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The mechanistic target of rapamycin (mTOR) is a nutrient sensor of eukaryotic cells.
Inhibition of mechanistic mTOR signaling can increase life and health span in various
species via interventions that include rapamycin and caloric restriction (CR). In the
central nervous system, mTOR inhibition demonstrates neuroprotective patterns in
aging and Alzheimer’s disease (AD) by preserving mitochondrial function and reducing
amyloid beta retention. However, the effects of mTOR inhibition for in vivo brain
physiology remain largely unknown. Here, we review recent findings of in vivo metabolic
and vascular measures using non-invasive, multimodal neuroimaging methods in rodent
models for brain aging and AD. Specifically, we focus on pharmacological treatment
(e.g., rapamycin) for restoring brain functions in animals modeling human AD; nutritional
interventions (e.g., CR and ketogenic diet) for enhancing brain vascular and metabolic
functions in rodents at young age (5–6 months of age) and preserving those functions in
aging (18–20 months of age). Various magnetic resonance (MR) methods [i.e., imaging
(MRI), angiography (MRA), and spectroscopy (MRS)], confocal microscopic imaging,
and positron emission tomography (PET) provided in vivo metabolic and vascular
measures. We also discuss the translational potential of mTOR interventions. Since
PET and various MR neuroimaging methods, as well as the different interventions (e.g.,
rapamycin, CR, and ketogenic diet) are also available for humans, these findings may
have tremendous implications in future clinical trials of neurological disorders in aging
populations.

Keywords: mechanistic target of rapamycin (mTOR), rapamycin, caloric restriction, ketogentic diet, MRI, PET,
Aging, Alzheimer’s disease

INTRODUCTION

The mechanistic target of rapamycin (mTOR) is a nutrient sensor that mediates the responses
to energy status and growth factor in eukaryotic cells (Laplante and Sabatini, 2009). Discovered
by three groups in 1994, mTOR is a particular protein bound by rapamycin (Brown et al., 1994;
Cafferkey et al., 1994; Sabatini et al., 1994). mTOR activity can be inhibited by both rapamycin and
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nutritional signaling, such as caloric restriction (CR) (Perluigi
et al., 2015). Inhibition of mTOR can switch cellular response
from reproduction/growth to somatic maintenance, with
decreased protein synthesis and cell growth, and increased
autophagy in animal models (Harrison et al., 2009; Stanfel et al.,
2009). As such, mTOR inhibition has shown to increase resistance
to stresses resulting in lifespan extension in various mammalian
species, and being considered central to the regulation of both
aging and age-related diseases (Johnson et al., 2013).

In the central nervous system, mTOR inhibition has been
shown to prevent neurodegeneration and protect brain functions
in aging. Notably, rapamycin reduces amyloid-beta (Aβ) plaques
and neurofibrillary tau tangles and improves cognitive functions
in mice that model human Alzheimer’s disease (AD) (Spilman
et al., 2010; Majumder et al., 2011). Similarly, CR (without
malnutrition) is able to alleviate AD-like pathology (Lee
et al., 2000, 2002; Thrasivoulou et al., 2006). In addition, CR
protects mitochondrial function (the powerhouse in the cells),
maintains glucose homeostasis, and reduces oxidative stress –
all phenotypes of aging (Park et al., 2005; Duan and Ross,
2010; Perluigi et al., 2015). Thus, CR (reduced caloric and
glucose intake) shifts metabolism toward ketone body utilization
(Guo et al., 2015; Lin et al., 2015). Elevated ketone body
metabolism or the administration of the ketogenic diet (KD) is
also evident to be neuroprotective against AD, aging, epilepsy,
brain injury, and neurodegeneration (Van der Auwera et al.,
2005; Yang et al., 2017). However, biochemical and molecular
experiments may limit mTOR-related research to in vitro or
ex vivo cell culture or animal models. Such findings may
be incapable of being completely translated and applied to
humans.

