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Abstract

The increasing rate in antibiotic-resistant bacterial strains has become an imperative health issue. Thus, pharmaceutical
industries have focussed their efforts to find new potent, non-toxic compounds to treat bacterial infections. Antimicrobial
peptides (AMPs) are promising candidates in the fight against antibiotic-resistant pathogens due to their low toxicity, broad
range of activity and unspecific mechanism of action. In this context, bioinformatics’ strategies can inspire the design of new
peptide leads with enhanced activity. Here, we describe an artificial neural network approach, based on the AMP’s
physicochemical characteristics, that is able not only to identify active peptides but also to assess its antimicrobial potency.
The physicochemical properties considered are directly derived from the peptide sequence and comprise a complete set of
parameters that accurately describe AMPs. Most interesting, the results obtained dovetail with a model for the AMP’s
mechanism of action that takes into account new concepts such as peptide aggregation. Moreover, this classification
system displays high accuracy and is well correlated with the experimentally reported data. All together, these results
suggest that the physicochemical properties of AMPs determine its action. In addition, we conclude that sequence derived
parameters are enough to characterize antimicrobial peptides.
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Introduction

Antimicrobial peptides (AMPs) are molecules found in all

biological kingdoms responsible for the fight against microbial

infections in the first steps of the immunological response [1]. New

strategies developed by bacteria and other microorganisms to

evade classical antibiotics have urged the pharmaceutical industry

to develop new drugs in order to wipe out these resistant

microorganisms [2]. In particular, AMPs have been proposed as

promising candidates against these pathogens [3,4]. Although

AMPs show a low potency when compared with the small

bioactive drugs used at present, they offer counterweigh

advantages such as broad range of activity and low toxicity and

are less prone to give rise to resistant strains [5,6,7]. However,

AMPs may present some drawbacks such as serum instability [8],

degradation by proteases [9] and high production costs in the case

of large polypeptides.

Hence, some in silico methods have been developed to find

AMPs with potential therapeutic application. Several algorithms

take advantage of data mining and high-throughput screening

techniques and apply vector-like analysis to scan protein and

peptide sequences [10,11]. Other bioinformatics’ strategies include

supervised learning techniques, such as artificial neural networks

(ANN) or support vector machines (SVM), in order to evaluate

easily and reliably a great amount of complex data [12,13]. In fact,

most attempts have been centred in the prediction of highly active

peptides using quantitative structure-activity relationships (QSAR)

descriptors together with ANN [14,15,16], linear discriminant [17]

or principal component analysis [18]. These systems use mainly

3D-QSAR descriptors to detail the antimicrobial properties of

peptides. Recently, a QSAR-based ANN system was experimen-

tally validated using SPOT high-throughput peptide synthesis,

showing that this methodology can accomplish a reliable

prediction by means of conventional and ‘‘inductive’’ QSAR

descriptors [19]. However, the datasets used contained only

peptides with fixed length and the leads found were only populated

in few amino acids (W, R and K and, more limitedly, L, V and I).

Although AMPs are actually enriched in these residues, a wide

diversity in the amino acid content can be found in natural AMPs

[20].

Despite the inherent complexity in designing a prediction

system only by means of computational chemistry, the recent

methods mentioned above have made a remarkable advance.

Hence, the combined use of bioinformatics and experimental

screening techniques will be essential for the discovery and

refinement of new AMPs [21].

We report here an ANN based method that is able to correlate a

complete set of sequence-derived physicochemical properties with

antimicrobial activity. The most pioneering feature in this method

is the ability to translate the observed results in a model of action

for AMPs taking into account some new concepts such as peptide

aggregation. Additionally, we conclude that the amino acid

sequence provides us with sufficient information to accurately

predict antimicrobial peptides.
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Results and Discussion

Physicochemical descriptors of antimicrobial peptides
In order to characterize the physicochemical properties of

AMPs, we have selected eight parameters: isoelectric point (pI),

peptide length, a-helix, b-sheet and turn structure propensity, in

vivo and in vitro aggregation propensity and hydrophobicity. We

have first evaluated these descriptors in antimicrobial and non-

antimicrobial peptides to test its suitability to act as classifiers (See

the Methods section for a complete description on the peptide

datasets). The statistical distribution for each parameter is

illustrated in Figure 1.

