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Metabolomics of sebum reveals lipid dysregulation
in Parkinson’s disease
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Parkinson’s disease (PD) is a progressive neurodegenerative disorder, which is characterised

by degeneration of distinct neuronal populations, including dopaminergic neurons of the

substantia nigra. Here, we use a metabolomics profiling approach to identify changes to lipids

in PD observed in sebum, a non-invasively available biofluid. We used liquid chromatography-

mass spectrometry (LC-MS) to analyse 274 samples from participants (80 drug naïve PD,

138 medicated PD and 56 well matched control subjects) and detected metabolites that could

predict PD phenotype. Pathway enrichment analysis shows alterations in lipid metabolism

related to the carnitine shuttle, sphingolipid metabolism, arachidonic acid metabolism and

fatty acid biosynthesis. This study shows sebum can be used to identify potential biomarkers

for PD.
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Parkinson’s disease (PD) is a neurodegenerative disorder
affecting over 6 million globally, second only in prevalence
to Alzheimer’s disease1. The principal pathological hall-

mark of PD is the formation of aggregated α-synuclein deposits in
the brainstem, which are the major components of Lewy
bodies2,3. The disease is also characterised by the loss of dopa-
minergic neurons in the substantia nigra pars compacta produ-
cing a decline in striatal dopamine levels and subsequent loss of
motor function4. There is no conclusive preclinical diagnostic test
for PD. Clinical diagnosis is achieved primarily through obser-
vations by a physician, of the decline in motor functions5,6. These
clinical manifestations normally present as a combination of one
or more of the four cardinal signs of PD, namely; bradykinesia,
resting tremor, rigidity, and postural instability7,8. A formal
diagnosis often occurs following the depletion of 60–80% of the
brains dopaminergic neurons2. Non-motor symptoms are
thought to precede motor symptoms by upto 20 years, some of
these include: mood disorders, sleep disorders, and olfactory
deficits9,10. Seborrhoeic dermatitis is a common non-motor
symptom reported in up to 60% of people with Parkinson’s
(PwP)11,12. This condition presents as “oily skin” that correlates
to an excess of sebum, produced and secreted by the sebaceous
glands in the dermis of the skin. Sebum is a complex lipid-rich
substance that is predominantly composed of triglycerides, fatty
acids, wax esters, squalene, and cholesterol13. It serves as a pro-
tective agent to the skin providing waterproofing, thermoregula-
tion, and photoprotection, alongside suggested antimicrobial and
antioxidant activities14,15. Studies of sebum are commonplace in
dermatological conditions such as acne, however sebum as a
biofluid has rarely been used in disease diagnostics. In our recent
study, we have reported the presence and differential regulation
of volatile organic compounds in the sebum of PwP16.

The analysis of complex mixtures of metabolites present in a
lipid-rich biofluid such as sebum, calls for a sensitive and robust
analytical platform. Mass spectrometry (MS) is a leading analytical
technique for clinical metabolomics analyses and when hyphenated
to chromatography, benefits from increased resolution and
sensitivity17,18. Liquid chromatography-mass spectrometry (LC-
MS) facilitates the qualitative and quantitative analysis of the wide
range of molecular species found within complex mixtures such as
sebum. LC-MS has been used to study a number of biofluids in
relation to PD prognosis and diagnosis, such as blood, saliva, and
cerebrospinal fluid (CSF)19–25. Alterations in the expression of
metabolites and the downstream effects on their corresponding
metabolic pathways have also been extensively studied for PD
diagnostics within the blood and CSF metabolome, including:
catecholamines, dopamine metabolites, amino acids, and urate
alongside fatty acid metabolism, energy metabolism, and kynur-
enine metabolism19,22,26–29. The use of sebum as a diagnostic tool
for PD provides an exciting prospect from which a non-invasive
and inexpensive test could be developed to detect the onset of the
disease. In this study, we have used LC-MS to separate and detect
lipid-like species and small molecules present in sebum. We have
used data-driven approaches, with robust statistical validation, to
discover biomarkers of Parkinson’s disease present in sebum. This
will inform the development of future PD biomarkers alongside the
understanding of metabolic pathways altered in PD. Additionally,
we also investigate whether variations in the measured sebum
metabolome between early drug naïve PD and later medicated PD
were observed, suggesting changes in the metabolic pathways
during disease progression.

