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Hitting a baseball is often described as the most difficult thing to do in sports. A key aptitude
of a good hitter is the ability to determine which pitch is coming.This rapid decision requires
the batter to make a judgment in a fraction of a second based largely on the trajectory and
spin of the ball. When does this decision occur relative to the ball’s trajectory and is it
possible to identify neural correlates that represent how the decision evolves over a split
second? Using single-trial analysis of electroencephalography (EEG) we address this ques-
tion within the context of subjects discriminating three types of pitches (fastball, curveball,
slider) based on pitch trajectories. We find clear neural signatures of pitch classification
and, using signal detection theory, we identify the times of discrimination on a trial-to-trial
basis. Based on these neural signatures we estimate neural discrimination distributions as
a function of the distance the ball is from the plate. We find all three pitches yield unique
distributions, namely the timing of the discriminating neural signatures relative to the posi-
tion of the ball in its trajectory. For instance, fastballs are discriminated at the earliest points
in their trajectory, relative to the two other pitches, which is consistent with the need for
some constant time to generate and execute the motor plan for the swing (or inhibition
of the swing). We also find incorrect discrimination of a pitch (errors) yields neural sources
in Brodmann Area 10, which has been implicated in prospective memory, recall, and task
difficulty. In summary, we show that single-trial analysis of EEG yields informative distrib-
utions of the relative point in a baseball’s trajectory when the batter makes a decision on
which pitch is coming.
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INTRODUCTION
The baseball great, Ted Williams, said, “the hardest thing to do in
a sport is to hit a baseball.” The hitter has a fraction of a second
to decide whether the pitch will be a ball or a strike and whether
he will swing or not. Another great, Yogi Berra, summarized the
split second timing necessary for this task by saying, “you can’t
think and hit at the same time.” Rather, hitters must rely on a rapid
decision-making process that tracks the trajectory and speed of the
ball with sufficient accuracy to predict its location when it crosses
the plate and decide on an appropriate motor response. Due to
the different speeds and trajectories that pitches can follow, bat-
ters cannot blindly guess and maintain accuracy. A key element
of this rapid decision-making process is determining what type of
pitch is thrown, e.g., fastball, curveball, or slider, because the type
of pitch constrains the possible trajectories of the ball.

Previous studies have examined the pitch classification process
using behavioral/physiological markers. For instance, eye move-
ments before and during pitches have been extensively studied
(Shank and Haywood, 1987; Kato and Fukuda, 2002; Takeuchi
and Inomata, 2009) and have been used to identify optimal visual
search strategies employed by expert vs. novice players. These find-
ings show that experts focused their visual (spatial) attention closer
to the estimated release point of the pitch, when compared to
novices, suggesting that early-trajectory tracking can be crucial

for batting performance. The middle phase of the trajectory also
has been found to have significant impact on pitch identification.
In particular, it has been shown that the middle third of a pitch’s
trajectory was most predictive of whether subjects made contact
with a pitched softball (De Lucia and Cochran, 1985). This implies
that, in addition to early-trajectory tracking, continued tracking
of the pitch can influence trajectory estimation.

To date, the only approach directly aimed at investigating
neural signatures related to pitch identification has used electroen-
cephalography (EEG) to examine the P300 event-related potential
(ERP) in response to two categories of pitches (fastballs and curve-
balls) when either a correct or incorrect verbal cue preceded the
pitch (Radlo et al., 2001). Results showed differences between
intermediate and advanced batters in terms of their behavioral
accuracy as well as P300 amplitude and latency, with the con-
clusion being intermediate batters are more easily “fooled” by a
preceding cue which was not congruent with the pitch. Though
this result suggests how use of prior knowledge and attentional
allocation might differ between batters of different aptitudes, it
does not directly address the question of what are the neural cor-
relates of the decision event and when they occur relative to the
type of pitch thrown and its trajectory in space-time.

In this paper we employ a forced-choice decision-making task,
in which subjects must discriminate between three pitch types
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while under time pressure. We utilize a multivariate classifier to
project the neural data (measured via EEG) into a space that opti-
mally separates trials into their predicted pitch class. By doing
this on a single-trial basis, we can examine at what point in a
pitch’s trajectory the subjects’ underlying neural activity discrimi-
nates a given pitch. Furthermore, we utilize source reconstruction
techniques (Pascual-Marqui et al., 1999) to identify the neural gen-
erators of the decision-making process when the “batter” makes a
mistake.

MATERIALS AND METHODS
SUBJECTS
Six subjects participated in the study (one female, mean age-
27.33 years). None of the subjects had professional or collegiate
baseball experience. All subjects reported normal or corrected
vision and no history of neurological problems. Informed con-
sent was obtained from all participants in accordance with the
guidelines and approval of the Columbia University Institutional
Review Board.

