy mean difference divergence measures
are much simpler with the difference of the means involved.
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