Results
Analysis of patient metadata. The study population comprised
of 274 participants which included 138 medicated PD, 80 drug

naïve PD and 56 control subjects. An overview of important
patient demographics is summarised in Table 1. The results of
significance tests between cohort group metadata are reported in
Supplementary Table 1. Two-tailed Mann–Whitney U-test
showed age is significantly different (p < 0.05) between control
and PD cohorts (both drug naïve and medicated), however, BMI
was not statistically significantly between these groups. There
were more male participants in both PD cohorts (M/F > 1.5)
compared to a higher proportion of female participants within
the control group (M/F < 1). This was perhaps expected as the
higher incidence and prevalence rates of PD in the male popu-
lation is recognised and studies show a 1.4–1.5 fold increase in the
number of male PD cases, although the reason for this is not yet
understood1,30. A similar comparison of the number of partici-
pants who smoke (yes/no) or consume alcohol (yes/no) showed
no significant differences between drug naïve PD and control
cohorts, with p-values of 0.837 and 0.192, respectively. However,
the number of participants who consume alcohol was found to be
2.5 times higher in the control group compared to medicated PD.
There were no smokers in the medicated PD cohort and 7%
within the control group, which was deemed significant by a
Fisher’s exact test (p-value 0.006). The discovery of significant
differences of these metadata parameters between PD and control
cohorts has led us to test their impact on classification accuracy,
which are described within the following results sections.

Data driven prediction of PD. In order to assess variation
between the measured metabolome by phenotype, partial least
squares-discriminant analysis (PLS-DA) was used. Two PLS-DA
models were constructed, each using a two-class input: (1) drug
naïve PD vs. control and (2) medicated PD vs. control. It is well
known that unbalanced numbers within classification groups may
bias prediction accuracy towards the majority class and to over-
come this here, Synthetic Minority Over Sampling Technique
(SMOTE) was applied31. PLS-DA models were built and vali-
dated using bootstrap resampling with replacement (n= 250).
Figure 1 reports the classification sensitivity and specificity rates
of each PLS-DA model alongside the observed and null dis-
tributions (from permutation testing).

To evaluate if gender influenced classification accuracy, two
PLS-DA models were built for each gender separately, for drug
naïve PD vs. control and medicated PD vs. control. If the
compounds accounting for variance between disease and control
were gender specific, we could expect consistent and significantly
higher sensitivity and specificity values for one gender, which we
did not find to be true (see Supplementary Table 3). Combined

Table 1 Demographics of participants included in
classification modelling and statistical analysis.

Parameters Independent
control

Drug
naïve PD

Medicated PD

n 56 80 138
Age (years)a 54.3 ± 14.4 69.8 ± 9.4 70.3 ± 8.2
BMI (kg/m2)a 26.1 ± 4.4 25.8 ± 4.9 26.3 ± 5.4
Gender
(Male:Female)b

0.87 1.76 1.65

Alcohol intake
(Yes:No)c

4.60 1.76 1.81

Smoker
(Yes:No)c

0.08 0.07 0.00

BMI body mass index.
aBMI and age values are expressed as mean ± standard deviation.
bExpressed as a ratio (Male:Female).
cExpressed as a ratio (Yes:No).
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gender models (Fig. 1) were used for subsequent analysis owing to
the heightened power attributed to statistical models with larger
input groups. PLS-DA was also used to determine if geographical
location or variances between clinician sampling could impact
classification using an independent control cohort. Samples (n=
40) were chosen from four recruitment clinics, located in the
north (n= 2) and south (n= 2) of the UK. Confounding factors
were controlled so that age and BMI were not statistically
significant between groups (one-way ANOVA p-value > 0.05) and
the male-to-female ratio was identical. The average CCR for this
model was 21%, which therefore indicates that our data is not
biased by recruitment site or the clinician who collected samples.