STIMULI OVERVIEW AND BEHAVIORAL PARADIGM
Subjects viewed on a computer monitor 12 blocks of 50 simu-
lated baseball pitches with a mean jittered inter-stimulus interval
(ISI) of 2150 ms. The simulated view was that of where the catcher
would sit on a standard baseball diamond, i.e., at the end point
of the pitch trajectory. From a library of 50 pitches, each coming
from one of three pitch types (“fastballs,” “curveballs,” and “slid-
ers”), the subject was presented, on each trial, a pitch chosen at
pseudorandom.

For those not familiar with baseball, the three pitches differ in
their speed and path through space. A fastball has a trajectory that
is straight with very little horizontal or vertical break compared
to a simple parabolic trajectory. A curveball has a combination of
side spin and top spin that creates both a rightward and downward
break. A slider only has sidespin, which creates only a rightward
break. Subjects were to discriminate pitches based on these tra-
jectories and the difference in speeds. All pitches were simulated
using the equations of motion (see below). Video clips showing
one example for each of the three pitch types are provided in the
online Supplemental Material.

The subjects were instructed to identify the type of pitch as
quickly as possible via a keyboard button response, where each
pitch choice was mapped to a unique button (“j,” “k,” and “l”).
Subjects were told to respond while the ball was still on the screen.
All button responses were executed with the right hand, regardless
of handedness. In an initial training phase, subjects learned the
general trajectory of each pitch by viewing examples, and for a
short practice session they responded with the button response.
The practice session contained 20 pitches selected at pseudoran-
dom with no feedback and subjects were asked afterward if they felt
comfortable doing the task in the amount of time needed. All sub-
jects responded in the affirmative and the 12 blocks of 50 pitches
began with EEG data being recorded. Participants did not receive
feedback or collect a reward for their performance; however, they
did receive compensation for their time.

A Dell Precision 530 Workstation was used to present the visual
stimuli with E-Prime 2.0 (Sharpsburg, PA, USA). The subjects sat
in an RF-shielded room 100 cm from the center of the computer

screen, where the stimulus display area covered a horizontal angle
of ±6.5˚ and a vertical angle of ±5.0˚.

The start of each pitch video clip was the stimulus event by
which EEG time-locking occurred. Stimulus events were passed
to the EEG recording system through a TTL pulse in the event
channel. In post hoc analysis, response events were synchronized
to the EEG via their latencies from the stimulus event.

PITCH SIMULATIONS
Each pitch video clip was created using a differential equation
solver in Matlab 2010a (Mathworks, Natick, MA, USA; see Pitch
Simulations below) and exported to an audio-video Interleaved
(.avi) movie file (see Supplementary Material for examples) sam-
pled at 60 Hz (refresh rate of display monitor). Most baseball
pitches can be simulated using six-coupled differential equations
(Armenti, 1992; Adair, 1995).

dx

dt
= vx (1)

dy

dt
= vy (2)

dy

dt
= vz (3)

dvx

dt
= −F (v) vvx + Bω

(
vz sin φ− vy cos φ

)
(4)

dvy

dt
= −F (v) vvy + Bωvx cos φ (5)

dvz

dt
= −g − F (v) vvz − Bωvx sin φ (6)

F(v) = 0.0039+
0.0058

1+ e(v−vd )/∆
(7)

The first three equations specify the change in spatial location
in each direction, which equals the velocity of the baseball. The last
three equations specify the accelerations due to the drag [F(v)],
the Magnus force (B), and gravity (g ) acting on the baseball. Equa-
tion 7 is used to calculate the drag force at different velocities with
vd= 35 m/s and ∆= 5 m/s. The Magnus force (B), which occurs
due to differential drag on a spinning object, is approximated here
to be 4.1× 10−4 (dimensionless). After specifying the initial con-
ditions [x0, y0, z0, vx0, vy0, vz0, ω (rotational frequency)], the six
ordinary differential equations were solved in MATLAB.

The three pitches – fastball, curveball, and slider – have well-
defined individual initial conditions. To create each pitch, we only
need to vary the initial velocity and the rotation angle. For each
pitch class, 50 pitches were created by randomly sampling distri-
butions of initial conditions for velocity, rotation angle, launch
angle, and horizontal launch angle. The values and distributions
used for each pitch class are specified in Table 1.

For each simulated pitch, a blue circle was plotted on a gray
grid for every frame of the trajectory. The size of the blue circle
increased as it approached the viewer, so as to give the illusion of
depth. When the ball crossed “home plate,” the blue circle disap-
peared. The frames were compressed into .avi movie format (see
examples of each pitch simulation in Supplementary Material).
The trajectories, for each simulation, were saved in a separate file
for later use.
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Table 1 | Parameters for generating pitch trajectories.

