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Abstract: Propionic acid is a cell nutrient but also a stimulus for cellular signaling. Free fatty
acid receptor (FFAR)-3, also known as GPR41, is a Gi/o protein-coupled receptor (GPCR) that
mediates some of the propionate’s actions in cells, such as inflammation, fibrosis, and increased
firing/norepinephrine release from peripheral sympathetic neurons. The regulator of G-protein
Signaling (RGS)-4 inactivates (terminates) both Gi/o- and Gq-protein signaling and, in the heart,
protects against atrial fibrillation via calcium signaling attenuation. RGS4 activity is stimulated
by β-adrenergic receptors (ARs) via protein kinase A (PKA)-dependent phosphorylation. Herein,
we examined whether RGS4 modulates cardiac FFAR3 signaling/function. We report that RGS4 is
essential for dampening of FFAR3 signaling in H9c2 cardiomyocytes, since siRNA-mediated RGS4
depletion significantly enhanced propionate-dependent cAMP lowering, Gi/o activation, p38 MAPK
activation, pro-inflammatory interleukin (IL)-1β and IL-6 production, and pro-fibrotic transform-
ing growth factor (TGF)-β synthesis. Additionally, catecholamine pretreatment blocked propionic
acid/FFAR3 signaling via PKA-dependent activation of RGS4 in H9c2 cardiomyocytes. Finally, RGS4
opposes FFAR3-dependent norepinephrine release from sympathetic-like neurons (differentiated
Neuro-2a cells) co-cultured with H9c2 cardiomyocytes, thereby preserving the functional βAR num-
ber of the cardiomyocytes. In conclusion, RGS4 appears essential for propionate/FFAR3 signaling
attenuation in both cardiomyocytes and sympathetic neurons, leading to cardioprotection against
inflammation/adverse remodeling and to sympatholysis, respectively.

Keywords: G-protein-coupled receptor; signal transduction; FFAR3; RGS4; catecholamine; cardiomy-
ocyte; sympathetic neuron; norepinephrine; inflammation; propionic acid

1. Introduction

The short-chain free fatty acid (SCFA) propionate stimulates cellular signaling pri-
marily via two different G-protein-coupled receptors (GPCRs) and free fatty acid receptor
(FFAR)-2 and -3 [1–3]. FFAR3, also known as GPR41, regulates cardiovascular function
via effects in peripheral sympathetic neurons, wherein it promotes neuronal firing and
norepinephrine (NE) synthesis and release [4,5]. FFAR3 couples to Gi/o proteins, which
can activate phospholipase (PLC)-β2/3 and downstream calcium signaling via their free
Gβγ subunits [4]. Synapsin-2b is ultimately phosphorylated and activated to induce vesicle
fusion with the neuronal plasma membrane and NE exocytosis/synaptic release from
sympathetic nerve endings [5]. In addition, the stimulatory effect of propionate/FFAR3 in
sympathetic neurons is directly regulated by β-adrenergic receptors (ARs), since FFAR3
seems to upregulate βAR function in sympathetic ganglia [4].
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The regulator of G-protein Signaling (RGS)-4 is highly expressed in the heart and
brain [6–10]. In fact, brain RGS4 has long been a drug development target for schizophre-
nia [6,7]. It belongs to the B/R4 family of RGS proteins and inactivates Gi/o- and Gq/11
protein signaling via direct interactions with the Gα subunits of these heterotrimeric G
protein families, whose guanosine triphosphatase (GTPase) activities it dramatically aug-
ments [6–11]. Importantly, RGS4 has been reported, uniquely among RGS proteins, to also
directly bind Gi/o-derived free Gβγ subunits and PLCβ, thereby blocking PLCβ activation
and downstream calcium signaling independently of its GAP (GTPase activating protein)
action on the Gα subunits [12,13]. RGS4 is abundantly expressed in the sinoatrial (SA) and
atrioventricular (AV) nodal regions of the heart, as well as throughout the atria [14,15].
Exogenous overexpression of RGS4 in cardiomyocytes attenuates endothelin receptor sig-
naling, reducing phospholipase C (PLC)-β activation, contractility in the long term, and
cardiac hypertrophy [16–18]. Indeed, RGS4 ameliorates cardiac hypertrophy induced by
pressure overload via direct inhibition of the Gq protein-dependent pro-hypertrophic sig-
naling in murine hearts [16–18]. RGS4 is also upregulated in rat hypertrophic hearts [19]
and, importantly, in human failing hearts from both acute and end-stage chronic heart
failure patients [20,21]. Moreover, RGS4 protects against abnormal calcium transients
and signaling that can lead to tachyarrhythmias and atrial fibrillation (AFib) [10,22,23].
Taken together, these studies suggest a cardioprotective role for RGS4 in the heart and
its upregulation in pressure, overload-induced hypertrophy, and in human heart failure,
they may reflect an adaptive mechanism to compensate for compromised function and for
self-defense against toxic insults that increase myocardial oxygen demand.