Selection of significant features which classify PD. To define the
features responsible for the measured variance in PLS-DA pre-
diction models, variable importance in projection (VIP) scores
were calculated. Receiver operating characteristic (ROC) analysis
was performed on variables with VIP score > 1 (Fig. 2). The
number of variables that met this threshold were 15 in Drug naïve
PD and 26 in medicated PD analyses. The area under the curve
(AUC) and 95% confidence intervals (CI) for each individual
variable obtained from univariate ROC curve analysis are
reported in the Supplementary Fig. 2. A limitation in ROC ana-
lysis of individual features is the failure to consider relationships
between the features that account for the observed variance. The
outcome of a multivariate analysis is reduced to a univariate one,
in which each individual feature is treated as the sole biomarker
accounting for 100% of the variation between the classes.

Therefore, in combination with assessing individual metabolite
ROC curves, a multivariate ROC analysis approach was also
implemented based on the PLS-DA method (Fig. 2a, b).

We note that PLS-DA could not accurately differentiate
medicated PD and drug naïve PD. Sensitivity and specificity
values of 59.7 and 50.3% were returned for PLS-DA models in
which medicated PD was the “positive” predicting class (data
shown in Supplementary Fig. 1). Figures 2a, 2b report ROC
curves for drug naïve PD and medicated PD models, respectively,
which each use all VIP compounds > 1 for each respective model.
VIP score examination of drug naïve PD vs. control and
medicated PD vs. control models confirms that ten variables
(VIP > 1) are common between the two PD groups. To investigate
biomarkers associated with the diagnosis of PD rather than
disease stage stratification and to avoid possible effect of
medication, the common metabolites (VIP > 1) between drug
naïve and medicated PD analyses were evaluated further.
Figure 2c presents a multivariate ROC analysis for each common
variable, and this analysis reports increased sensitivity and
specificity rates as a function of the number of variables included
in each model as demonstrated by higher AUC values. In
addition, the 95% confidence interval range decreases as the
number of variables in each model increases.

Pearson correlation coefficients were calculated for each significant
variable (VIP > 1) to investigate association of alcohol and significant
variables. None of the significant compounds are associated to an
increase in alcohol consumption (Supplementary Fig. 3). To exclude
the possible contribution of age to disease classification, age was

Fig. 1 PLS-DA classification models for (a, b) drug naïve PD vs. control and (c, d) medicated PD vs. control. a, c Classification rates for each model
including true positive (TP, sensitivity), true negative (TN, specificity), false positive (FP), and false negative (FN). b, d Null distribution (grey bars) and
observed distribution (blue bars) for each PLS-DA bootstrap model. The correct classification rate (CCR) were calculated from the test sets only (n = 250
from the bootstraps).
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included as a variable for further PLS-DA models, giving it equal
weighting as any other measured variable. If age had any significance,
it had equal chances to contribute to the model and would be ranked
as high as other measured variables. The difference in CCR between
models with and without the inclusion of age were negligible (<0.5%),
and VIP scores for the age variable were 1.17 × 10−11 and 2.11 × 10
−11 for drug naïve and medicated PD models, respectively. In
perspective, the variables were ranked at 6492 and 6498 out of a
possible 6502 ranks, which strongly indicates that age is not a
contributing factor for the separation presented.

Annotation of metabolites associated with PD diagnosis.
Metabolomics Standards Initiative (MSI) guidelines32 and Inter-
national Lipid Classification and Nomenclature Committee
(ILCNC)33 guidelines were adhered to for the annotation of com-
mon significant metabolites (n= 10) (Table 2). Table 2A reports
putative annotations based upon accurate mass and tandem MS
fragmentation data for five of the significant compounds (MSI level
2). Table 2B reports the database matches based upon accurate
mass, although there are no fragmentation data to support these
matches the only possible hits from two databases (Lipid Maps and

METLIN) within a low mass tolerance (10 ppm) correspond to a
single chemical formula in three of the five compounds; the
remaining two compound had no matches. Ceramides, triacylgly-
cerol, glycosphingolipid, and fatty acyl lipid classes were amongst
those putatively annotated in both common and non-common VIP
compounds. Putative annotations and database matches listed in
Table 2A, B are expounded upon in Tables S3A and S3B, respec-
tively. Notably, metabolites belonging to ceramide, triacylglycerol,
and fatty acyl classes were downregulated whereas glyco-
sphingolipid and fatty acyl metabolites were upregulated in PD. Box
plots comparing control, drug naïve PD and medicated PD cohorts
for these compounds are displayed in Fig. 3. Further details of
putative compound annotations for all metabolites with VIP score >
1 in drug naïve PD and medicated PD analyses are found in
Supplementary Tables 4A, B and 5A, B, respectively.