It can be seen in Figure 1A that AMPs and non-AMPs have

similar average isoelectric points of 9.26 and 9.20, respectively.

However, the variances observed for both groups are significantly

different (p-value ,0.0001), being the data dispersion much

greater for non-AMPs. Thus, variance analysis suggest that a high

positive net charge is required for AMPs whereas it does not

represent a distinctive feature in non-AMPs, probably due to the

diverse functions exerted by these peptides.

Similar results are observed for peptide length (Figure 1B). Non-

AMPs tend to be larger than AMPs but no significant differences

can be found in the mean value though variances in both groups

differ significantly (p-value ,0.0001). The length parameter can

contribute to the antimicrobial mechanism of action by modulat-

ing the peptide insertion into the membrane [22]. It has also been

described to be an important parameter for the de-novo generation

of antimicrobial peptides [23].

Remarkable differences have been found in the analysis of the

structural parameters of these two groups (Figures 1C, 1D, 1E). In

this case, it can be observed that AMPs tend to be random coil in

solution, with a low tendency to present any defined structure. In

contrast, non-AMPs display a high proclivity to adopt a-helix or b-

sheet structure (Figure 2). These results are consistent with the

experimental data reported [22] where it has been described that

most AMPs have no structure in solution but acquire a defined

secondary structure upon membrane interaction.

We have also studied the aggregation propensity for both groups,

as it could be an important modulator of the peptide function.

Aggregation in solution has to be clearly distinguished from the

capacity of many antimicrobial peptides to form aggregates upon

interaction with cell membranes, a step required for the AMPs

mode of action (e.g. in the ‘‘carpet –like’’ mechanism [22]). Besides,

peptide aggregation on the bacteria surface has been observed in

some cell-agglutinating AMPs [24,25]. This agglutinating activity

could help bacteria clearance in the body at the infection focus [3].

It has been described that TANGO is a good predictor of

aggregation in solution, as it uses sequence-derived structural

parameters to forecast aggregation [26]. On the other hand,

AGGRESCAN is a good analyst of aggregation in bacteria, as it

has been developed in an E. coli system [27,28]. We have used

TANGO software to predict in vitro (or ‘‘in solution’’) aggregation,

whereas AGGRESCAN has been used to predict in vivo

aggregation. As we can see in Figures 1F and 1G, AMPs display

a low in vitro aggregation propensity when compared with non-

AMPs while the in vivo aggregation parameter is considerably

higher for AMPs. Additionally, great dispersion in the in vitro

aggregation propensity has also been observed for non-AMPs.

If TANGO and AGGRESCAN values are plotted together for

AMPs and non-AMPs we can observe an interesting pattern

(Figure 3). Whereas AMPs present high in vivo and very low in vitro

aggregation propensity, non-AMPs can be divided in two main

groups, presenting either high or low values for both descriptors.

These results suggest that AMPs may minimize its aggregation in

solution but promote aggregation in a more hydrophobic

environment (i.e. the bacteria cell membrane). On the contrary,

non-AMPs exhibit a dispersed aggregation pattern, probably

related to their diverse biological functions. Thus, the results

suggest that peptide’s aggregation behaviour could be useful for

classification purposes.

