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Abstract: Event-related potentials (ERPs) activated by faces and gaze processing are found in
individuals with autism spectrum disorder (ASD) in the early stages of their development and
may serve as a putative biomarker to supplement behavioral diagnosis. We present a novel approach
to the classification of visual ERPs collected from 6-month-old infants using intrinsic mode functions
(IMFs) derived from empirical mode decomposition (EMD). Selected features were used as inputs
to two machine learning methods (support vector machines and k-nearest neighbors (k-NN)) using
nested cross validation. Different runs were executed for the modelling and classification of the
participants in the control and high-risk (HR) groups and the classification of diagnosis outcome
within the high-risk group: HR-ASD and HR-noASD. The highest accuracy in the classification of
familial risk was 88.44%, achieved using a support vector machine (SVM). A maximum accuracy of
74.00% for classifying infants at risk who go on to develop ASD vs. those who do not was achieved
through k-NN. IMF-based extracted features were highly effective in classifying infants by risk status,
but less effective by diagnostic outcome. Advanced signal analysis of ERPs integrated with machine
learning may be considered a first step toward the development of an early biomarker for ASD.

Keywords: autism spectrum disorder; event-related potential; empirical mode decomposition;
intrinsic mode functions; support vector machine; k-nearest neighbor

1. Introduction

Autism spectrum disorder (ASD) is a complex and heterogeneous condition that
affects communication, social interaction, and behavior. According to the World Health
Organization, approximately 1 in 160 children has a diagnosis of ASD. There appear to
be genetic and familial risk factors that increase the likelihood of ASD, given that nearly
20% of infants who have an older sibling with an ASD diagnosis eventually receive a
diagnosis of ASD themselves [1]. Based on this increased risk, there has been growing
interest in research studies focused on infants with ASD-affected siblings (high risk; HR).
These infant-sibling studies are critical for examining prospective developmental markers
of ASD and improving early detection prior to the emergence of behavioral symptoms.
Several of these studies implicate atypical early brain development [2–4] that precedes the
appearance of core behavioral symptoms that reflect the broader autism spectrum [5,6].

Electroencephalogram (EEG) is the most widely used tool for measuring brain function
due to its being noninvasive, efficient in acquisition, and relatively low cost. Studies on
the early functional markers of ASD have shown that atypical brain responses during the
processing of faces and dynamic changes in eye gaze direction are found in children with
ASD and infants who are at risk for ASD [2,6–8]. These early studies suggest that atypical
brain responses to faces and eye gaze may serve as putative markers that reflect increased
risk and could supplement behavioral diagnosis of ASD.
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In this regard, the neural markers of gaze and face processing in ASD have been ex-
tensively investigated using event-related potentials (ERPs) [2,6], which reflect systematic
changes in the scalp-recorded EEG that are time-locked and phase-locked to the onset
of a stimulus (e.g., face) or behavioral response (e.g., button press) [9]. Previous studies
on HR infants have documented clear differences in several ERP components that are
elicited during face and gaze processing. Specifically, compared with typically developing
10-month old infants, HR infants show a slower response, as reflected by peak latency, in
both the N290 and P400 components when processing faces versus objects [10]. Similarly,
other studies suggest that the P400 component to gaze direction (direct/averted) and
face familiarity (familiar/stranger face) also distinguishes HR from typically developing
infants [6,11]. Beyond testing group differences on a relatively small number of factors
(e.g., P400 latency), the field of machine learning has shown promise in various biomedical
applications, such as computer-aided diagnosis through mining multivariate data. These
approaches can aid the interpretation of physiological data and be used by clinicians to
consider disease diagnosis based on multiple sources of information (e.g., EEG, electrocar-
diography, electronic medical records, and magnetic resonance imaging). There has been
growing interest in investigating ASD diagnostic utility through neuroimaging data using
machine learning [12–16].

Only a few studies have been conducted using machine learning analyses combined
with behavioral measures [4,14,17,18]. In one study [4], machine learning was applied using
the Mullen Scales of Early Learning and Vineland Adaptive Behavior Scales at 8 months and
showed an accuracy rate of 69.2% in predicting ASD outcomes. In a separate study [17],
a support vector machine (SVM) classifier was used to differentiate ASD individuals
based on the Autism Diagnostic Interview (ADI) and Social Responsiveness Scale (SRS),
showing a sensitivity of 89.2%. In terms of ERPs, only one study has applied machine
learning techniques to distinguish HR from typically developing infants at 6 months of
age [19]. Despite the use of multiple machine learning methods and multiple features
across experimental conditions, the highest accuracy rate obtained was only 64%.

ERP data analysis has been largely restricted to fixed-latency and amplitude-based
differences between experimental conditions or groups, which may obscure the richness of
EEG features that are relevant for face processing and may be linked to risk and diagnostic
outcomes. Although it is also possible to decompose ERPs into their time-varying spectral
features in order to extract more nuanced measures of brain function, no studies to date
have investigated the effect of ERP transformation on time and/or frequency domains in
combination with machine learning.