FFAR3 is expressed in various tissues including in the heart [1–3] and is known to
promote tissue inflammation and, as mentioned above, sympathetic nervous system (SNS)
activity, neuronal firing, and NE release [1–3]. The latter is cardiotoxic, especially for
the failing heart, as it increases myocardial oxygen/metabolic demand [24,25]. However,
very little (virtually nothing) is currently known regarding cardiac FFAR3 signaling, per
se. Propionic acid has been reported to alleviate cardiac dysfunction in Akt2-knockout
mice [26], but that study did not examine whether its actions were FFAR3- or FFAR2-
mediated (or both). Since FFAR3 couples to Gi/o proteins, however, its signaling can very
well be a candidate for RGS4-mediated regulation. In the present study, we sought to
investigate whether RGS4 indeed regulates FFAR3 signaling in cardiac myocytes, which
could underlie part of the cardioprotective actions of RGS4. We report that RGS4 inhibits
propionic acid/FFAR3-induced Gi/o protein signaling in H9c2 cardiomyocytes, mitigating
the pro-inflammatory and pro-fibrotic signaling of FFAR3. Additionally, cardiac βARs
stimulate RGS4 to impede cardiac FFAR3 signaling. Finally, RGS4 also opposes FFAR3-
dependent NE release from cultured sympathetic neurons, thereby preserving the βAR
function of co-cultured H9c2 cardiomyocytes.

2. Results
2.1. RGS4 Inactivates Cardiac FFAR3-Stimulated Gi/O Protein Signaling

Since FFAR3 signals through Gi/o proteins, which are known to be inactivated by
RGS4, we sought to explore whether RGS4 regulates FFAR3 signaling in cardiac myocytes.
To that end, we knocked down RGS4 via siRNA in H9c2 cardiomyocytes and compared
the responses of the RGS4-depleted cells with those of control cells to propionic acid, the
prototypic SCFA agonist for FFAR3 [3]. After confirming a robust (>90%) RGS4 protein
knockdown induced by the siRNA treatment (Figure 1A), we measured propionate-induced
Giα subunit activity in the two cell clones: control (receiving scrambled siRNA) and RGS4-
depleted (transfected with rat RGS4-specific siRNA) H9c2 cardiac cells. We found that
RGS4 siRNA-mediated depletion led to a markedly higher Giα activation, as measured
by guanosine triphosphate (GTP) binding, in response to acute propionic acid stimulation
(Figure 1B). Consistent with this, inhibition of forskolin-stimulated synthesis of the second
messenger cyclic 3′, 5′-adenosine monophosphate (cAMP) was also significantly enhanced
by propionate in RGS4-depleted cardiomyocytes (Figure 1C). Taken together, these results
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suggest that indeed, RGS4 directly blocks Gi/o protein signaling stimulated by propionic
acid via FFAR3 in H9c2 cardiac myocytes.
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based on densitometric analysis of 4 independent experiments, is shown on the right. Scr: Scrambled 
siRNA (control); *, p < 0.05; n = 4 independent experiments per condition. (B) A 1 mM propionic 
acid-induced Giα activation in control (scrambled siRNA-transfected, Scr), or in RGS4-depleted 
(RGS4 siRNA) H9c2 cells. *, p < 0.05; n = 4 independent experiments. (C) A 1 mM propionic acid-
mediated inhibition of 10 μM forskolin (FSK)-induced cAMP accumulation in the same cells, ex-
pressed as a % of the inhibition observed in the control (Scr) H9c2 cardiac cells. Forskolin alone 
induced similar levels of cAMP accumulation in both cell clones (data not shown). *, p < 0.05; n = 4 
independent experiments. 
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Additionally, propionic acid-induced interleukin (IL)-1β and IL-6 synthesis and secretion 
were also increased in RGS4-knocked-down cardiomyocytes (Figure 2B), and the same 
was observed for propionic acid-dependent production of transforming growth factor 
(TGF)-β1, a major pro-fibrotic stimulus [27] (Figure 2C). Thus, it appears that propio-
nate/FFAR3 promote cardiac inflammation and fibrosis, two major cardiac-adverse, re-
modeling-related processes, and this is blocked by RGS4 via FFAR3-coupled Gi/o protein 
inactivation in cardiac myocytes.  