Powerful brain imaging tools have been refined to visualize
changes in brain function in vivo over time (Lavina, 2016;
Hyder and Rothman, 2017). In particular, functional imaging
can be used to determine changes in physiology before AD-
like pathology appears and before the onset of cognitive
impairment. Brain vascular and metabolic dysfunction plays
a critical role in driving neurodegeneration and dementia
(Reiman et al., 2001, 2004, 2005; Thambisetty et al., 2010;
Fleisher et al., 2013). We have recently demonstrated that
early detection of these physiological changes and identification
of effective interventions using imaging would be critical to
potentially slow down brain aging and prevent AD. Table 1
summarizes the imaging techniques used in the studies we
review, ranging from various magnetic resonance imaging
(MRI) and spectroscopy (MRS) methods to positron emission
tomography (PET) to confocal microscopic imaging, where the
last method is primarily for preclinical research. To assess
vascular functions, we used MRI-based arterial spin labeling
(ASL), which measures quantitative cerebral blood flow (CBF)
values by utilizing arterial blood water as an endogenous
tracer. We also determined vascular density with magnetic
resonance angiography (MRA) and blood-brain barrier (BBB)
P-glycoprotein transport activity with live-cell imaging confocal
microscopy. To assess metabolic functions, we used well-
established PET protocols and proton magnetic resonance
spectroscopy (1H-MRS) to quantify glucose uptake and brain

metabolites, respectively (Lin et al., 2012; Lin and Rothman,
2014). We have also included the novel MRS techniques of
1H[13C] proton-observed-carbon-edited (POCE) to determine
neurotransmission rate and mitochondrial oxidative metabolism
in the aging brain.

In this review, we will discuss our neuroimaging findings on
mTOR inhibition in the aging and AD brain. First, we will address
the effectiveness of rapamycin in reducing AD-like pathology
by restoring cerebrovascular functions in mice. Second, we will
address our recent findings on CR and KD in enhancing brain
vascular functions and shifting metabolism in young healthy
mice. Third, we will provide evidence that CR preserves brain
metabolic and vascular functions in aging in both mice and
rats. Finally, we will discuss the translational potential of mTOR-
related interventions in future human studies.

RAPAMYCIN RESTORES BRAIN
VASCULAR AND METABOLIC
FUNCTIONS IN MICE MODELING
HUMAN ALZHEIMER’S DISEASE

Rapamycin was discovered in 1970s from soil samples in Easter
Island Rapa Nui (Sehgal et al., 1975); thus, the compound was
named rapamycin (also known as sirolimus) after its place of
origin (Johnson et al., 2013). It was discovered in 1988 that
rapamycin contained immunosuppressive properties (Camardo,
2003). This finding led to the FDA’s approval of rapamycin in
1999 as an immunosuppressant preventative of the rejection in
organs transplant patients (Camardo, 2003). Over the past two
decades, rapamycin or its analogs have been widely used in the
clinic and their toxicity profiles have been well characterized
(Soefje et al., 2011).

Preclinical studies have been conducted to analyze the
potential effectiveness of rapamycin to treat AD (Caccamo
et al., 2010; Spilman et al., 2010; Majumder et al., 2011). In
a recent study (Lin et al., 2017a), we focused on the effects
of rapamycin in presymptomatic mice carrying the human
apolipoprotein ε4 (APOE4) allele, given that APOE4 is the
most significant genetic risk factor for AD (Liu et al., 2013).
Neuroimaging studies in humans have shown that cognitively
normal APOE4 carriers develop vascular and metabolic deficits
decades before the aggregation of Aβ and tau tangles (Reiman
et al., 2001, 2004, 2005; Thambisetty et al., 2010; Fleisher
et al., 2013). In particular, researchers conducting PET studies
found that cognitively normal carriers of the APOE4 allele have
abnormally low cerebral metabolic rates of glucose (CMRglc) in
similar brain regions as patients diagnosed with AD (Reiman
et al., 2001, 2004, 2005; Thambisetty et al., 2010; Fleisher
et al., 2013). This metabolic abnormality was observed both
in late-middle-aged (40–60 years of age) and young (20–
39 years of age) carriers, who have normal memory and
cognitive ability and are without Aβ or tau pathology. These
PET findings suggest that APOE4 carriers develop functional
brain abnormalities several decades prior to the potential onset
of dementia. Longitudinal research using MRI has displayed
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TABLE 1 | List of discussed neuroimaging methods.