The current study examined whether using features from transformed ERPs as input
can improve the accuracy of classification of family risk and diagnostic outcome. We
chose to apply the empirical mode decomposition (EMD) technique, which is an adaptive
data processing method designed for linear and stationary signals. The EMD technique
preserves the frequency variation in time and has been widely used in the domain of
biomedical signals [20–23]. In the current study, we propose a novel approach to classify
ERPs’ generated static faces and dynamic eye gaze using intrinsic mode functions (IMFs).
Specifically, the EMD technique was used to decompose ERPs into a set of IMFs, from
which six quantitative features were calculated (IMF energy, Shannon entropy, and four
statistical parameters). These quantitative features were used to assess the classification
accuracy across different machine learning algorithms.

2. Method
2.1. Participants

The current sample comprised 104 infants from the British Autism Study of Infant
Siblings (BASIS) study. EEG data were collected from 54 infants at HR for autism by
virtue of having an older diagnosed sibling or half-sibling, and 50 control infants. EEG
collection occurred when infants were 6 to 10 months of age (mean = 7.8 months, SD = 3.72).
A diagnosis of ASD was confirmed in a subgroup of participants when they reached
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24 months and 36 months of age based on clinical research scores that included the Autism
Diagnostic Observation Schedule (ADOS) and the Autism Diagnostic Interview (ADI). Ten
participants were excluded due to insufficient ERP data (specified as fewer than 10 trials
per condition; n = 6) and/or lack of information regarding diagnostic outcome (n = 4). The
final sample included 17 HR infants who subsequently received a diagnosis (HR-ASD),
33 high-risk infants who did not receive a diagnosis (HR-noASD), and 44 control infants.
Table 1 lists a descriptive summary of the sample size and biological sexes for the three
groups.

Table 1. The number of participants available for analysis from each group: high-risk infants who
did not receive a diagnosis (HR-noASD), high-risk infants who received a diagnosis (HR-ASD).

Control HR-noASD HR-ASD All

Male 15 (43%) 9 (26%) 11 (31%) 35 (37%)
Female 29 (49%) 24 (41%) 6 (10%) 59 (63%)

Total 44 (47%) 33 (35%) 17 (18%) 94 (100%)

A 128-channel HydroCel Geodesic Net was used to collect EEG signals digitized
at 500 Hz. Event-related potentials (ERPs) were recorded in response to different face
stimuli, illustrated in Figure 1: static gaze condition (direct versus averted), dynamic gaze
condition (toward versus away), and face condition (including any static or dynamic gaze
condition versus noise). The face stimuli consisted of four different female faces, each with
three different gaze directions (direct or averted to the left or right). All faces contained a
neutral expression. The infants were seated approximately 60 cm from the presentation
screen, which was 40 × 29 cm in size. The faces subtended 21.3 × 13.9 degrees, with eyes
subtended approximately 1.6 × 2.7 degrees. For more details on data collection and clinical
assessments, see [6] (Supplemental Data Section).

Figure 1. Event-related potential (ERP) task corresponding to visual stimulus used in the original
study: static gaze—direct and averted. Face and noise—gaze shift toward and away- Reprinted from
ref. [6] (Supplemental Data Section Figure S2).

2.2. Analysis Framework

The process of establishing the classification system is generally composed of a training
stage and a testing stage. In each of these stages, EMD and supervised machine learning
were used to classify infants on the basis of familial risk and also by diagnostic outcome.
The analysis framework is presented in Figure 2.
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Figure 2. Block diagram of the system: (a) The BASIS database is split into training and testing using a nested cross-
validation technique. (b) Preprocessing and ERP extraction: Raw EEG data were preprocessed using the EEG Integrated
Platform (EEG-IP-L) pipeline [24]: all kinds of noises and artifacts are suppressed; then clean data are segmented to get
fixed-length epochs. (c) Signal decomposition and feature extractions: empirical mode decomposition (EMD) is applied to
decompose signals into intrinsic mode functions (IMFs); then features are extracted per channel and per IMF. A selection step
is used to reduce the number of features. (d) Classification block: using nested cross validation, features selected are used as
input to two classifiers, support vector machine (SVM) and k-nearest neighbors (k-NN), at the training and testing stages.
(e) Class labels of data are predefined to distinguish familial risk, then diagnostic outcome within the high-risk group.

1. The EEG data were preprocessed to isolate and flag artifact for removal. The retained
data were segmented into −200 to 800 ms epochs and averaged within condition to
generate the ERP waveforms.

2. The single-channel ERP for each condition was decomposed to the first three IMFs
using the EMD technique.

3. Energy and Shannon entropy were extracted along with four statistical parameters
from each IMF: standard deviation, skewness, moment, and mean.

4. The maximum value, across all channels, for each of these six features was used in a
selection step to determine the strongest features based on their weight correlation.

5. During the training stage, the vector of selected features that was extracted using an
input signal from the training database was then fed into two classifiers to train and
create models.

6. During the testing stage, the input vector chosen from the testing database was
classified using trained models in order to associate the unknown input to one class.

Detailed steps are below.