Figure 1. RGS4 and FFAR3-dependent Gi/o protein activation in cardiac myocytes. (A) Immunoblot-
ting for RGS4 to confirm the efficiency of the siRNA-mediated knockdown of RGS4 in H9c2 cells at
48 hrs post-siRNA transfection. A representative blot, including for glyceraldehyde 3′-phosphate
dehydrogenase (GAPDH) as a loading control, is shown on the left, and the % protein reduction,
based on densitometric analysis of 4 independent experiments, is shown on the right. Scr: Scrambled
siRNA (control); *, p < 0.05; n = 4 independent experiments per condition. (B) A 1 mM propionic acid-
induced Giα activation in control (scrambled siRNA-transfected, Scr), or in RGS4-depleted (RGS4
siRNA) H9c2 cells. *, p < 0.05; n = 4 independent experiments. (C) A 1 mM propionic acid-mediated
inhibition of 10 µM forskolin (FSK)-induced cAMP accumulation in the same cells, expressed as a
% of the inhibition observed in the control (Scr) H9c2 cardiac cells. Forskolin alone induced similar
levels of cAMP accumulation in both cell clones (data not shown). *, p < 0.05; n = 4 independent
experiments.

2.2. RGS4 Opposes Cardiac FFAR3 Pro-Inflammatory and Pro-Fibrotic Signaling

Next, we examined the functional consequences of RGS4-mediated inhibition of
FFAR3 Gi/o protein signaling in cardiac myocytes. RGS4 depletion resulted in markedly
enhanced activation of the pro-inflammatory p38 mitogen-activated protein kinase (MAPK)
in response to propionic acid stimulation in H9c2 cardiomyocytes (Figure 2A). Additionally,
propionic acid-induced interleukin (IL)-1β and IL-6 synthesis and secretion were also
increased in RGS4-knocked-down cardiomyocytes (Figure 2B), and the same was observed
for propionic acid-dependent production of transforming growth factor (TGF)-β1, a major
pro-fibrotic stimulus [27] (Figure 2C). Thus, it appears that propionate/FFAR3 promote
cardiac inflammation and fibrosis, two major cardiac-adverse, remodeling-related processes,
and this is blocked by RGS4 via FFAR3-coupled Gi/o protein inactivation in cardiac
myocytes.
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quantitation on the right. Prop: Propionate. *, p < .05; n = 3 independent experiments performed in 
triplicate. (B, C) A 1 mM propionate-induced IL-1β and IL-6 (B) or TGF-β1 (C) protein synthesis in 
these cells. *, p < .05, vs. respective Scr; n = 3 independent measurements per condition per cell clone. 
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stimulates both β1- and β2ARs, or salbutamol (albuterol), which is a β2AR-selective agonist 
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H9c2 cardiomyocytes (Figure 3A), but both catecholamines failed to do so in RGS4-de-
pleted cells (Figure 3B). Furthermore, in the presence of H89, a well-characterized PKA 
inhibitor [30], neither isoproterenol nor salbutamol, had any detectable effect on propionic 
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Figure 2. RGS4 and FFAR3 signaling in cardiac myocytes. (A) A 1 mM propionate-induced p38
MAPK phosphorylation/activation in the control (scrambled siRNA-transfected, Scr) or in RGS4-
depleted (RGS4 siRNA) H9c2 cells. A representative blot is shown on the left and the densitometric
quantitation on the right. Prop: Propionate. *, p < 0.05; n = 3 independent experiments performed
in triplicate. (B,C) A 1 mM propionate-induced IL-1β and IL-6 (B) or TGF-β1 (C) protein synthesis
in these cells. *, p < 0.05, vs. respective Scr; n = 3 independent measurements per condition per cell
clone.