Initial velocity

(MPH)

Rotation

angle (˚)

Vertical launch

angle (˚)

Horizontal launch

angle (˚)

Rotational

frequency (rpm)

Duration (s)

Fastball 83±3 270±3 0.5±0.3 0.7±0.3 1800 0.53±0.01

Curveball 70±3 50±10 1.7±3 0.7±0.3 1800 0.64±0.02

Slider 75±3 0±5 1.7±3 0.7±0.3 1800 0.59±0.02

DATA ACQUISITION
Electroencephalography data was acquired in an electrostatically
shielded room (ETS-Lindgren, Glendale Heights, IL, USA) using a
BioSemi Active Two AD Box ADC-12 (BioSemi, The Netherlands)
amplifier from 64 scalp electrodes. Data were sampled at 2048 Hz.
A software-based 0.5 Hz high pass filter was used to remove DC
drifts and 60 and 120 Hz (harmonic) notch filters were applied
to minimize line noise artifacts. These filters were designed to
be linear-phase to minimize delay distortions. Stimulus events –
i.e., pitch-movie start times and pitch types – were recorded on
separate channels.

Independent components analysis (ICA) was run using
EEGLAB (Delorme and Makeig, 2004) to remove eye-blink arti-
facts. In stimulus-locked epoching (−1000 to 1500 ms), the aver-
age baseline was removed using data from −1000 to 0 ms. After
epoching to stimulus events, an automatic artifact epoch rejec-
tion algorithm from EEGLAB (Delorme and Makeig, 2004) was
run to remove all epochs that exceeded a probability threshold of
5 SDs from the average. Similarly, in response-locked epoching
(−1500 to 1000 ms), the average baseline was removed from
−1500 to−500 ms and the same automatic artifact epoch rejection
algorithm was run.

DATA ANALYSIS
We performed a single-trial analysis of the filtered, epoched, and
artifact-removed EEG to discriminate between a set of stimulus or
response conditions. First, we considered only behaviorally cor-
rect pitches, where the user’s response was within 100 ms of the
end of the pitches’ trajectory, and trained the classifier to classify
a given pitch (e.g., a fastball) vs. pitches of the other classes (e.g.,
curveball and slider). Second, we classified behaviorally correct vs.
incorrect pitches within each pitch class (e.g., correctly identified
fastballs vs. incorrectly identified fastballs). A table summarizing
the classification analysis is shown in Table 2.

Logistic regression was used as a classifier to find an optimal
projection for discriminating between the chosen two conditions
over a specific temporal window (Parra et al., 2002, 2005; Conroy
and Sajda, 2012). This approach has been previously applied to
identify neural components underlying rapid perceptual decision-
making (Gerson et al., 2005; Philiastides and Sajda, 2006; Phil-
iastides et al., 2006). Specifically, we defined a training window
starting at either a pre-stimulus or post-stimulus onset time τ,
with a duration of δ, and used logistic regression to estimate
a spatial weighting vector EwT

τ,δ which maximally discriminates
between EEG sensor array signals X for each class (e.g., fastballs
vs. not-fastballs):

Ey = EwT
τ,δX (8)

Table 2 | Definition of classes used in discrimination analysis.

Correct pitches Correct-incorrect

Class 1 Class 2 Class 1 Class 2

Fastball Not-fastball Correct fastball Incorrect fastball

Curveball Not-curveball Correct curveball Incorrect curveball

Slider Not-slider Correct slider Incorrect slider

In Eq. 8, X is an N×T matrix (N sensors and T time sam-
ples). The result is a “discriminating component” Ey that is specific
to activity correlated with each condition, while minimizing activ-
ity correlated with both task conditions. The term “component” is
used instead of “source” to make it clear that this is a projection of
all activity correlated with the underlying source. For our experi-
ments, the duration of the training window (δ) was 50 ms and the
center the window (τ) was varied across time τ= 0, 25, 50, . . . ,
975, 1000 ms in 25 ms steps for stimulus-locked, and was varied
across time τ = −575,−550, . . . , 550, 575 ms in 25 ms steps for
response-locked. We used the re-weighted least squares algorithm
to learn the optimal discriminating spatial weighting vector EwT

τ,δ
(Jordan and Jacobs, 1994).

In order to provide a functional neuroanatomical interpreta-
tion of the resultant discriminating activity, and due to the linearity
of the model, we computed the electrical coupling coefficients
(Eq. 9).

Ea = X Ey
Ey•Ey (9)

This equation describes the electrical coupling Ea of the
discriminating component Ey that explains most of the activity X.