Figure 1. Statistical distribution of peptide physicochemical properties. Each panel corresponds to one parameter: (A) isoelectric point, (B)
length, (C) a-helix propensity, (D) b-sheet propensity, (E) turn propensity, (F) in vitro aggregation, (G) in vivo aggregation and (H) hydrophobicity. The
left box in each panel stands for the AMPs dataset and the right box to the non-AMPs dataset. Propensity values for in vitro aggregation and
secondary structure prediction were computed using the TANGO software [26]. In vivo aggregation propensity was computed using AGGRESCAN
software (The Na4vSS values computed represent the average aggregation propensity over the entire sequence divided by the number of residues
and multiplied by 100) [27]. The isoelectric point (pI) was computed using the Expasy reference values and the peptide hydrophobic mean character
using the GRAVY scale.
doi:10.1371/journal.pone.0016968.g001
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Finally, the hydrophobicity analysis (Figure 1H) shows that both

the means and the variances differ significantly between AMPs

and non-AMPs (p-value ,0.0001). AMPs need to insert, partially

or totally, into the membrane hydrophobic core in order to

destabilize the bilayer and/or promote the cell depolarization

[29]. Thus, a higher mean hydrophobicity value is expected for

AMPs.

Prediction of antimicrobial peptides by physicochemical
properties

Using the physicochemical properties described above, an ANN

system has been constructed in order to classify peptides in two

groups: AMPs and non-AMPs. We have used the CAMP peptide

database [17] to build the positive dataset and the Uniprot

database to construct the negative dataset as described in the

Methods section. After subtracting peptides containing non-

standard amino acids the two datasets together contained 2148

peptides, 1157 AMPs and 991 non-AMPs. The ANN system (see

the Methods section for further details) was evaluated using a

training dataset containing 1074 peptides. The validation and

testing datasets were populated each one with 537 peptides.

The receiver-operating curves (ROC) obtained (Figure 4) show

that the method is able to correctly classify peptides in the two

groups considered. The overall accuracy of the method was 90%,

as shown in the corresponding confusion plot (Supporting

Information, Figure S1) and is similar in both the validation and

testing datasets, meaning that there was no over fitting. The use of

50 hidden neurons was optimum for the system designed. Less

than 20 neurons consistently reduced the overall accuracy (,85%)

and more than 50 nodes did not improve the result but might

promote over convergence and a loss of model generality.

QSAR-based ANN methods described [19], using a set of 44

descriptors, obtained accuracy values near 80%. Our system can

achieve a similar or even better accuracy using only 8 parameters.

In any case, the comparison of accuracy values between the two

methodologies has to be taken with caution, as different databases

have been used. As the QSAR-based methods use two and three-

Figure 2. Structure propensity plots, showing a-helix, b-sheet and turn propensity for non-AMPs (top) and AMPs (bottom). The
propensity values were calculated using the TANGO software [26] and were rescaled from 1 to 10 to help visual inspection.
doi:10.1371/journal.pone.0016968.g002

Figure 3. In vivo and in vitro aggregation propensity plot for AMPs (red triangles) and non-AMPs (green squares). In vitro aggregation
propensity was computed using the TANGO software [26]. In vivo aggregation propensity was computed using AGGRESCAN software (The Na4vSS
values computed represent the average aggregation propensity over the entire sequence divided by the number of residues and multiplied by 100) [27].
doi:10.1371/journal.pone.0016968.g003
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dimensional structure estimations and similar descriptors for pI

and hydrophobicity, we conclude that peptide aggregation could

be of crucial importance in our classification system. Moreover, we

have observed that structure and aggregation parameters have the

most impact when deleted in the ANN analysis (data not shown).

A support vector machine (SVM) approach has also been tested

in order to classify antimicrobial and non-antimicrobial peptides.

In this case, we have only obtained a 75% correct classification

using a 5-degree polynomial kernel (Supporting Information,

Figure S2). Thus, in our system, a SVM approach has been found

to be less accurate than the ANN approach. It is possible that the

high amount of data and the reduced space dimensionality could

favour ANNs over SVMs.

Prediction of antimicrobial peptide potency by
physicochemical properties

To go a step further in this study we have tested our model

for antimicrobial activity prediction using two independent

and non-redundant data sets. We have used the data published

by Cherkasov et al. [16] where the antimicrobial activity of

different CAMEL variants was experimentally determined.