Modality Methods Measurements Applications

Magnetic resonance imaging (MRI) and
spectroscopy (MRS)

ASL Cerebral blood flow Humans and animals

MRA Vascular density
1H-MRS A variety of essential brain metabolites

POCE Mitochondrial function; Neurotransmission rate; neuronal and
glial activities

Positron emission tomography (PET) 18FDG Cerebral glucose metabolism

Confocal Microscopy Live-cell imaging Blood brain barrier P-gp transport activity Mainly in animals

ASL, arterial spin labeling; MRA, magnetic resonance angiography; 1H-MRS, proton magnetic resonance spectroscopy; POCE, 1H[13C] proton-observed-carbon-edited
MRS; 18FDG, fluorine-18 (18F)-labeled 2-fluoro-2-deoxy-d-glucose.

that CBF is reduced in an accelerated manner in similar
brain regions (e.g., frontal, parietal, and temporal cortices) in
cognitively healthy APOE4 carriers (Thambisetty et al., 2010).
The APOE4-related neurovascular risk is strongly correlated with
an accelerated decline in verbal memory, language capability,
attention, and visual/spatial abilities in midlife (Bangen et al.,
2013).

A similar situation is seen in transgenic mice that express the
human APOE4 isoform that is driven by the human glial fibrillary
acidic protein promoter. Young, presymptomatic APOE4 mice
have significantly lower CMRglc and CBF, as well as increased
BBB leakage compared to the wild-type (WT) non-APOE4 mice
(Bell et al., 2012; Lin et al., 2017a). Treating asymptomatic female
APOE4 mice with rapamycin for 1 month resulted in a significant
increase in CBF compared to the non-treated littermates. After 6
months of treatment, we found that rapamycin-treated APOE4
mice had normal CBF that was comparable to that of the sex-
and age-matched WT mice. Similarly, rapamycin-treated mice
also had lower BBB leakage. Furthermore, we found that BBB
leakage could potentially be blocked by inhibiting cyclophilin
A-dependent proinflammatory pathways with rapamycin (Bell
et al., 2012). In addition, CMRglc was also restored to WT level
as observed in the rapamycin-treated APOE4 mice (Lin et al.,
2017a).

In another study with hAPP(J20) mice (a mouse model of
human AD) that already developed significant Aβ pathology and
cognitive decline, we found that rapamycin was also effective
in restoring neurovascular function. Symptomatic hAPP(J20)
11 month old mice treated with rapamycin for 16 weeks had
restored CBF to the level of WT mice (Lin et al., 2013).
In addition, rapamycin restored vascular density, determined
by MR angiography, in the brains of hAPP(J20) mice. The
restored vascular integrity was highly correlated with reduced
Aβ, cerebral amyloid angiopathy (CAA), and microhemorrhages
in treated hAPP(J20) mice. These findings were consistent
with the literature showing that rapamycin can reduce Aβ

(Liu et al., 2017). In this study, we also identified that
mTOR inhibition activates endothelial nitric oxide synthase
(eNOS), and thus, released nitric oxide (NO), a vasodilator
(Cheng et al., 2008; Lin et al., 2013). Therefore, rapamycin
activating eNOS may be critical for restoring CBF in hAPP(J20)
mice. In addition to restored cerebrovascular function and
reduced AD-like pathology, hAPP(J20) mice also had improved

memory and learning performance after 16 weeks of rapamycin
treatment (Lin et al., 2013). Collectively, data generated from
the two imaging studies show that rapamycin can potentially
prevent AD phenotypes in APOE4 mice and reverse the
effects of AD in hAPP(J20) transgenic mice (Richardson et al.,
2015).

CALORIC RESTRICTION AND
KETOGENIC DIET ENHANCE BRAIN
VASCULAR FUNCTIONS AND SHIFT
METABOLISM IN YOUNG MICE

In the early 1930s, Clive McCay demonstrated that restricting
calorie intake without malnutrition can prolong both the mean
and maximal lifespan in rats when compared to animals on
ad libitum diet (AL; free eating) (McCay et al., 1989; Park,
2010). Since then, CR is perhaps the most studied anti-aging
manipulation within a broad range of species (Colman et al.,
2009; Choi et al., 2011; Rahat et al., 2011). This is further
supported by other studies that display lower incidences of age-
related neurodegenerative disorders found in animals treated
with CR (Park et al., 2005; Duan and Ross, 2010).