2.3. β ARs Reduce Cardiac FFAR3 Signaling via PKA-Dependent RGS4 Stimulation

Protein kinase A (PKA), the major effector of cAMP, has been reported to directly
phosphorylate and activate RGS4, by inducing its plasma membrane translocation, in
cultured smooth muscle cells, with Ser52 of RGS4, being one of the major phosphorylation
sites [13]. Since βARs activate PKA via coupling to Gs proteins, whose Gα subunits
stimulate adenylyl cyclase-mediated cAMP synthesis [26,27], we next examined whether
PKA activates RGS4 also in cardiomyocytes, thereby mediating a βAR-FFAR3 crosstalk
in the heart. Indeed, pretreatment of H9c2 cardiomyocytes with either isoproterenol,
which stimulates both β1- and β2ARs, or salbutamol (albuterol), which is a β2AR-selective
agonist [27–29], markedly reduced propionic acid-elicited Giα activity in control and
wild-type H9c2 cardiomyocytes (Figure 3A), but both catecholamines failed to do so in
RGS4-depleted cells (Figure 3B). Furthermore, in the presence of H89, a well-characterized
PKA inhibitor [30], neither isoproterenol nor salbutamol, had any detectable effect on
propionic acid-dependent Giα activation in the native, wild-type H9c2 cardiomyocytes
(Figure 3B). Taken together, these results strongly suggest that catecholamines via both
β1- and β2ARs induce PKA-dependent activation of RGS4, which subsequently impedes
FFAR3 signaling in cardiac myocytes.
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Giα activation in native H9c2 cells treated with 1 mM propionate, 10 μM isoproterenol (Iso), 10 μM 
salbutamol (Salb), or a combination thereof. *, p < 0.05, vs. basal (no treatment); NS: Not significant 
(vs. basal-No treatment) at p = 0.05; n = 3 independent measurements (in duplicate) per condition. 
(B) Giα activation in RGS4-depleted (RGS4 siRNA) or in native H9c2 cells pre-treated with 10 μM 
H89 (H89), in response to 1 mM propionate alone, or to 1 mM propionate in the presence of 10 μM 
isoproterenol (Iso) or 10 μM salbutamol (Salb). *, p < 0.05, vs. respective basal (no treatment); NS: 
Not significant (vs. respective propionate alone) at p = 0.05; n = 3 independent determinations (in 
duplicate) per condition per cell clone. 
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wild-type) H9c2 cardiac myocytes, and, 24 h post-propionic acid treatment, we measured 
the βAR membrane density of the H9c2 cardiac cells. Propionate treatment of the control 
neuronal cells led to a significant βAR agonist-dependent downregulation in the co-cul-
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was reduced to 9.3 + 1.8 fmol/mg of protein upon propionate stimulation of co-cultured 
control Neuro-2A cells (n = 4 independent determinations per condition) (Figure 4B). 
However, cardiomyocyte βAR membrane density was substantially higher 24 h post-pro-
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fmol/mg of protein, n = 4; Figure 4B). That was presumably because of the lower NE re-
lease from the RGS4-overexpressing neuronal cells, which reduced the levels of NE acti-
vating the H9c2 cardiomyocyte-residing βARs, causing their homologous downregula-
tion. Taken together, these findings indicate that RGS4 opposes propionate/FFAR3 signal-
ing also in sympathetic neurons, which may lower neuronal activity and NE release, 
thereby largely preserving βAR density/function of the innervated myocardium.  