Sebum metabolome measurements: context to current under-
standing of PD. Pathway enrichment analysis was performed to
explore changes in metabolic pathways with respect to disease
onset and progression. A prerequisite for traditional pathway
analysis methods is the annotation of all analytically detected

Fig. 2 ROC curve analyses based on a multivariate PLS-DA algorithm with a two latent variable input, AUC and 95% confidence intervals (CI) were
calculated by Monte Carlo cross validation (MCCV) using balanced subsampling with multiple repeats. a ROC curve analysis (n= 15 independent
metabolite features) in drug naïve PD vs. control PLS-DA with VIP > 1. b ROC curve analysis (n= 26 independent metabolite features) in medicated PD vs.
control PLS-DA with VIP > 1. c A bar chart displaying the comparison of AUCs for drug naïve PD (purple) and medicated PD (blue) using common VIPs
between models (n= 10 independent metabolite features), data are presented as mean AUC value with error bars representing the minima and maxima
values of the 95% CI range.
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features via spectral and compound database matching. This is a
major bottleneck in untargeted metabolomics workflows and due
to the large number of features detected in this study, Mummi-
chog analysis was employed34. The analysis was performed
independently for the two PD cohorts using a Student’s t-test (p-
value < 0.05) between control subjects vs. (1) drug naïve PD and

(2) medicated PD. There were 1378 and 504 features for drug
naïve PD and medicated PD, respectively, which were significant
between disease and control groups. Further details of sig-
nificantly enriched pathways associated with PD can be found in
Supplementary Tables 6 and 7 for drug naïve PD and medicated
PD, respectively.

Table 2 Putative annotations of the ten VIP compounds common between drug naïve PD and medicated PD analyses (VIP > 1).

(A) Putative annotations have been assigned using accurate mass and MS/MS fragmentation matched against Lipid Maps database (LMSD) and
Lipid Blast.

Feature Putative annotation (Accurate mass & MS/MS
fragmentation)

Expression drug naïve PD (fold
change)

Expression medicated PD
(fold change)

m/z 825.6939 TG(50:5) ↓ (0.77) ↓ (0.64)
m/z 764.5681 HexCer(36:2) ↑ (1.15) ↑ (1.10)
m/z 666.6370 Cer(42:0) ↓ (0.60) ↓ (0.47)
m/z 638.6067 Cer(40:0) ↓ (0.61) ↓ (0.47)
m/z 610.5763 Cer(38:1) ↓ (0.63) ↓ (0.48)

(B) Putative annotations have been assigned using accurate mass measurements matched against Lipid Maps (LMSD and COMP_DB) and
METLIN databases.

Measured feature Database matche(s)
(accurate mass)

Formula Expression drug naïve PD (Fold
change)

Expression medicated PD
(Fold change)

m/z 414.4308 FA(26:0) C26H52O2 ↑ (1.23) ↓ (0.84)
Methyl pentacosanoate

m/z 358.3677 FA(22:0)* C22H44O2 ↓ (0.81) ↓ (0.78)
m/z 194.1396 FA(8:0) C8H16O4 ↑ (1.74) ↑ (1.78)

L-Cladinose
Metaldehyde†

m/z 550.6277 – – ↑ (1.33) ↑ (1.10)
m/z 368.4242 – – ↓ (0.15) ↓ (0.14)