We quantified the performance of the linear discriminator by
the area under the receiver operator characteristic (ROC) curve,
referred to here as Az, using a leave-one-out procedure (Duda,
2001). We used the ROC Az metric to characterize the discrimi-
nation performance as a function of sliding our training window
from 0 ms pre-stimulus to 1000 ms post-stimulus (i.e., varying τ)
for stimulus-locked and −575 ms pre-response to 575 ms post-
response for response-locked. These time periods provided sub-
stantial time both after the stimulus and behavioral response (but-
ton press) to observe any electrophysiological response to the pitch.

We quantified the statistical significance of Az in each win-
dow (τ) using a relabeling procedure. With 41 windows for
stimulus-locked and 47 for response-locked, we had to correct
for this number of comparisons within stimulus- and response-
locked leave-one-out respectively. To have a Bonferroni corrected
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FIGURE 1 | Mean behavioral responses across subjects for (A) accuracy and positive predictive value (PPV) and (B) mean response times for correctly
and incorrectly identified pitches. All bars are plotted with standard errors (N =6).

p < 0.05 threshold in both locking conditions, we ran enough
permutations to have a suitable number of samples within the
p < 0.001 threshold (i.e., p < 0.05/41 and p < 0.05/47). To this end,
we randomized the truth labels (i.e., pitch was a fastball, curveball,
or slider) for each trial and retrained the classifier. This was done
3750 times for each subject (1250 permutations for each pitch
comparison combination), giving a total of 22,500 permutations
for a group level analysis. The Az values from these permutations
were used to establish a p < 0.001 threshold, i.e., a p < 0.05 Bon-
ferroni corrected significance level. All significant results are thus
reported at p < 0.05 corrected for multiple comparisons.

COMPONENT-INFORMED SOURCE LOCALIZATION
We used source localization to investigate the differences between
correctly vs. incorrectly identified pitches. First, we classified the
stimulus-locked EEG data of incorrectly vs. correctly identified
pitches, as summarized in the right half of Figure 1 and Table 2.
This was done on a subject-specific basis, except for one subject
for whom there were no errors in discriminating the slider; there-
fore that subject was removed so as not to bias the results. For
each of the remaining five subjects, we then selected the window
at which the LOO Az value was maximum, with the constraint
that the subject-specific maximum was not outside the range of
3 SEs of the pitch-specific mean peak timing. This was done to
ensure that the localization analysis was investigating a temporally
common phenomenon across subjects.

Using these markers in time, we trial-averaged the EEG sen-
sor data across all epochs that were either correctly identified or
incorrectly identified, creating a grand average ERP for each of the
five subjects, for each pitch, and for both accuracies. Given five
subjects, three pitches, and two conditions, this results in a total
of 15 ERPs for each condition (i.e., for correctly identified and
incorrectly identified pitches).

Using these grand average ERP values, we then utilized a source
localization algorithm (sLoreta; Pascual-Marqui et al., 1999) to
estimate the most likely cortical source distributions. This algo-
rithm solves for the most likely current source distribution in the
cortex based on EEG sensor data and array topology. We used these
distributions to compare the incorrect vs. correct classification
conditions across subjects and pitches.

RESULTS
BEHAVIORAL PERFORMANCE
From the behavioral data summarized in Figure 1, we see mean
accuracy was 72, 82, and 91% for fastballs, curveballs, and slid-
ers, respectively. We also calculated the positive predictive value
(PPV) – i.e., number of true positives divided by the sum of true
positives and false positives-for each pitch class. The PPV of each
pitch class showed that the subjects were confident when selecting
sliders and fastballs, however, for curveballs the PPV is significantly
less than the accuracy, indicating that the curveball could possibly
be the default choice for the subjects – i.e., it was often selected as
a false positive.

The behavioral results (Figure 2A) show response times as a
probability density function with truncations on the right-side
of the distributions, indicating the threshold enforced 100 ms
after the pitch arrived at the plate. Mean response times for cor-
rectly identified pitches were 590, 618, and 594 ms for fastballs,
curveballs, and sliders, respectively. The first peaks of each pitch’s
response distribution are at 494 ms (fastballs), 558 ms (sliders),
and 590 ms (curveballs).

To test whether response times were significantly different from
one other, we ran a three-way ANOVA with the three factors being
subject, pitch type, and correct/incorrect classification. The sub-
ject factor was treated as a random effect while the other two
factors were treated as fixed effects in the model. We found no
significant differences in all of the comparisons tested (p > 0.05)-
difference between pitch types (p= 0.08, F = 3.38, df= 2), differ-
ence between correct/incorrect (p= 0.68, F = 10.86, df= 5), the
interaction between pitch type and correct/incorrect (p= 0.24,
F = 1.66, df= 10). The ANOVA indicates that the mean behav-
ioral responses are not statistically different with regards to the
pitch type or whether the subject classified the pitch correctly.