Figure 3. βARs negatively regulate FFAR3 signaling via RGS4 and PKA in cardiac myocytes. (A)
Giα activation in native H9c2 cells treated with 1 mM propionate, 10 µM isoproterenol (Iso), 10 µM
salbutamol (Salb), or a combination thereof. *, p < 0.05, vs. basal (no treatment); NS: Not significant
(vs. basal-No treatment) at p = 0.05; n = 3 independent measurements (in duplicate) per condition.
(B) Giα activation in RGS4-depleted (RGS4 siRNA) or in native H9c2 cells pre-treated with 10 µM
H89 (H89), in response to 1 mM propionate alone, or to 1 mM propionate in the presence of 10 µM
isoproterenol (Iso) or 10 µM salbutamol (Salb). *, p < 0.05, vs. respective basal (no treatment); NS:
Not significant (vs. respective propionate alone) at p = 0.05; n = 3 independent determinations (in
duplicate) per condition per cell clone.

2.4. RGS4 Inhibits FFAR3-Stimulated NE Release from Sympathetic Neurons

Since FFAR3 is also involved in sympathetic neuronal activation stimulating NE re-
lease [4], we also checked for a potential regulatory role of RGS4 in cardiac sympathetic
neuronal FFAR3 signaling. To mimic the in vivo situation of cardiac sympathetic nerve
terminals releasing NE directly into cardiac myocytes, we co-cultured H9c2 cardiomyocytes
together with nerve growth factor (NGF)-differentiated mouse Neuro-2A cells, known
to synthesize and release NE (as well as dopamine), thus, functioning, in essence, like
sympathetic neurons [4,31]. Given that endogenous FFAR3 expression in Neuro-2A cells is
equivocal (very low at best) [4], we transfected these neuroblastoma cells to express human
FFAR3, prior to their NGF-elicited neuronal differentiation. Propionate treatment led to
significant NE release from the FFAR3-expressing differentiated Neuro-2A cells, which
was partially blocked by RGS4 lentiviral-mediated overexpression (Figure 4A). We then
co-cultured RGS4-overexpressing or control neuronal cells together with (native, wild-type)
H9c2 cardiac myocytes, and, 24 h post-propionic acid treatment, we measured the βAR
membrane density of the H9c2 cardiac cells. Propionate treatment of the control neuronal
cells led to a significant βAR agonist-dependent downregulation in the co-cultured car-
diomyocytes, as expected due to the propionate/FFAR3-elicited NE release into the cell
co-culture medium (Figure 4B). Specifically, normal (basal) total βAR membrane density
of H9c2 cardiomyocytes was estimated at 21.1 ± 1.05 fmol/mg of protein and it was re-
duced to 9.3 ± 1.8 fmol/mg of protein upon propionate stimulation of co-cultured control
Neuro-2A cells (n = 4 independent determinations per condition) (Figure 4B). However,
cardiomyocyte βAR membrane density was substantially higher 24 h post-propionate
challenge, when co-cultured with RGS4-overexpressing neuronal cells (16.2 ± 1.2 fmol/mg
of protein, n = 4; Figure 4B). That was presumably because of the lower NE release from the
RGS4-overexpressing neuronal cells, which reduced the levels of NE activating the H9c2
cardiomyocyte-residing βARs, causing their homologous downregulation. Taken together,
these findings indicate that RGS4 opposes propionate/FFAR3 signaling also in sympathetic
neurons, which may lower neuronal activity and NE release, thereby largely preserving
βAR density/function of the innervated myocardium.
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conditions, i.e., without propionate stimulation (data not shown). *, p < 0.05; n = 5 independent 
measurements per condition per cell clone. (B) βAR density (Bmax) in plasma membranes isolated 
from H9c2 cardiomyocytes at 24 hrs post-stimulation with 1 mM propionate (Prop) or vehicle (Ba-
sal) of co-cultured control, wild-type (WT) or RGS4-overexpressing (RGS4 OE) N2a cells. The βAR 
density measured with vehicle-treated RGS4-overexpressing N2a cells (Basal/RGS4 OE N2a) was 
similar to the one calculated with Basal/WT N2a cells (not shown). *, p < 0.05, vs. Basal/WT N2a; #, p 
< 0.05 vs. Prop/WT N2a; n = 3 independent determinations per condition per cell clone. 
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markedly reduced agonist (NE)-dependent downregulation of βARs in co-cultured cardi-
omyocytes, which suggests that RGS4 in sympathetic neurons has the potential of pre-
serving, at least in part, the adrenergic and inotropic reserves of the failing heart. This is 
also consistent with the old studies showing a cardioprotective effect of RGS4 against 
pressure overload (increased afterload)-induced hypertrophy [16,18]. Indeed, apart from 
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that diminishes cardiac function [17,18], cardiac RGS4 overexpression was shown in that 
1999 study [16] to preserve the positive inotropic response of transgenic mice to the 