2.2.1. EEG Preprocessing

Raw EEG data were preprocessed using the EEG Integrated Platform (EEG-IP-L)
pipeline [24], which includes a set of standardized and automated procedures to isolate
cortical EEG signals from noise while maintaining maximal information from raw record-
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ings and minimizing data loss. The output from the pipeline are continuous raw EEG
data with comprehensive annotations regarding data quality and spatial nonstationarity.
Compared with other standard automated procedures, the EEG-IP-L pipeline has been
shown to increase data retention across subjects and single trials [24].

EEG-IP-L builds annotations regarding signal quality through a series of criterion
functions that involve computing a metric (e.g., voltage variance) and building distributions
in order to assess whether channels, time periods, or independent components are likely
outliers on the given metric. As a first step, the signal properties of the scalp channels are
examined. Continuous EEG is epoched in 1 s nonoverlapping windows. The standard
deviation of the voltage across channels is calculated for each of these 1 s windows. A
channel is flagged for the entire recording if, in more than 20% of the 1 s epochs, the
voltage is more than six times the 0.3 to 0.7 inter-quantile range. Similarly, a 1 s epoch
is flagged if more than 20% of the channels are outliers based on voltages that are more
than six times the 0.3 to 0.7 inter-quantile range. The windowed data are concatenated
back into the continuous time course, and a 1 Hz high-pass filter is applied in order to
help establish a reliable Independent Component Analysis ICA decomposition, which
is sensitive to nonstationary artifacts generated by large low-frequency oscillations (e.g.,
movement artifact and sweat artifacts). ICA decompositions have been shown to be more
reliable when a high-pass filter is applied to the data (e.g., 1 Hz; [25]).

The next assessment of scalp signals is to identify channels that have unreliable activity
or may be bridged with neighboring channels. Continuous data are windowed into 1 s
nonoverlapping epochs, and the maximum correlation between each channel and its three
spatially nearest neighbors is stored. A channel is flagged for the duration of the recording
if, in more than 20% of the duration, it shows a maximum correlation that is six times less
than 20% less the 0.3 to 0.7 inter-quantile range. Similarly, a 1 s epoch is flagged if more
than 20% of the channels are outliers based on maximum neighbor correlation coefficients
that are less than six times the 0.3 to 0.7 inter-quantile range. To identify bridged channels,
a composite measure is created by taking the maximum correlation array and dividing the
median by the interquartile range for each channel across time. This yields a value that
accentuates high and invariable correlations across time. Channels are flagged as bridged
if this composite value exceeds six standard deviations (40% trimmed) from the mean (40%
trimmed) across the channels.

The windowed data are concatenated back into the continuous time course, and any
channels or time periods that were not flagged are submitted to AMICA for decomposition.
Similar to the procedures for scalp channels, following AMICA, the data are windowed
into 1 s nonoverlapping epochs, and the standard deviation of Independent Components
IC activations is calculated to determine time periods of relative nonstationarity. A 1 s
epoch is flagged if more than 20% of ICs are outliers based on values that are more than six
times the 0.3 to 0.7 inter-quantile range. Ignoring these time periods in which too many
ICs have outlying voltage values, a subsequent AMICA is performed to generate a more
reliable decomposition.

A single dipole is fit to each IC weight topography. ICs are then classified into seven
common categories (brain, eye, muscle, heart, channel noise, line noise, and other) using the
ICLabel [26,27] in an EEGLAB extension. To classify ICs, the ICLabel extension examines
the spatiotemporal measures in the ICLabel database, which contains more than 200,000 ICs
sourced from over 6000 EEG recordings.

The final quality control was carried out by an expert review of the classification
of ICs into the phenomena they capture paired with IC properties (e.g., topographical
projection, spectral dynamics, dipole fit residual variance, and classification accuracy) and
the comprehensive data annotations overlaid on the continuous time series of scalp and
component activations. For a complete description of EEG-IP-L and a summary of data
diagnostics, see [24,28].
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2.2.2. ERP Extraction

Scalp channels, time periods, and independent components that were flagged during
preprocessing were purged from the data. Removed channels were interpolated using
spherical spline, and all channels were then rereferenced to the average of all electrodes.
Epochs were extracted (−200 to 800 ms), time-locked to stimulus onset, and baseline-
corrected using the −200 to 0 window. Epochs were averaged within each stimulus
condition to generate ERPs. Figure 3 shows the grand averaged visual ERPs for all task
conditions from an occipital channel cluster that corresponds to those used in previous
studies with the same sample [6,28].

Figure 3. Grand average visual ERPs for all task conditions showing components typically observed during infant face
processing, including P100, N290, and P400.

2.2.3. Signal Decomposition

To obtain useful features from the preprocessed ERP, EMD was applied to all single
channels. It decomposes the signal into a set of intrinsic mode functions (IMFs) that reflect
the oscillatory components of the signal, as well as a residual function using a sifting
process. Specifically, after averaging over trials for each stimulus condition separately,
EMD separates the signal into different frequency bands. If the signal is not contaminated
with noise, then the first IMF corresponds to the highest frequency component.