The dataset employed is homogeneous, as all peptides were

assayed in the same conditions and thus is of great value to test

the parameters used in this study. From the 101 peptides

described, we have used an ANN to compute the antimicrobial

activity. The results obtained (Figure 5) show that our descriptors

are closely correlated with antimicrobial activity (r2 = 0.72,

q2 = 0.65).

We have also inspected the database (named RANDOM

database) described recently by Fjell et al. [19] that contents a set

of 189 peptides randomly synthesized and experimentally tested,

again in uniform conditions. The results confirm (Figure 6), once

more, a good correlation between our model and the experimental

data (r2 = 0.85, q2 = 0.72).

The successful results obtained both for peptide classification

and antimicrobial activity prediction may suggest that our set of

Figure 4. ROC curves for the training, validation, testing and global datasets showing the overall performance of the method
described.
doi:10.1371/journal.pone.0016968.g004
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parameters is complete and can appropriately describe the

antimicrobial mechanism of action of peptides.

Model design for the antimicrobial peptides mechanism
As pointed before, a major interest of the present method lies in

the ability to connect these physicochemical parameters with a

global overview on the peptide mechanism of action (Figure 7). It

is widely known that most of AMPs act mainly at the membrane

level, destabilizing the bilayer structure by creating pores (toroidal

or barrel-stave pores) or modifying its permeability by a

mechanism known as ‘‘carpet –like’’ [22]. Both models promote

the membrane depolarization and eventually the bacteria cell

death.

The first step is the membrane binding, driven by the

electrostatic interactions between the positive peptide charges

and the negative charges located in the phospholipid polar heads

[22]. It is known that, in certain conditions, some antimicrobial

peptides can form aggregates in solution before they can interact

with membranes [30,31]. Most of these aggregates have been

described to be inactive because they lack the ability to effectively

insert totally or partially in the bilayer and thus are unable to

promote the cell depolarization [32,33]. For example, the

aggregation of temporins prior to membrane interaction can

avoid its activity [34,35].

The following steps in the antimicrobial mechanism involve

membrane destabilization and diverge depending on the particular

action exerted by AMPs [22]. In a ‘‘carpet-like’’ mechanism, as

observed in dermaseptin S and cecropin [36], formation of

transmembrane structures is not necessary, but aggregation on the

membrane surface and partial insertion is critical in order to

Figure 5. Regression model for the training, validation, testing and global datasets used in the antimicrobial activity prediction for
the CAMEL peptide database. See the Methods section for a complete description of the methodology used.
doi:10.1371/journal.pone.0016968.g005
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promote destabilization and even bilayer micellization, as depicted

in Figure 7. On the contrary, formation of toroidal pores, as

observed for melittin [37], or barrel-stave pores, as observed for

alamethicin [38], require a deep insertion in the membrane and a

more ordered distribution of peptides across the bilayer.

In summary, the results presented here suggest that AMPs can

be distinguished from non-AMPs by their physicochemical

properties. We have also shown that peptide aggregation

propensity must be included in the antimicrobial mechanism of

action of peptides in order to correctly describe (and predict) its

antimicrobial capacity. In addition, we have demonstrated that

our method is able to correlate sequence-derived physicochemical

peptide properties with the antimicrobial activity and thus is a

fairly good approach to a general model able to describe and

predict antimicrobial activity.

Methods

Database selection
The CAMP database [17] was used to construct the positive

data set, containing 1157 peptides, where 95% of the peptides

ranged from 10 to 50 residues. The Uniprot database was used to

build the negative data set selecting peptides ranging between 10

and 50 amino acids length and filtered by Uniref50 in order to

avoid over representative sequence similarities. None of the 991

selected peptides were reported as antimicrobial and/or toxic.

The data described by Cherkasov et al. [16] on antimicrobial

CAMEL peptides (named CAMEL database) was used to assess

the antimicrobial activity prediction. This database is composed of

101 peptides with experimentally tested antimicrobial potency.