Recently, our efforts have been focused on understanding how
CR impacts brain function in the early stage. In particular, we
would like to know how brain vascular and metabolic functions
might be impacted with CR in young mice. We imaged mice
at 5–6 months of age, either on 40% CR diet or AL, and
found that CR significantly enhanced CBF (>20%) both globally
and in the hippocampus, compared to their AL littermates
(Parikh et al., 2016). The increase in CBF was associated with
reduced mTOR and increased eNOS levels that were similar
to what we observed with rapamycin. In addition, CR-fed
mice had significantly increased P-glycoprotein (P-gp) transport
activity levels at the BBB, which facilitates clearance of Aβ

out of the brain. These findings are consistent with literature
showing that CR reduces AD-like pathology and the onset
of cognitive impairment (Mouton et al., 2009; Schafer et al.,
2015).

We used 1H-MRS to determine energy metabolites in the
hippocampus (Guo et al., 2015). We observed that CR mice
displayed significantly increased levels of total creatine (tCr),
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a high-energy substrate, in comparison to AL mice. Given that
tCr is the sum of creatine and phosphocreatine, we posited
that CR increases adenosine triphosphate (ATP) production in
young CR mice since phosphocreatine acts in a central role as
an intracellular buffer during ATP production in mitochondria.
This finding is consistent with literature that CR enhances
ATP production by activating AMP-activated protein kinase
(AMPK) and sirtuins pathways, which in turn suppresses the
mTOR pathway (Blagosklonny, 2010). It has been found that
the level of glucose regulates the AMPK pathway. With low
levels of glucose and metabolic stress that accompany CR,
there is a depletion of energy (low ATP: AMP ratio), which in
turn activates AMPK (Salt et al., 1998; Hardie, 2014). AMPK,
when activated, can be seen as an indicator of cellular energy
status, turning on catabolic pathways that generate ATP while
inhibiting cellular processes that consume ATP such as the mTOR
pathway.

We also found significantly elevated levels of taurine in
the CR mice when compared to the AL mice. Since taurine
is correlated with neuromodulation, higher levels imply that
young CR mice might have augmented excitability compared
to the age-matched AL mice. Interestingly, both globally and
in the hippocampus and frontal cortex (regions related to
cognitive functions), CR mice displayed significantly reduced
brain glucose uptake as determined by PET imaging (Guo
et al., 2015). Our imaging findings are consistent with Western
blot data showing that CR reduces glucose transporter 1
(GLUT-1) in brain capillaries of the mice (Parikh et al.,
2016). As a result, we found a mismatch of CBF-CMRglc
coupling induced by CR, opposite to tight coupling of CBF-
CMRglc in a normal brain at rest (Fox et al., 1988; Lin et al.,
2010).

These reduced glucose uptake results led us to hypothesize that
in order to sustain essential mitochondrial activity and neuronal
functions, the brain may utilize alternative fuel substrates as
an energy source. As the brain would also use ketone bodies
as energy source (Akram, 2013), we measured ketone body
levels in the brain and blood and found that CR rodents
had a significantly higher concentration of ketone bodies in
comparison to AL animals (Guo et al., 2015; Lin et al.,
2015). The findings indicated that CR may, at a very early
stage in the brain, induce a metabolic switch from glucose to
ketones.

To verify the impact of elevated ketone bodies on
vascular functions, we fed young, age-matched WT mice
with the KD for 16 weeks. Similar to what we observed
with young CR mice, mice fed with KD also had significant
increases in CBF and P-gp transport activity levels in
brain capillaries compared to control mice (Ma et al.,
2018). These neurovascular enhancements were also
associated with reduced mTOR and increased eNOS protein
expressions. The result is consistent with previous reports
that ketogenesis is associated with the down-regulation
of mTOR (McDaniel et al., 2011). In line with this, two
other studies indicate that an acute increase in ketone body
concentration (via infusion of β-hydroxyl butyrate) elevated
CBF independent of overall cerebral metabolic activity. This

suggests that ketone bodies can directly increase CBF via the
cerebral endothelium (Hasselbalch et al., 1996; Roy et al.,
2013).