Figure 4. RGS4 and neuronal FFAR3-mediated NE release. (A) Levels of NE released into the culture
medium from the control (infected with a lentivirus encoding for green fluorescent protein, LentiGFP)
or RGS4-overexpressing (infected with a lentivirus encoding for full length RGS4, LentiRGS4) dif-
ferentiated Neuro-2A (N2a) cells in response to 1 mM of propionate stimulation. No statistically
significant difference in NE release was observed between the two cell clones under basal conditions,
i.e., without propionate stimulation (data not shown). *, p < 0.05; n = 5 independent measurements
per condition per cell clone. (B) βAR density (Bmax) in plasma membranes isolated from H9c2 car-
diomyocytes at 24 hrs post-stimulation with 1 mM propionate (Prop) or vehicle (Basal) of co-cultured
control, wild-type (WT) or RGS4-overexpressing (RGS4 OE) N2a cells. The βAR density measured
with vehicle-treated RGS4-overexpressing N2a cells (Basal/RGS4 OE N2a) was similar to the one
calculated with Basal/WT N2a cells (not shown). *, p < 0.05, vs. Basal/WT N2a; #, p < 0.05 vs.
Prop/WT N2a; n = 3 independent determinations per condition per cell clone.

3. Discussion

In the present study, we have uncovered an important regulatory role for RGS4 at
keeping propionic acid signaling through FFAR3/GPR41 in check in both cardiomyocytes
and sympathetic neurons (Figure 5). On the one hand, myocardial FFAR3 activated by
SCFAs, such as propionic acid, upregulates several pro-inflammatory (IL-1β, IL-6, activated
p38 MAPK) [32] and pro-fibrotic (e.g., TGFβ [26]) factors, which is highly likely to lead
to exacerbated adverse remodeling in the presence of a cardiac insult, such as myocardial
ischemia/infarction or pressure overload/severe hypertension (Figure 5). Furthermore,
TGFβ, but also inflammation and fibrosis in general, have been implicated in cardiac
aging [33–35]. Thus, FFAR3 signaling may also promote cardiac aging and RGS4, and
by opposing FFAR3 effects, may have anti-aging properties in the heart. On the other
hand, FFAR3 present in post-ganglionic sympathetic neurons, including cardiac sympa-
thetic nerve terminals, promotes neuronal firing and activity resulting in elevated NE
release [4] (Figure 5). RGS4 terminates FFAR3 Gi/o protein-dependent signaling in both
cell types (cardiomyocytes and sympathetic neurons), thereby lowering propionic acid-
dependent cardiac inflammation/fibrosis and sympathetic activity/NE release at the same
time (Figure 5). The latter is particularly useful in the setting of chronic heart failure, during
which the failing heart needs to be protected against the toxicity of elevated catecholamine
levels [36–38].