NEURAL MARKERS OF CORRECTLY IDENTIFIED PITCHES:
STIMULUS-LOCKED ANALYSIS
Figure 2B shows the mean discrimination performance (Az values)
across all subjects and for each pitch using stimulus-locked EEG
discrimination. From this stimulus-locked analysis, we see a rela-
tionship between the speed of the pitch and the timing of peaks
in both neural and behavioral data. In particular, in Figure 2B
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FIGURE 2 | (A) Behavioral and (B) stimulus-locked EEG discrimination
results for each pitch averaged across all subjects. In (B) each Az curve
shows the mean and standard error bands computed using leave-one-out
discrimination for the indicated pitch vs. other pitches (e.g., for fastballs, the
discrimination is between fastballs and not-fastballs; i.e., curveballs and
sliders). The significance line (dotted) is corrected for multiple comparisons
(line at p=0.05 Bonferroni corrected for 41 time window comparisons).
Note the two plots are time aligned and have the same time-scale so as to
compare the timing of EEG discrimination and behavioral response.

correctly identified fastballs exhibit the earliest significant EEG
discrimination (300 ms), while sliders (425 ms), and curveballs
(500 ms) follow. As expected, the sequence of these peaks follows
the relative speeds of these pitches, i.e., fastballs, sliders, and then
curveballs. Comparing these peaks to the behavioral results of
Figure 2A, each of the response distribution peaks immediately
follows the relative timing of each pitch’s first significant neural
discrimination.

As the response times show, the stimulus-locked discrimina-
tion overlaps the responses∼420–720 ms, so it is difficult to isolate
non-motor elements in the signal during these time periods. How-
ever, after the responses, the highest peaks of discrimination for
each pitch are seen (750 ms for fastballs, 700 ms for sliders, and
850 ms for curveballs). To test whether these post-response peaks
are due to the differences in the response time distributions, a

separate analysis was run on a subset of the data where the RT dis-
tributions were matched between classes. These large peaks remain
and are therefore possibly indicating a post-response evaluative
process specific to identifying each pitch correctly.

Group mean stimulus-locked forward models, shown as scalp
plots, are given in Figure 3. Plots are for selected time points across
all three pitches, where the center of the discrimination window
is indicated at the top of each subfigure. Dark red and blue col-
ors indicate strong discriminatory power from electrodes in that
region. While the areas of discrimination change over time for
each pitch type, discrimination power is consistently located in
the posterior and occipital portions of the scalp plots.

NEURAL MARKERS OF CORRECTLY IDENTIFIED PITCHES:
RESPONSE-LOCKED ANALYSIS
Due to the possibility of a motor confound in the neural signal, we
also classified EEG data locked to the response times (see Figure 4).
Once again, using only correctly identified pitches, we calculated
the Az values across all subjects and for each pitch.

Similar to the stimulus-locked results, we find significant pre-
response peaks (Bonferroni corrected, p= 0.05) for each pitch that
follow the relative speeds of each pitch. In particular, the mean
pre-response peak for fastballs (−350 ms), precedes that of sliders
(−125 ms), and then curveballs (−50 ms). As with the stimulus-
locked discrimination, there is a post-response period in which the
mean discrimination is as high or higher than it was pre-response
for each pitch (fastballs at+50 ms, sliders at+125 ms, and curve-
balls at +50 and +125 ms), indicating a possible post-response
evaluation of the evidence gathering and subsequent decision.

Similar to the stimulus-locked figure, mean response-locked
forward model scalp plots are shown in Figure 5. Again, we can see
that discrimination power is located in the posterior of the brain
and the spatial distributions change over time. Only the slider
post-response scalp map shows a pattern that might be indicative
of a button response (125 ms window shows lateralized contralat-
eral discriminatory activity – i.e., left side activity indicative of a
right handed button press).

DISTRIBUTION ACROSS PITCH TRAJECTORY OF MAXIMALLY
DISCRIMINATING NEURAL COMPONENTS
Using our stimulus-locked single-trial analysis, we constructed
spatial distributions of the neural markers across trials and com-
pared these distributions across pitch types. Specifically, we com-
puted the spatial position of the maximum y value for τ∈ <|0 <

x < τplate), where τplate is the time at which the pitch reaches the
end of its trajectory, i.e., at home plate. Doing this analysis across
all subjects, and for each pitch, we created a “heat map” represen-
tation of the probability density function of the spatial position in
the pitch trajectory having the most discriminating neural com-
ponent. Figure 6 shows these distributions for both a side view of
the trajectory (i.e., the “dugout view”) and a heads-on view (i.e.,
the “catcher’s view”). Features of the baseball diamond, such as
the pitcher’s rubber, home plate, and the batter’s boxes, have been
added (not to scale) for a frame of reference.