The data described by Fjell et al. [19] (named RANDOM

Figure 6. Regression model for the training, validation, testing and global datasets used in the antimicrobial activity prediction for
the RANDOM peptide database. See the Methods section for a complete description of the methodology used.
doi:10.1371/journal.pone.0016968.g006
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database) on different antimicrobial peptides was also indepen-

dently used to test the method. This database is composed of 189

peptides after discarding inactive peptides.

Parameter computation
In vitro aggregation and secondary structure prediction were accom-

plished by using the TANGO software [26]. Tango calculates the

partition function of the conformational phase space assuming that

every segment on the protein populates one state: random coil, b-turn,

a-helix, a-helix aggregation and b-sheet aggregation. Therefore,

TANGO software can predict aggregation in solution, taking into ac-

count only structural parameters determined by the peptide sequence.

In vivo aggregation was computed using AGGRESCAN, an

algorithm based on an amino acid aggregation-propensity scale

derived from in vivo experiments and on the assumption that short

and specific sequence stretches modulate protein aggregation. The

algorithm can actually predict the aggregation propensity of

peptides in the presence of cell material [27].

The isoelectric point (pI) was computed using the Expasy

reference values and the peptide hydrophobic mean character

using the GRAVY scale (http://expasy.org).

To study the differences in these parameters between AMPs and

non-AMPs a two-tailed unpaired t-test analysis with a confidence

interval of 95% has been used. All the parameters computed are

considered to be independent as a correlation lower than 0.9 is

observed between them in all the databases described above.

Neural network implementation
Artificial neural networks (ANN) were computed using the

Matlab software (Natick, MA). To predict antimicrobial peptides,

a two-layer feed-forward network with sigmoid hidden and

output neurons has been used. The network was trained with

scaled conjugate gradient backpropagation. Hidden layer was

populated with 50 neurons using 1074 peptides in the training

database and 537 peptides on validation and testing databases.

Both, matrix confusion plots and receiver-operative characteristic

(ROC) curves were plotted for training, validation and testing

databases.

To predict the antimicrobial potency of CAMEL and

RANDOM antimicrobial peptides, a two-layer feed-forward

network with sigmoidal hidden neurons and linear output neurons

was used. The network was trained with Levenberg-Marquardt

backpropagation algorithm. Regression plots were computed for

training, validation and testing databases. The results obtained

were cross-validated using the leave-20%-out methodology (q2

values).

Support vector machine implementation
Support vector machine (SVM) models were computed using

Gist SVM (http://svm.sdsc.edu). A training database of 1611

peptides and a testing database, containing 537 peptides, have

been used. As the model contains variables with a heterogeneous

scale, the data was adjusted to give a 0 mean value and 1 variance

value in order to enhance performance. A two norm soft margin

has been used and different polynomial kernels were tested in

order to increase accuracy.

Supporting Information

Figure S1 Confusion plot for the training, validation, testing and

global datasets showing the positive and negative true and false rates

Figure 7. Representation of the model of action for AMPs. The figure depicts the main steps in the interaction and permeabilization of the
bacterial membrane by AMPs. An arrow indicates each step. The peptide associated physicochemical parameters and the related prediction system
used is also detailed. Although charge and hydrophobicity are also involved in peptide aggregation, only Tango and Aggrescan were included to this
purpose as specific prediction systems.
doi:10.1371/journal.pone.0016968.g007
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for the method described. A legend is displayed on the top in order

to help visual inspection. Abbreviations include: TP (true positives),

FP (false positives), FN (false negatives), TN (true negatives), PPV

(positive predicting value), NPV (negative predicting value), TPR

(true positive rate or sensitivity), TNR (true negative rate or

specificity) and ACC (accuracy).

(TIF)

Figure S2 Accuracy plot as a function of the Support Vector

Machine kernel. A training database of 1611 peptides and a testing

database, containing 537 peptides, have been used. A two norm

soft margin was used in order to increase accuracy.

(TIF)
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