TG triacylglyceride, HexCer hexosylceramide, Cer ceramide FA fatty acyl.
†Pesticide.
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Fig. 3 Box whisker plots for each of the eight putatively annotated compounds for control (Ctrl, yellow) (n= 56 biologically independent samples),
drug naïve PD (DN, purple) (n= 80 biologically independent samples) and medicated PD (Meds, blue) cohorts (n= 138 biologically independent
samples). Box plots display mean (square), median (line within box) and quartiles (box limits), range (whiskers) and outliers (diamond). The y-axis of each
plot corresponds to the natural log of intensity values and the measured m/z value for each compound is labelled above the plot, these species correlate to
the data presented in Table 2A, B.
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Mummichog analysis reveals the carnitine shuttle to be the
most important pathway linked to drug naïve PD patients (p=
0.002) (Fig. 4a). This pathway increases in significance (p= 5.09
× 10−5) and enrichment within the medicated PD cohort, this can
be visualised in Fig. 4c. The carnitine shuttle is highly involved in
energy metabolism through the facilitation of long chain fatty
acid (LCFA) β-oxidation via assisted transportation into the
mitochondria by acyl-carnitine substrates35. Decreased long-
chain acyl-carnitines, associated with insufficient β-oxidation,
have previously been reported as potential diagnostic markers for
PD28. The dysregulation of carnitine shuttle and vitamin E
pathways have also been observed in frail elderly cohorts
(between 56 and 84 years old) compared to resilient age-
matched individuals36. The mapped m/z features correspond to a
series of differing length fatty acid chains of acyl-carnitine
conjugates. As the carnitine shuttle is a mediation pathway for
fatty acid oxidation, it is reasonable that the perturbation of fatty
acid biosynthesis and fatty acid metabolism pathways could be
linked, which is further supported by the putative assignment of
associated compound classes to VIP compounds.

Additional compounds putatively annotated from PLS-DA
models (VIP > 1) belong to the sphingolipid class of compounds
(Table 2). The sphingolipid metabolism pathway was enriched in
both drug naïve and medicated PD. Sphingolipids are a major
lipid class that are abundant in lipid-rich structures of the body
(such as skin) and have central roles in cell signalling and
regulation. Interestingly, disruption to the sphingolipid metabo-
lism has been reported as a downstream effect of increased α-
synuclein levels37,38 and α-synuclein is disrupted in PD skin39.
Perturbations within the sphingolipid pathway have been
previously linked to defects in both lysosomal and mitochondrial
metabolism, which are often implicated in the pathogenesis of

neurodegenerative diseases such as PD and Gaucher’s
disease38,40–43. Interestingly, the link between mitochondrial
dysregulation and PD has been widely established in skin
fibroblasts, however, never before in sebum44,45. Recent studies
have found the dysregulation of ceramide levels, which are
common structural units of all sphingolipids, in numerous
diseases including PD, Alzheimer’s disease and depression,
although the general consensus from studies of sphingolipids in
PD is an increase in ceramide levels46–48. Due to their bioactive
role within cell membranes sphingolipids are strongly linked to
sterol metabolism pathways, and have an established role in the
modulation of steroidogenesis. There is a direct link between
ceramides and the biosynthesis of cholesterol which is then the
feed in substrate for steroid hormone biosynthesis, the most
significantly altered pathway shown for medicated PD
patients49,50.

In conclusion, an untargeted LC-MS analysis of sebum
obtained non-invasively from a simple skin swab from people
with Parkinson’s reveals a difference in the composition of sebum
compared to control subjects. The overlap of ten metabolites from
separate statistical analyses for drug naïve PD and medicated PD
strengthens the evidence, that these compounds are associated
with PD and not associated with dopaminergic medication. This
is further supported by the identification of common pathways
between the two PD classes that are significantly enriched.
Insufficient clinical data is available for these patients to
hypothesise on the ability of a sebum analysis to help stratify
disease progression, although it should be included in further
studies. Future work will also focus on targeting the putatively
identified lipid classes, with the inclusion of ion mobility to
enhance separation and increase the confidence in compound
identification.

Fig. 4 Results of mummichog analysis for significant pathways (p < 0.05). Bar charts report pathways for (a) drug naïve PD vs. control and (b)
medicated PD vs. control. c A bubble chart displaying the common significant pathways between drug naïve PD and medicated PD compared against
controls; the bubble size refers to the enrichment factor of the pathway and the colour represents the natural log of the pathway p-value.
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Methods
Sample participants. The participants included in this study were part of a
nationwide recruitment process taking place at 25 different NHS clinics, in addi-
tion to subjects (n= 4) that participated in a clinical trial in the Netherlands51. A
total of 274 participants were recruited from three subject groups: control (n= 56),
drug naïve PD (n= 80), and medicated PD (n= 138). The participants included in
this study were selected at random from these sites. Ethical approval for this project
(IRAS project ID 191917) was obtained by the NHS Health Research Authority
(REC reference: 15/SW/0354). Informed consent was received from all participants
prior to their enrolment in the study.