This pattern repeats such that the second IMF corresponds to the next highest fre-
quency component and the third IMF corresponds to the next highest frequency component.
IMFs were extracted directly from the original ERP signal in the time domain while preserv-
ing the frequency variation in time. EMD has been widely used and applied to biomedical
signals, particularly for nonlinear and nonstationary signals. EMD provides better time
resolution than wavelet packet transforms and Fourier transform due to its instantaneous
frequency property [29].

Each IMF must satisfy two basic criteria:

1. The original signal and the extracted IMF cannot differ by more than one with respect
to the number of zero-crossing rates and extrema.

2. The mean value of the envelope representing the local maxima and the envelope
representing the local minima must be zero at each time point.

To extract an IMF from an ERP waveform called erp(t) where 1 . . . T, the following six
steps of the sifting process are adopted:

1. Identify local maxima and local minima, so-called extrema, in the observed erp(t)
2. Generate the lower envelope by interpolating local minima emin(t)
3. Generate the upper envelope by interpolating local maxima emax(t)
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4. Calculate the mean of the lower and upper envelopes as

m(t) =
emin(t) + emax(t)

2

5. Retrieve the detail from the original signal

d(t) = erp(t)− m(t)

Test to see whether d(t) satisfies an IMF’s basic criteria: if the criteria are satisfied,
then the sifting is stopped, and d(t) is considered the first IMF and the original signal erp(t)
is replaced with the residual r(t) = erp(t) − d(t).

The process is repeated k times until the first IMF is extracted; therefore,

im f1(t) = d1k(t)

and the residual signal:

r1(t) = erp(t)− im f1(t)

r1(t) is considered the new signal for the second sifting process from which the second
IMF is extracted, and so on. The sifting process is repeated until the residual signal satisfies
the stopping criteria.

At the end of the IMF extraction process, the original signal can be considered a linear
combination of IMFs and the residual function, which can be expressed as follows:

erp(t) =
n

∑
i=1

im fi(t) + rn(t)

After several initial tests, it was concluded that IMF4 and higher levels have smoother
oscillations and do not contribute to our classification problems. Therefore, for the purposes
of this work, the EMD of the ERP waveforms was achieved by computing IMF1, IMF2, and
IMF3, and we considered only these features to assess the classification of familial risk and
diagnostic outcome classifications.

2.2.4. Feature Extraction and Selection

Effective features need to be extracted to represent original input signals and to be
input vectors for the subsequent classifier. In this step, the time series of each single
channel IMF are treated separately for each ERP condition. Six features were calculated for
each IMF: IMF energy, Shannon entropy, and four statistical parameters (mean, standard
deviation, skewness, and moment) extracted directly from the IMF in the discrete time
domain.

1. IMF energy describes the weight of oscillation. It provides a quantitative measure of
the strength of the oscillation over a finite period. It is defined as the sum of squared
absolute values of IMFs and is calculated as follows:

EIMF(c,i)
=

N

∑
k=1

IMF2
(c,i)(k)

2. Shannon entropy describes the measure of the impurity or the complexity of the time
series signal. The concept is introduced in “A mathematical theory of communication”
(1948) by Shannon. In this study, Shannon entropy is computed for each IMF to
evaluate its complexities. The formula of entropy calculation is as follows:

SEIMF(c,i)
= −

N

∑
k=1

IMF2
(c,i)(k)× logIMF2

(c,i)(k)
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3. Four statistical parameters were derived from IMF signals: mean, standard deviation,
skewness, and moment. These parameters were extracted directly from each IMF per
channel to represent its statistical distribution.

After the extraction step, the six features were combined to form 128 (one per channel)
hybrid vectors of three dimensions (i, j, k). Here, i is equal to 6 and represents the number
of visual tasks, j is equal to 3 and represents the number of IMFs, and k is equal to 6
and represents the number of features extracted from each IMF. Hence, for each input
we obtained 108 features. Considering the 128 channels, the output feature vector is
sized 128 × 108. A selection step based on the maximum values across all channels was
deployed to decrease the vector dimension to 1 row and 108 columns. When features
extracted from all IMFs and all condition ERPs were to be tested, an additional selection by
weight correlation was performed to determine the top predictive features to be used as
inputs to classifiers. All steps of ERP feature extraction were performed using MATLAB
and EEGLAB [30] with the integrated plugin ERPLAB [31].

2.2.5. Classification: Modeling and Decision-Making

The association between the features extracted and risk/diagnostic outcome is the
main goal of the classification stage. The classification stage consists in assigning given
input data into one of the classes when attempting to classify control vs. HR for risk status
and HR-ASD vs. HR-noASD for diagnostic outcomes.

In this study, we analyzed the accuracy rate and performance of k-nearest neighbors
(k-NN) and support vector machine (SVM).