Both views provide insight into the amount of evidence (e.g.,
time integration and spatial information) required to classify each
pitch. From Figure 6A, we see that common to all pitches is peak
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FIGURE 3 | Group averaged stimulus-locked forward models, shown as
scalp maps, for each of the three pitch types. Only behaviorally correct
trials are used to estimate these forward models. For each pitch, three time

windows are shown for discriminating components estimated for those
windows. The center time of each window is given above each plot together
with that window’s discrimination (Az) value.

FIGURE 4 | Group mean and standard error bands for response-locked
leave-one-out EEG discrimination performance across all subjects. The
significance line (dotted) is corrected for multiple comparisons (line at
p= 0.05, Bonferroni corrected for 47 time window comparisons).

discrimination happening when the ball arrives at the plate, likely a
result of the tight coupling of the decision with the motor response.
However there are significant differences between these distribu-
tions if we consider the probabilities prior to when the ball reaches
the plate. For example, the fastball has discrimination peaks from
mid-trajectory to home plate. The slider also shows this trend,
though the probability mass is spread more throughout the tra-
jectory and is thus less localized in terms of pitch position. Finally,
the curveball (i.e., the slowest pitch) shows local peaks in the spa-
tial distribution in the later half of the trajectory, presumably
due to the slower speed of this pitch relative to the fastball and
slider.

Similarly, the catcher’s view (Figure 6B) shows peak discrim-
ination early in the fastball’s trajectory, whereas both the slider
and the curveball exhibit distributions spread across the entire
trajectory of the pitch. Together, these plots indicate that, due
to the higher relative speed and distinct trajectory of the fastball
compared to the curveball and slider, the decision process result-
ing in a correct identification of the fastball occurs earlier in the
spatial trajectory than it does for the sliders and curveballs, both
of which take incrementally longer periods of time to arrive at
the plate.
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FIGURE 5 | Group averaged response-locked forward models, shown as
scalp maps, for each of the three pitch types. Only behaviorally correct
trials are used to estimate these forward models. For each pitch, three time

windows are shown for discriminating components estimated for those
windows. The center time of each window is given above each plot together
with that window’s discrimination (Az) value.

SOURCE LOCALIZATION OF INCORRECTLY IDENTIFIED PITCHES
Thus far, our results have focused on an analysis of those pitches
(trials) that are correctly classified by the subject(s). However as
Figure 1 shows, not all pitches were classified correctly. We there-
fore analyzed correct vs. incorrect pitch classifications in terms of
the EEG discriminating components. Using the temporal windows
having maximum Az within each subject and pitch combination
(see Materials and Methods), we found pitch-specific common
windows covering 570± 89, 744± 69, and 522± 96 ms for fast-
balls, curveballs, and sliders, respectively. For only 2 of the 15
combinations of three pitches and five subjects, we found maxi-
mum Az values that exceeded 3 SEs from these mean timings. For
these two cases, we chose the second maximum peak in Az from
the next concave down region in the epoch. These points turned
out to be within 3 SEs of mean peak Az timings. Thus all analysis
was in a temporal period that could be considered as “common
decision processing” at a group level.

We extracted EEG data from these windows and solved for the
source distributions using sLoreta (see Materials and Methods).
We did a paired t -test for correct vs. incorrect identification distri-
butions, with the resulting t -distribution of the log of the F-ratio
[F(1, 13)] shown in Figure 7. Five thousand permutations were

used to establish significance levels (p < 0.01) for the null hypoth-
esis of no difference in activity between incorrectly identified and
correctly identified pitches. Though the hypothesis of correctly
identified pitches shows no significant similarities (red), that of
incorrectly identified pitches (blue) shows a common neuronal
current source located in the left frontal cortex, showing peaks
in Brodmann Area 10 [BA 10, MNI (−35, 55, 20)]. This result
indicates left-lateralized common neuronal activity when subjects
incorrectly identify the pitch, i.e., when they “miss.” This result is
invariant to the type of pitch, given that all pitches were considered
in this analysis.