Chemicals and materials. The chemicals and materials utilised in this study were:
gauze swabs (Arco, UK), sample bags (GE Healthcare WhatmanTM, UK), 15 mL
and 50 mL centrifuge tubes (Greiner Bio-One, UK), microcentrifuge tubes 2 mL
(Eppendorf, UK), Ministart® 0.2 µm syringe filter (Sartorius, UK), Optima® LC-MS
grade solvents 2-propanol, acetonitrile, methanol, and formic acid (Fisher Scien-
tific), HPLC grade HiPerSolv CHROMANORM® ethanol absolute (99.8%),
CHROMASOLVTM LC-MS grade water (Honeywell) and Leucine Enkephalin
(Waters, Wilmslow, UK).

Sample collection. Using a standard sampling procedure, each participant was
swabbed by a clinician on the upper back with cotton-based medical gauze (7.5
cm × 7.5 cm) to collect sebum present on the skin. The sampled gauze swabs were
sealed in background-inert plastic bags and transported to the central facility at the
University of Manchester, where they were stored at −80 °C until end of
recruitment.

Sample extraction. Gauze swabs were removed from −80 °C storage and allowed
to equilibrate to room temperature. A solvent extraction method was used to
prepare the samples for LC-MS analysis. Each gauze swab was transferred to an
inert glass bottle. Methanol (9 mL) was added to each glass bottle and followed by
vortex-mixing (10 s) and sonication (30 min) at ambient temperature, to extract
sebum metabolites from gauze. The extracted metabolite-rich methanol was dec-
anted from the gauze swab bottle and this solution was passed through a filter (0.2
µm). A recovery rate of approximately 7 mL per sample was achieved, which was
aliquoted into three 2 mL fractions and one 1 mL fraction. Each 2 mL fraction was
vacuum concentrated (Eppendorf) at ambient temperature for 12 h to remove
methanol, which resulted in three identical sebum extracts per patient sample.
These dried pellets were stored at −80 °C until required for analysis. A portion of
the remaining 1 mL liquid fraction of each sample (100 μL) was used to create a
biological pooled quality control (QC) sample. The mixture was vacuum cen-
trifuged (Eppendorf) for 12 h at ambient temperature and the dried extract stored
at −80 °C until analysis.

Sample reconstitution. Prior to LC-MS analyses dried sebum extracts were
equilibrated to ambient temperature before reconstitution. Extracts were resus-
pended in 200 µL of MeOH:EtOH (v/v, 50:50). Samples were vortex-mixed (20 s),
sonicated (5 min), and centrifuged (Eppendorf) at 12,000 × g for 10 min. The
recovered supernatant (160 µL) was then submitted for LC-MS analysis.

LC-MS analysis. LC-MS analysis was performed on an Ultimate 3000 UHPLC
(Thermo Scientific) coupled to a Synapt G2-Si QToF mass spectrometer (Waters).
LC-MS data was acquired using MassLynx 4.2 (Waters). An ACQUITY UPLC
BEH C18 column (1.7 µm, 2.1 mm × 100mm) heated at 55 °C was utilised for
chromatographic separation. The mobile phases were as follows; mobile phase A
was acetonitrile:water (v/v 60:40) with 0.1% formic acid, mobile phase B was iso-
propanol:acetonitrile (v/v, 90:10) with 0.1% formic acid. An injection volume of
5 µL was used. The flow rate was set at 0.6 mL/min and the gradient elution began
at 40% B and increased to 50% B over 30 s, then to 69% B at 1.8 min, with a final
ramp to 88% B at 6 min. The gradient was reduced back to 40% B and held for 1
min to equilibrate column. Full MS spectra were obtained for the mass range m/z
50–2000, whilst infusing Leucine-Enkephalin (m/z 556.2766) as an online mass
calibrant to retain mass accuracy. MS settings were as follows: Synapt G2-Si MS
was operated in Q-ToF mode. Capillary voltage was set to 3.0 kV, sampling cone
voltage was set to 40 V, source temperature was kept at 120 °C, desolvation tem-
perature was set to 550 °C and desolvation gas flow was 900 L/h. MSE acquisitions
used identical LC and MS conditions, with an added high energy ramp from 19
to 45 V.