The k-NN method is one of the simplest machine learning methods and consists
in assigning unknown input samples to the class of the closest samples in the training
set [32]. The distance between a new feature vector and all training vectors is computed.
In the current study, Euclidean distance was used to measure the distance between a new
unknown input and the trained samples. SVM, proposed by [33], consists in finding a
hyperplane or boundary between two classes using their labels in a way that maximizes
the separation margin between the classes. SVM has been used in various fields of research,
including contexts in which the training dataset is small, and the number of features is low.
Linear and nonlinear SVM classifiers were also considered in this study. Given that our
two classification methods belong to the category of supervised learning, we predefined
class labels of data for familial risk and diagnostic outcome. During the training stage,
the feature input vectors were fed into the classifier, which, in turn, adjusted its variable
parameters to capture the relationship between the input and the predefined classes. The
aim of this stage is to build a model for each group in each of the two classification problems
(risk and outcome). This model can be used to test a new input in one of the given groups.
In our case, we performed a large battery of tests with the classifiers that included feeding
extracted features into k-NN and SVM separately in order to classify inputs. In addition,
for comparison purposes, we studied the performance of classifiers per condition ERP to
examine which stimulus category yields the most adequate information and which IMFs
best represent the ERP.

2.2.6. Performance Evaluation

The effectiveness of the proposed framework is studied by computing three parame-
ters: accuracy rate, sensitivity, and specificity.

Accuracy represents the measure of the classifiers’ ability to correctly classify groups,
and it is calculated using the following equation:

AccuracyRate =
Nbo f truepositives + Nbo f truenegatives

Nbo f truepositives + Nbo f truenegatives + Nbo f f alsepositives + Nbo f f alsenegatives

The number of true positives represents the number of subjects correctly classified as
HR in the first experiment and HR-ASD in the second experiment (called positive records).
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The number of true negatives is the number of subjects correctly classified as control in the
first experiment or HR-noASD in the second experiment (known as negative records). The
number of false positives is the number of subjects incorrectly classified as HR in the first
experiment and HR-ASD in the second experiment. The number of false negatives is the
number of subjects incorrectly classified as control in the first experiment or HR-noASD in
the second experiment.

Sensitivity represents the classifiers’ ability to correctly classify positive records, and
it is calculated using the following equation:

Sensitivity =
numbero f truepositives

numbero f truepositives + numbero f f alsenegatives

Specificity represents the classifiers’ ability to correctly classify negative records, and
it is calculated as follows:

Speci f icity =
numbero f truenegatives

numbero f truenegatives + numbero f f alsepositives

For validation, the data were split into two training and testing datasets using nested
cross validation. An outer k-fold cross validation was used to split the data into k subsets
(k-1 subsets for training and one subset for testing) and to produce the final classification
accuracy estimates. An inner loop of k-fold cross validation was run on each training fold
to select the optimal model based on the best hyperparameters (number of k neighbors for
k-NN classifier and parameters C and gamma to optimize classification using SVM). The
classification process is repeated k times. For each iteration, k-1 subsets are employed for
training and one subset for testing the model. Parameters of performance are computed
based on the outer test folds.

3. Results

We processed the data in two steps: First, we performed a set of experiments focused
on the modelling and classification of participants in the control and HR groups. Second,
we focused on the modelling and classification of diagnosis outcomes within the high-risk
group: HR-ASD and HR-noASD. The study sample comprised 44 control and 50 HR
6-month-old infants. EEG signals were divided into six averaged ERPs that represented the
six stimulus conditions (Figure 1). The total number of 1 s segments from each participant
across the six stimulus conditions resulted in 564 observations used in the classification of
HR and control groups. Given the smaller sample size of those who went on to develop
autism (17 HR-ASD infants) vs. those who did not (33 HR-noASD infants), and to equate
sample sizes and minimize overfitting bias, we performed a resampling approach, whereby
subsets of 17 subjects were randomly selected (without replacement) from the 33 HR-
noASD infants. Thirty-four EEG recordings were included in each iteration, 17 HR-ASD
and 17 HR-noASD, for a total of 204 observations used in the group classification. This
resampling process was repeated five times. The results of the classifiers k-NN and SVM
for each classification problem were studied separately (Tables 2 and 3). Comparisons
between classifiers are presented in Table 4. To get an unbiased performance estimate,
testing data were not used to optimize models, including feature selection. Therefore,
the available dataset was divided into training and testing using nested cross validation:
9 × 10 (number of inner folds × number of outer folds) for the first classification problem
(HR vs. control). A 4 × 5 cross validation was used in the second classification problem
(HR-ASD and HR-noASD) due to the lower number of samples used.
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Table 2. For the classification of high-risk and low-risk groups: comparison between k-NN and SVM classifiers of accuracy
rates, specificity, and sensitivity. The first six rows represent the results of analysis of the six stimulus conditions separately.
Rows 7, 8, and 9 show the classification performance when using features extracted from one IMF at a time. Row
10 represents the results of analyzing the six stimulus conditions together with the IMFs when features were selected by
weight correlation and used as input to classifiers: using k-NN, the best performance of 86.22% is obtained with 11 features,
and using SVM, the best performance of 88.44% is obtained with top 30 features.