DISCUSSION
In this paper, we have shown that we are able to identify neural
correlates, in scalp EEG, of baseball pitch classification. Further-
more, using single-trial analysis, we identified at what points in
the pitches’ trajectory the EEG correlate is most discriminating,
enabling us to infer how decision points may vary across trials
and pitch types. Finally, we also showed that there appears to be a
common neural generator when subjects make decision errors in
this task. We now consider these results in the context of previous
literature.
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FIGURE 6 | “Dugout” (A) and “catcher’s” (B) views showing spatial
distribution of single-trial peak discrimination across all subjects. For
each subject and for each trial, the timing of peak significant discrimination
(i.e., maximum value of Az above the p=0.05 Bonferroni corrected threshold)
from the leave-one-out analysis was related to the trajectory of the pitch on a
given trial through the differential equation used to calculate its motion from
the simulated pitcher’s release [0 ft on the x -axis of (A)] to construct a marker

in space. Repeating this process for all subjects and all trials results in a
distribution of points in space for each pitch at which peak discrimination
occurred in a given trial and for a given pitch. The “dugout” view (A) shows a
two-dimensional projection along the initial trajectory of the pitch, while the
“catcher’s” view (B) shows the two-dimensional projection in the plane
perpendicular to the pitch’s initial trajectory. Color heat maps indicate the
height of the distribution.

RELATED BEHAVIORAL STUDIES
Though the paradigms and data collection methods are slightly
different, we can view our results in the context of other baseball
experiments in which behavioral markers were used as perfor-
mance indicators. In particular, Takeuchi and Inomata (2009)
and Kato and Fukuda (2002) used behavioral responses and eye-
tracking to monitor subject performance in judging balls and
strikes between experts and novices. While the task is slightly dif-
ferent than ours (i.e., balls and strikes vs. fastballs, curveballs, and
sliders), and our paradigm did not test experts vs. novices, the fun-
damental concept of a forced-choice decision based on trajectory
remains the same.

The key point from both of these studies is that the expert
group’s better performance depends on early-trajectory tracking
of the ball from the release point, when compared to that of
novices. We see some concordance between this result and our
neural discrimination results. Recalling that these studies only
focused on fastballs, we can compare this early-trajectory pref-
erence for experts to the neural discrimination for correct pitches
shown in Figure 2. Being the fastest of the three pitches in our
paradigm, subjects had a higher probability of maximum dis-
crimination early in the fastball trajectory when compared to the
curveball, with differences with the slider not being nearly as sig-
nificant. This is indicated by the brighter intensity of the top row’s
heat map in Figure 6 on early parts of the fastball pitch’s trajectory,
when compared to that of the other pitches. Though while we find

that the early parts of the trajectory are less likely, on a single-trial
basis, for discriminating neural activity, we do find that most trials
are discriminable from the EEG in the middle and latter periods
of the pitch trajectory.

De Lucia and Cochran (1985) conducted a behavioral study
with findings supporting the importance of the latter parts of
the pitch trajectory (middle and late phases). In this study, each
third of a fast-pitch softball pitch was visually masked and the
subjects’ ability to make contact was used as a behavioral metric
on performance. While the masking of each third of the trajec-
tory dropped performance from the non-masking condition, the
masking of the middle third proved to have the most significant
impact on performance. Once again, using the fast-pitch softball
equivalent of an overhand fastball, we can compare this result to
the top row of Figure 6 and see that their result is in general con-
cordance with our neural discrimination results. In particular, we
see a peak in discrimination in the middle third between 32 and
40 ft from the pitcher’s release. But as with the eye-tracking result,
this behavioral-only result does not tell the complete story. Rather,
for the latter part of the trajectory the EEG at those time/positions
contains substantial discriminatory information for correct fast-
balls, as indicated by the brightest peaks close to the plate in the top
row of Figure 6. Our results suggest that single-trial discrimina-
tion of neural markers of pitch classification provides additional
insight into the timing of decision-making processes of the“hitter,”
particularly with respect to how these may vary across pitch and

Frontiers in Neuroscience | Decision Neuroscience December 2012 | Volume 6 | Article 177 | 8

http://www.frontiersin.org/Decision_Neuroscience
http://www.frontiersin.org/Decision_Neuroscience/archive


Sherwin et al. Neural correlates of baseball pitch classification

FIGURE 7 | Six-views of neuronal current independent groups
t -tests (in corrects in purple/blue, corrects in orange/yellow) for
all pitches combined. In both plots, the log of the F -ratio for each
voxel is shown [F (1, 13)] with brighter colors indicating higher values
of the t -statistic according to the color scale. Significance was
established with a permutation test (5000 permutations). The EEG

data used for these neuronal source calculations were the result of
averaging scalp potentials at each channel at the subject-specific peak
discrimination during the group average discrimination peaks. This
analysis is done for each subject (one subject removed due to no
errors in sliders), for both correctly and incorrectly identified pitches,
and for each pitch type.

trial and both confirms and complements previous results using
only eye-tracking and behavioral responses.