Sample sequence and quality control. Pooled QC samples were used to check
analytical reproducibility both during analysis and during the data processing
stages52. QC samples were injected at the beginning of each analytical batch (n=
3), every 5th injection, and at the end of each analytical batch (n= 2). Samples
from 274 participants were stratified and randomised into 15 equal analytical
batches. Each batch was reconstituted on the day of analysis to maintain sample
integrity. LC-MSE data were acquired for five sequential injections of a single
pooled QC sample using an LC-MSE method in which all sampling preparation/

handling, LC and MS conditions were identical to patient samples, except with an
added high energy MS ramp.

Data pre-processing and deconvolution. LC-MS raw data were deconvolved
using Progenesis QI (Waters, Wilmslow, UK). Peak picking, alignment, and area
normalisation were carried out with reference to a pooled QC. The resulting peak
table had 8765 metabolite features. Features that were absent in more than 10% of
pooled QC injections throughout analysis were removed. From the remaining
features those with more than 20% relative standard deviation (RSD) in peak
intensity across pooled QC injections were also removed. The remaining peak set
of 6202 metabolite features were robust features detected reproducibly throughout
analysis within QC samples. The data were mean centred and auto-scaled and
missing values were replaced with cubic spline interpolation in MATLAB 2019a
(MathWorks) prior to statistical analysis.

LC-MSE raw data were deconvolved using Progenesis QI (Waters, Wilmslow,
UK). Peak picking, alignment, and area normalisation were carried out using one
of the QC data files as the reference. Significant features extracted from raw data
were aligned to significant features in clinical samples, using a RT window ±15 s
and mass tolerance ±10 ppm filters. Features were annotated using accurate mass
match and tandem MS data with Lipid Maps, Lipid Blast, and METLIN. Mass
tolerances of 10 and 30 ppm were applied for precursor and fragment ions,
respectively. Compounds with a fragmentation score <20 were not annotated.
Progenesis QI score, fragmentation score, and isotope similarity are reported for all
annotations based on a combination of accurate mass and fragmentation data, see
Supplementary Tables 4–6.

Statistical analysis. PLS-DA was performed for classification and prediction of
data; resampling with replacement (bootstrapping) was used for model validation
where the correct classification rates (CCRs) from the Y-variable were computed
for the (n= 250) test data sets only. An in-house script was used in MATLAB
(2019a) to perform PLS-DA. Univariate ROC analysis was performed in Origin
(Version 2017, OriginLab Corporation, Northampton, MA, USA) and multivariate
ROC curve-based exploratory analysis was executed using MetaboAnalyst Bio-
marker Analysis (Version 4.0) in which the data matrix was auto-scaled and PLS-
DA was used for the classification method, and feature ranking method with a two
latent variable input.

Pathway analysis. Mummichog analysis was performed using MetaboAnalyst
(Version 4.0). During mummichog analysis a list of all m/z features (Lref) and a
refined list of significant m/z features (Lsig) were generated using Student’s t-test as
the discriminatory test (p-value < 0.05). Significant m/z features were mapped
onto a combination of metabolic models: Kyoto Encyclopaedia of Genes and
Genomes (KEGG), Biochemical Genetic and Genomic knowledgebase (BiGG) and
the Edinburgh Model. Feature hits on known metabolite networks were tested
against a null distribution produced from permutations of random m/z features
from Lref to yield significance values of metabolites enriched within any given
network34.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this paper.

Data availability
Raw and processed data sets generated during and/or analysed during the current study
are available from MetaboLights Repository, https://www.ebi.ac.uk/metabolights/
MTBLS2266 Study Identifier MTBLS2266. Annotation of metabolites utilised publicly
available databases such as LipidMaps, METLIN and LipidBlast and HMDB. Source data
are provided with this paper.

Code availability
The code generated during the study are available from the corresponding author on
reasonable request. Code to perform PLS-DA classification modelling is available at
https://github.com/Biospec/cluster-toolbox-v2.0/blob/master/cluster_toolbox/
plsda_boots.m
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