Classification of HR and Control

Condition Component

Number of
Features

after
Reduction

k-NN Performance SVM Performance

Accuracy
Rate Sensitivity Specificity Accuracy

Rate Sensitivity Specificity

Direct gaze IMF1–3 18 76.60% 72.00% 82.00% 77.70% 82.00% 73.00%

Averted
gaze IMF1–3 18 70.20% 74.00% 66.00% 74.50% 76.00% 73.00%

Static direct IMF1–3 18 60.60% 68.00% 52.00% 62.80% 68.00% 57.00%

Static
averted IMF1–3 18 73.40% 68.00% 80.00% 74.50% 86.00% 61.00%

Face IMF1–3 18 71.30% 72.00% 70.00% 74.50% 78.00% 70.00%

Noise IMF1–3 18 68.10% 72.00% 64.00% 63.80% 72.00% 55.00%

All IMF1 36 63.80% 56.00% 73.00% 68.10% 68.00% 68.00%

All IMF2 36 77.70% 80.00% 75.00% 80.90% 78.00% 84.00%

All IMF3 36 74.50% 76.00% 73.00% 76.60% 68.00% 86.00%

All IMF1–3
11 86.22% 80.00% 93.18% - - -

30 - - - 88.44% 84.00% 93.18%

Table 3. For the classification of the diagnosis outcome: comparison between k-NN and SVM classifiers of accuracy rates,
specificity, and sensitivity. The first six rows represent the results of the analysis of the six stimulus conditions separately.
Rows 7, 8, and 9 show the classification performance when using features extracted from one IMF at a time. Row 10
represents the results of analysis of the six stimulus conditions together with the IMFs with 11 selected features by weight
correlation. Best accuracies of 74% and 70.48% were obtained using k-NN and SVM respectively.

Classification of HR-ASD and HR-noASD

Condition Component

Number of
Features

after
Reduction

k-NN Performance SVM Performance

Accuracy
Rate Sensitivity Specificity Accuracy

Rate Sensitivity Specificity

Direct gaze IMF1–3 18 64.70% 53.00% 76.00% 64.70% 53.00% 76.00%

Averted
gaze IMF1–3 18 47.10% 29.00% 65.00% 50.00% 41.00% 59%

Static direct IMF1–3 18 55.90% 59.00% 53.00% 67.60% 71.00% 65.00%

Static
averted IMF1–3 18 55.90% 65.00% 47.00% 50.00% 47.00% 53.00%

Face IMF1–3 18 52.90% 29.00% 76.00% 55.90% 53.00% 59.00%

Noise IMF1–3 18 73.50% 53.00% 94.00% 67.60% 76.00% 59.00%

All IMF1 36 64.70% 47.00% 82.00% 67.60% 59.00% 76.00%

All IMF2 36 47.10% 47.00% 47.00% 58.80% 53.00% 65.00%

All IMF3 36 55.90% 53.00% 59.00% 61.80% 47.00% 76.00%

All IMF1–3 11 74.00% 78.00% 70.00% 70.48% 76.47% 64.71%
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Table 4. Best results obtained for all experiments of this study for both HR vs. control and HR-ASD vs. HR-noASD
classifications: the names of the best classifiers are presented along with their accuracy rate and the number of features used
in each experiment.

HR vs. Control HR-ASD vs. HR-noASD

Condition Component Number of
Features Best Classifier Accuracy Rate Best

Classifier(s) Accuracy Rate

Direct gaze IMF1–3 18 SVM 77.7 k-NN and SVM 64.70

Averted gaze IMF1–3 18 SVM 74.5 SVM 50.00

Static direct IMF1–3 18 SVM 62.8 SVM 67.60

Static averted IMF1–3 18 SVM 74.50 k-NN 55.90

Face IMF1–3 18 SVM 74.50 SVM 55.90

Noise IMF1–3 18 k-NN 68.10 k-NN 73.50

All IMF1 36 SVM 68.1 SVM 67.60

All IMF2 36 SVM 80.9 SVM 58.80

All IMF3 36 SVM 76.6 SVM 61.80

All IMF1–3 30/11 SVM 88.44 k-NN 74.00

3.1. Classification of HR vs. Control Using k-NN

For the classification of the risk groups, an accuracy rate of 86.22% was achieved for
the k-NN classifier when the top 11 features selected by weight correlation were used as
inputs to the classifier (see Table 2 for detailed results). IMF1, IMF2, and IMF3 correspond
to the use of one component at a time. Thus, IMF1–3 represents the use of IMF1, IMF2, and
IMF3 together. The sensitivity measure, which indicates the ability of the k-NN classifier to
correctly identify high-risk samples, reached a maximum of 80.00%, while the specificity
measure, which indicates the ability of the k-NN classifier to correctly identify low-risk
samples, reached a maximum of 93.18%. Table 5 represents the 10 features that contribute
the most to the prediction of familial risk. The skewness of the third IMF that represents the
averaged ERP epoch during the averted gaze stimuli is on the strongest feature. The other
nine ranked features are statistical parameters, except the seventh, which is the Shannon
entropy of the first IMF extracted during direct gaze stimuli. Different runs were executed
by varying the number of nearest neighbors from which to choose the best value of k. This
process, called parameter tuning, is critical in order to obtain a better classification accuracy;
Figure 4 shows that the lowest error rates are obtained when k equals 11. A comparison
of system performances across the six stimulus categories is presented in Table 2. Direct
gaze stimuli showed the strongest discriminative features among all stimulus categories in
terms of correctly classifying HR infants with an accuracy rate of 76.60%, a sensitivity of
72.00%, and a specificity of 82.00%. Direct gaze was followed by averted gaze, which had
an accuracy of 73.40%. To check the order of importance of IMFs, another set of experiments
was performed where k-NN classification was completed using features extracted from one
IMF at a time (Table 2). A maximum accuracy rate of 77.70% was obtained while employing
IMF2 with a significant sensitivity of 80.00% and a specificity of 75.00%.
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Table 5. Ranked predictor importance for the k-NN classifier predicting familial risk from six features
and six averaged epochs.