CALORIC RESTRICTION PRESERVES
BRAIN VASCULAR AND METABOLIC
FUNCTIONS IN AGING RODENTS

Healthy aging is accompanied by CBF reduction, BBB
impairment and Aβ retention (Lin et al., 2015; Parikh et al.,
2016; Hoffman et al., 2017). To identify CR effects on the
aging brain, we included old CR and AL mice (18–20 months
of age) in the same CR experiments and compared them
with young mice (5–6 months of age). We found that CR
enhanced CBF in young mice; moreover, CR also reduced the
CBF decline in aging (Parikh et al., 2016). As a result, when
compared to young AL mice, old CR mice had comparable
levels of CBF, indicating that CR preserves CBF with age.
Similar results were found in rats, showing that old rats with
chronic CR diet had much higher CBF compared to the age-
matched animal, and had comparable CBF level compared
to the young AL rats (Lin et al., 2015). These results support
that CR has an early enhancement effect on CBF that is
preserved with aging. In addition, the preserved CBF in the
hippocampus and frontal cortex were highly associated with
the preserved memory and learning, as well as the reduced
anxiety (Parikh et al., 2016). Our results suggest that dietary
intervention initiated at a young age (e.g., young adults) may
prove beneficial in the preservation of cognitive and mental
abilities in aging.

A similar trend was also observed in hippocampal tCr
concentration. As mentioned above, tCr was enhanced in young
CR mice. Although tCr dropped dramatically as the CR mice
getting older, tCr levels remained comparable to those in young
AL mice and were higher than those in old AL mice. This
suggests that CR increases ATP production in young CR mice
while preserving ATP production in old CR mice (Guo et al.,
2015).

Using advanced MRS techniques like POCE, we were
able to trace in vivo mitochondrial oxidative metabolisms in
neurons and neurotransmitter cycling between neuronal and
glial cells (Lin et al., 2014). We found that, compared with
the young AL rats, old CR rats had similar levels of neuronal
glucose oxidation and neurotransmitter cycling, suggesting
CR preserved mitochondrial functions and neuronal activity
with age. In contrast, old AL rats had much lower levels in
both measures. When calculating the ATP production rates
for the three groups we found that old CR and young AL
animals also had comparable levels of ATP production. We also
observed metabolic shifts in aging animals. When compared
to age-matched AL rats, old CR rats had significantly lower
glucose uptake values in the various brain regions but had
significantly higher levels of ketone bodies, β-hydroxyl butyrate
(BHB) in the brain (Lin et al., 2015). The metabolic shift
may play a critical role in sustaining brain energetics in
aging.
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Taken together, using multi-modal imaging methods we
demonstrated that CR enhances vascular and metabolic functions
in early life stages and decelerates the decline with age.
Maintaining a healthy brain homeostasis may be due to the
metabolic shift from glucose to ketone bodies (Lin et al.,
2017b).

TRANSLATIONAL POTENTIAL OF mTOR
INTERVENTIONS IN CLINICAL TRIALS

Many mTOR inhibitors (including rapamycin, rapalogs,
and Everolimus) have already been approved by the FDA
and are widely used in clinics (Soefje et al., 2011). Since
1999, rapamycin, alongside other immunosuppressive agents,
has been administered to transplant patients to prevent
the rejection of organs (Camardo, 2003). Over the past
decade, studies also showed that rapamycin or rapalogs
have an anti-tumor property; for relatively long periods of
time, cancer patients with rapamycin show little change
in their quality of life (Mita et al., 2003). Other studies
reported that Everolimus improved cognition and reduced
depression in humans (Lang et al., 2009). Recent studies
showed that with low doses of rapamycin (e.g., lower
than half of the therapeutic dosage; 0.5 mg daily or 5 mg
weekly), cognitively normal elderly had improved immune
functions with minimal side effects (Mannick et al., 2014).
The results of the studies support that a short-term rapamycin
treatment can be used safely in otherwise healthy older
person.