COMPARISON TO OTHER RESULTS RELATING NEURAL MEASURES TO
BASEBALL PITCH CLASSIFICATION
As mentioned in the Introduction, we are aware of only one other
baseball experiment with neural data. In that experiment, Radlo
et al. (2001) measured the P300 of subjects in a cued vs. non-cued
condition for fastballs and curveballs. To directly compare this
study to ours, we consider only the non-cued condition since we
provide no evidence to the subject before the ball appears onscreen
from the right handed pitcher’s release point. The response dis-
tributions for both pitches were faster for the Radlo study than
they were for ours. However, we believe that this is due to their
experiment being only two-choice, whereas ours is three-choice.
Furthermore, the difference between a fastball and a curveball are,
trajectory-wise, quite large, whereas the difference between the two
breaking balls used in our task (curveball and slider) is smaller.
Considering both of these differences in paradigm structure, we
expect that the response time distributions of Radlo et al. would
be shifted to earlier times relative to ours, even though the pitch
speeds are approximately the same.

Using the P300 as an indicator of pitch-specific neural response
in the subjects, we find concordance between the sequencing of
our pre-response peaks of leave-one-out discrimination across
subjects with their results. Radlo et al. (2001) found that fast-
ball P300 peaks preceded those of curveballs and we found this
relative sequencing with our discriminator for both stimulus-
locked (Figure 2B) and response-locked (Figure 4) analysis.
Due to the earlier response times of their subject population
though, it is difficult to compare the exact timings of their results
and ours.

Lastly,Radlo et al. (2001) used an experimental paradigm which
was designed to evoke a P300 (i.e., they used an oddball task, where
the oddball was defined by the incorrect cue being given only 25%
of the time) whereas our task is a three choice task in which all three
pitch types are equally likely. Thus we would not expect our results
to generate a typical P300 neural response. However, recalling that
their P300 peak latencies followed their response time distribu-
tions, whereas our discriminating component preceded responses
in both stimulus- and response-locked analyses, we can reason
that our discriminator is utilizing a neural signal that precedes the
response, and therefore is not the same signal that Radlo et al. find
on a group level.

www.frontiersin.org December 2012 | Volume 6 | Article 177 | 9

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Sherwin et al. Neural correlates of baseball pitch classification

INCORRECT DECISIONS AND PREFRONTAL CORTICES
The other major finding of this paper is that for incorrectly iden-
tified pitches there is a common neuronal current source active
across our population. The timing for this activity is determined
from the peak EEG-based discrimination within each pitch and
within each subject; therefore it is controlled for the variability
between both subjects and pitches. The common neuronal activity
is found from the stimulus-locked discrimination between correct
and incorrect identifications. The timings of these peaks are after
nearly all of the response time distribution. So while likely not an
indicator of upcoming performance, this common neuronal cur-
rent source, which is peaked at MNI (−35, 55, 20) in BA 10, could
be a largely post hoc evaluation of the executed decision process.

While direct connection of this area in a baseball task has not
been reported in the literature, other studies have found its role
in prospective and working memory. For instance in PET studies,
Burgess et al. (2001, 2003) and Okuda et al. (2007) found activa-
tion of this area in a prospective memory task, i.e., a task to be
executed after a period of delay. fMRI studies have also shown this
area to be active for working memory and other recall-based tasks
(Schacter et al., 1996; Gilbert et al., 2006). In light of these findings,
it is possible that the activation we find is a post hoc evaluation of
the errant decision process, since such a process must engage the
prospective and working memory regions of the prefrontal cortex.

Furthermore, this area has also been implicated in task diffi-
culty. For example, Mangina et al. (2009) find that this location
in BA 10, among others, plays a role in monitoring task difficulty.
Considering our result from incorrect trials in this context, it is
possible that on these trials, the subjects simply could not integrate
the spatio-temporal information fast enough to make a correct
decision, thereby causing an incorrect response, which is only real-
ized in the post-response self-evaluation period. Even though this
aspect of the task was not the primary focus of our study, since
no explicit feedback was given to the subject on whether their

response was correct, it is nonetheless a possible reason for the
neuronal current source localizing in BA 10.

CONCLUSION
In summary we have identified neural markers that can be
used to determine when/where on the pitch trajectory the “hit-
ter” integrates significant evidence for classifying the pitch. We
also identified BA10 as an activated region during incorrect tri-
als. Future work will focus on using combined EEG and fMRI
(Goldman et al., 2009) to localize, with better spatial resolution,
the brain areas involved in classifying pitches. Another possi-
ble research question that results from this work is “how do
expert batters compare to novices in terms of their correspond-
ing neural markers of pitch classification?” Studying professional
or semi-professional hitters may give us insight into performance
monitoring and more efficient strategies in identifying pitches.
Finally, and more generally, our approach can be extended to other
physics-based models of visual stimuli. Interesting to consider
would be whether EEG components would be useful for identify-
ing specific physical parameters to which subjects are particularly
sensitive.
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