Prediction Importance
Target: Familial Risk

Rank Feature IMF# Stimulus

1 Skewness IMF3 Averted gaze
2 Skewness IMF1 Face
3 Std IMF2 Static direct
4 Std IMF1 Noise
5 Std IMF2 Face
6 Skewness IMF2 Direct gaze
7 Shannon entropy IMF1 Direct gaze
8 Std IMF2 Static averted
9 Mean IMF2 Noise

10 Moment IMF1 Noise

Figure 4. Plot of error rates of the testing set for different values of k. A lower error rate in the testing stage is obtained with
k = 11 for the classification of the diagnosis outcome as well as for the classification of risk status.

3.2. Classification of HR and Control Using SVM

Table 2 summarizes the classification performance using SVM. For the classification
risk, an accuracy rate of 88.44% with a sensitivity of 84.00% was achieved for the SVM
classifier when the top 30 features, selected by weight correlation, were used as inputs to
the classifier. It is worth noting that the selection by weight correlation was done using
the training data. Figure 5 shows a comparison between linear and nonlinear SVMs and
indicates that the minimal error rate was obtained with a linear SVM. The performance of
the SVM classifier in classifying HR and control groups in terms of accuracy, sensitivity,
and specificity was compared across the different stimulus conditions. Table 2 shows
that a maximal accuracy rate of 77.70% was obtained for the direct gaze stimulus with a
significant sensitivity of 82.00% and a specificity of 73.00%. To determine the most suitable
IMF, the performance was again examined for each IMF separately. We found that IMF2
had the most discriminative information with an accuracy of 80.90% and a sensitivity of
78.00%. Comparing this finding with the same classification problem obtained using k-NN,
we conclude that the importance of IMF2 is highest among all IMFs for both classifiers.
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Figure 5. Plot of error rates of the testing set obtained while employing different kernel functions. Graphs show that for the
classification of the risk group and outcome status, a minimal error rate is obtained with linear SVM. A maximal error rate
is obtained with coarse Gaussian SVMs when classifying risk status and with the fine Gaussian and coarse Gaussian when
classifying the diagnosis outcome.

3.3. Classification of HR-ASD and HR-noASD Using k-NN

For the classification of diagnostic outcome in high-risk infants, an accuracy rate of
74.00% was achieved for the k-NN classifier when the top 11 features, selected by weight
correlation, were used as inputs to the classifier (Table 3).

Feature relevance is presented in Table 6, which shows that the skewness of IMFs is
one of the strongest predictors among all features.

Table 6. Predictor importance for the k-NN classifier predicting diagnostic outcome from six features
and six averaged epochs.

Prediction Importance
Target: HR-ASD and HR-noASD

Rank Feature IMF# Stimulus

1 Skewness IMF2 Noise
2 Skewness IMF3 Noise
3 Energy IMF2 Static direct
4 Shannon entropy IMF1 Static direct
5 Moment IMF3 Static direct
6 Skewness IMF3 Static direct
7 Skewness IMF1 Static averted
8 Skewness IMF3 Averted gaze
9 Skewness IMF3 Static averted

10 Skewness IMF1 Static direct

We also examined the performance of the k-NN classifier in terms of accuracy, sen-
sitivity, and specificity as a function of the stimulus condition. In each experiment on
the classification of diagnostic outcome groups, features extracted from each of the ERP
conditions were fed into the k-NN classifier one at a time. A maximal accuracy rate of
73.50% was obtained for the noise stimulus condition (see Tables 3 and 6). The two most
important features that contributed to the highest prediction were derived from the noise
stimuli; however, there was only 53.00% sensitivity in correctly classifying HR-ASD, which
is low and inadequate. To check the suitability of each IMF, a set of experiments was done
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to study the performance of k-NN when used along with features extracted from one IMF
at a time. The results in Table 3 show that percentages are low compared with the use of
all features and all IMFs combined. The maximal accuracy rate was obtained with IMF1,
whereas the best sensitivity was obtained with IMF3.