To date, most rapamycin and rapalog clinical studies focus
on structural neuroimaging to examine changes in brain
tumor mass (Tillema et al., 2012; Fukumura et al., 2015;
Ma et al., 2015; Sasongko et al., 2016), metastatic cancer
(Subbiah et al., 2015), or active lesions (Moraal et al., 2010).
However, functional neuroimaging such as EEG has been
clinically applied to assess the efficacy of rapamycin in treating
epilepsy (Cambiaghi et al., 2015), and MRS was used to
study metabolic implications of rapamycin (Serkova et al.,
1999).

CR has also been studied in humans. A recent publication
by Redman et al. shows that young, healthy individuals having
achieved 15% CR experienced about 8 kg weight loss over
2 years (Redman et al., 2018). Energy expenditure (measured
over 24 h of awake and sleep cycle) was reduced beyond
weight loss and systemic oxidative stress was also reduced.
Findings from this 2 year CR trial in healthy, non-obese humans
provide new evidence of persistent systemic metabolic slowing
accompanied by reduced oxidative stress, which supports the
rate of living and oxidative damage theories of mammalian
aging.

CR has also been observed to improve memory in older
adults (Fontan-Lozano et al., 2008; Witte et al., 2009; Mattson,
2010; Valdez et al., 2010). Using functional and structural MRI
measurements, Witte et al. (2014) reported that resveratrol,
a CR-mimetic nutrient, enhanced word retention over a 30-
min period in older adults when compared with placebo.

FIGURE 1 | Diagram showing vascular and metabolic changes induced by
mTOR inhibition through rapamycin, caloric restriction, and ketogenic diet.

These results support that supplementary resveratrol can
improve memory performance, as well as improve glucose
metabolism and increase hippocampal functional connectivity
in older adults. In another study, Jakobsdottir et al. (2016)
reported that CR reserved abnormal brain activity in
brain areas (e.g., amygdala) involved in the processing of
visual food-related stimuli in postmenopausal women with
obesity. It should be noted, however, there are studies that
these studies have only investigated the short-term benefits
of CR.

The KD has been used in the clinic to treat epilepsy
(Baranano and Hartman, 2008; Walczyk and Wick, 2017),
Parkinson’s disease (Vanitallie et al., 2005), and autism
(Evangeliou et al., 2003). The use of neuroimaging in
clinical KD studies include EEG and functional MRI to
define the extent of dysplasia (Guerrini et al., 2015), and
1H-MRS to assess GABAergic activity (Wang et al., 2003)
and glucose metabolism (Fujii et al., 2007). Recent studies
also investigated the efficacy of ketone utilization in the
brain. Using PET, it was found that the cerebral metabolic
rate of ketones represents about 33% of the brain’s energy
requirements after 4 days on KD (Courchesne-Loyer et al., 2017).
POCE studies in human have reported that consumption of
ketones (BHB) is predominantly neuronal (Pan et al., 2002).
These results support that ketone bodies are an effective
alternative fuel substrate in the non-fasted adult human
brain.

Collectively, rapamycin, CR, and KD have been widely
applied to human studies, which indicates that our work
with animal models has the potential to be translated to
human studies. To date, little has been reported regarding
in vivo vascular and metabolic measures in aging and AD
with these interventions. The use of quantitative neuroimaging
methods (e.g., 18FDG-PET, POCE, 1H-MRS, MRA, and ASL)
would be vital in future use to identify the efficacy of
mTOR-related interventions and treatments for protecting brain
functions in aging and various AD-related neurodegeneration,
including vascular dementia and Down syndrome (Lin et al.,
2016).
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CONCLUSION

In this review, we discussed the neuroprotective effects of
mTOR inhibition in aging and AD. Specifically, rapamycin is
a preventative, and possibly a treatment, for the effects of the
AD phenotype observed in APOE4 and hAPP(J20) transgenic
mouse models of AD; CR and KD can enhance brain vascular
functions and shift metabolism in young healthy mice; and CR
can preserve brain metabolic and vascular functions in aging.
We summarize these findings in Figure 1. As the quantitative
PET and MRI neuroimaging methods used in these studies in
animal models can be translated into human studies, they will
be greatly useful in future studies to examine the effects of
these mTOR-related interventions in preventing brain function
declines associated with aging and neurodegeneration in clinical
trials.
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