3.4. Classification of HR-ASD and HR-noASD Using SVM

For the classification of HR-ASD and HR-noASD using SVM, the highest accuracy rate
obtained was 70.48%; however, this was associated with a lower specificity of 64.71% com-
pared with 70.00% derived from k-NN. Overall, accuracy rates were low across approaches
in regard to stimulus condition and the level of importance of IMFs. A maximal value of
67.60% was obtained for the noise condition, with a sensitivity of 76.00% and a specificity
of 59.00% (Table 3). Further, these results indicate a maximal value of 67.60% with features
extracted from IMF1 and a sensitivity of 59.00%, indicating that SVM is insufficient for the
classification of diagnostic outcome. Moreover, despite multiple trial runs to improve the
performance of SVM by varying kernel functions, the results show that a lower error rate is
consistently obtained with linear SVM (Figure 5).

4. Discussion

In this study, we examined whether the integration of machine learning with EMD for
advanced ERP processing can be used to classify 6-month-old infants in terms of familial
risk for ASD (at risk vs. control) and diagnostic outcomes (ASD vs. no ASD). Previous
work has focused on using the EEG frequency domain, time domain, or time–frequency
domains [8,14,34–36]. In the current study, we used a machine learning approach based on
features extracted in the EMD domain derived from ERPs during a face and gaze processing
task. Both SVM and k-NN methods distinguished infants according to familial risk and
diagnostic outcomes. Using nested cross validation and feature selection by weighted
correlation, SVM achieved a maximal accuracy rate of 88.44% in the classification of at-risk
infants from controls based on EMD features. This classification yields a 24.44% increase
in performance compared with that in previous work using a standard time domain of
ERP analysis [19]. Our findings suggest that extracting signal features based on an EMD
approach (from the same data) can enhance classification performance compared with
traditional ERP features (amplitude and peak latency), thus making EMD an innovative
technique for the analysis of nonstationary time series signals.

In contrast to the relatively high accuracy of classification by familial risk, we found
that rates are more modest for classification by diagnostic outcomes. A maximum accuracy
of 74.00% for the classification of HR infants who went on to develop ASD from those who
did not was obtained using k-NN, but not SVM. Further, k-NN performs well even with a
small sample size of training data; therefore, the lower classification accuracy for diagnostic
outcome compared with familial risk is likely due to the lower number of training samples,
valid trials, and variability in responses among infants. Further research with larger pooled
samples is needed to differentiate these possibilities.

In previous works, statistics-based features of IMFs have been widely used and have
been shown to be effective in different classification problems, such as sleep vs. wake stages,
discrimination between normal and pathological EEG signals, and detection of seizure
and epilepsy [20,37–39]. Their use is justified by the fact that the sampling distribution
of a given population is defined by its statistical dispersion, distortion, or asymmetry.
In addition, signal energy and complexity have been widely employed to analyze EEG
signals [20,22,39]. In this study, we chose to use different combinations of the extracted
features to study the performance of classifiers per single IMF and per task condition. We
investigated the role of each IMF component by studying the performance of classifiers
with features extracted from one IMF at a time. Our findings demonstrate that, overall,
IMFs can be considered good candidates for analyzing nonstationary ERP signals. Further,
we found that IMF1, the highest frequency component, yielded the best classification by
diagnostic outcome compared with IMF2 and IMF3. In addition, IMF2, the second highest



Brain Sci. 2021, 11, 409 15 of 17

frequency component, was a better indicator for classification by familial risk. Thus, we
found that using features extracted from one single IMF yielded a lower performance
compared with using features from all IMFs combined.

Previous studies have shown that beta and gamma bands are found within IMF1,
IMF2, and IMF3 derived from EEG signals [37,38]. High-frequency oscillatory activity
within beta and gamma bands has also been associated with ASD risk and outcomes [2,40].
Our findings are in line with these previous studies as they show that IMF1, IMF2, and
IMF3 are associated with activity in these frequency bands and are strong predictors of
ASD risk and diagnostic outcome [2,39] and that higher levels of signal decomposition
beyond IMF3 (which reflect lower frequency oscillations) did not enhance classification
rates. In addition, we found that the classification accuracy of the risk group was highest
when using features from the direct gaze condition, which was similarly shown in previous
studies, indicating that ERPs to direct gaze stimuli distinguished high risk from control
infants [2,6,19].

5. Conclusions

In previous research, EMD has been successfully used for emotional state recognition
from EEG signals; epileptic seizure detection; discrimination between ictal, interictal, and
normal EEG signals; classification of seizure and seizure-free EEG signals; and sleep state
detection [20–23,37,38]. Our findings suggest that EMDs derived from ERPs, coupled with
machine learning techniques, could contribute to the development of identifying early
brain indicators of ASD and typical development. Our approach differs from previous
methods as it is based on features extracted from the EMD domain to decompose ERP
waveforms into a set of IMFs.

Only a binary classification problem was considered in this study due to the limited
sample size. Larger groups of participants, particularly those who are at familial risk and
go on to have ASD diagnosis, are needed to consider a three-class discrimination between
control, HR-noASD, and HR-ASD. Future studies will also benefit from a more fine-grained
analysis of single EEG trials in addition to features extracted from a combination of IMFs
of the averaged ERP. Furthermore, simultaneous analyses of features extracted from the
EMD decomposition of both ERP and resting-stage EEG may allow us to increase the
performance of machine learning methods in the prediction of risk and outcome.
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