Indeed, we found that inhibition of neuronal FFAR3-dependent NE release by RGS4
markedly reduced agonist (NE)-dependent downregulation of βARs in co-cultured car-
diomyocytes, which suggests that RGS4 in sympathetic neurons has the potential of pre-
serving, at least in part, the adrenergic and inotropic reserves of the failing heart. This
is also consistent with the old studies showing a cardioprotective effect of RGS4 against
pressure overload (increased afterload)-induced hypertrophy [16,18]. Indeed, apart from
shielding the heart from pathological Gq protein-dependent pro-hypertrophic signaling
that diminishes cardiac function [17,18], cardiac RGS4 overexpression was shown in that
1999 study [16] to preserve the positive inotropic response of transgenic mice to the cate-
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cholaminergic agonist dobutamine post-pressure overload. Taken together, these findings
strongly suggest that RGS4, in both the heart and the sympathetic nervous system, may
serve as an important molecular brake for the cardiotoxic effects of propionic acid/FFAR3
signaling. Therefore, systemic RGS4 pharmacological stimulation might be of therapeu-
tic value in heart disease, particularly in chronic human heart failure and in systemic
hypertension.
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Our present study expands on the already established cardioprotective role of RGS4,
which is upregulated, most likely as a compensatory mechanism, in the hearts of experi-
mental animals of cardiac hypertrophy secondary to aortic or pulmonary artery banding
in vivo [19] and in human failing hearts explanted from dilated or ischemic cardiomyopathy
patients, or from end-stage or acute human heart failure patients [10,20,21]. Additionally,
RGS4 exerts crucial cardioprotective effects in the atrial myocardium against AFib patho-
genesis and pro-arrhythmogenic Ca2+ transient generation [9,10,22,23].

In contrast to its well-documented actions in the myocardium, little (if anything at all)
is known about the effects of RGS4 in sympathetic neurons. FFAR3 is robustly expressed in
murine peripheral sympathetic neurons, including cardiac sympathetic nerve terminals,
wherein it regulates not only cell metabolism but also neuronal activity via stimulation of
NE release [4] (Figure 5). Although both NE and epinephrine mediate the effects of the
sympathetic nervous system on all cells and tissues, NE is the neurotransmitter synthesized,
stored, and released from sympathetic neurons, whereas epinephrine is a hormone syn-
thesized in the adrenal medulla and secreted into the systemic circulation [39–41]. FFAR3
knockout mice display significantly lower catecholamine synthesis, as evidenced by ty-
rosine hydroxylase downregulation, the enzyme that catalyzes the rate-limiting step of
catecholamine biosynthesis [42], as well as lower sympathetic neuronal firing rate and
heart rate [1,4].

Mechanistically, FFAR3 stimulates NE release via Gi/o-derived free Gβγ subunit
activation of PLCβ2/3 [4]. PLCβ2/3, in turn, induces Ca2+ signaling that ultimately results in
activation of extracellular signal-regulated kinase (ERK)1/2, which then has phosphorylate
synapsin-2b at Ser426 to induce vesicle fusion with the neuronal plasma membrane and
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subsequent NE release from sympathetic nerve endings [5]. RGS4 is known to directly bind
not only Gα subunits (which it deactivates via its RGS function), but also Gi/o-derived
free Gβγ subunits and PLCβ, thereby inhibiting PLCβ activation directly (independently
of its RGS function) [12,13]. It is thus tempting to speculate that direct PLCβ binding
and inhibition is the mechanism underlying RGS4’s inhibitory effect on neuronal FFAR3
signaling towards NE release (and perhaps also some of its effects on cardiac FFAR3
signaling). However, this awaits verification in future studies and efforts to delineate the
full signaling pathway(s) underlying the effects of RGS4 on cardiac and neuronal FFAR3
signaling are under way in our laboratory.

Finally, we have uncovered an important RGS4-centric regulatory negative feedback
loop operating in cardiac myocytes between βARs (in particular, β2AR) and FFAR3: βAR-
activated PKA phosphorylates and stimulates RGS4 to abrogate SCFA/FFAR3 signaling
and function in cardiac myocytes (Figure 5). At the same time, FFAR3-activated Giα
inhibits adenylyl cyclase and thus, cAMP synthesis, reducing PKA activation, which
would indirectly decrease βAR-dependent RGS4 activity and enhance FFAR3 signaling.
However, this may not be the case given a very recent study that suggests the existence of
receptor-associated independent cAMP nanodomains operating as individual, independent
cell signaling units inside the same cell; in other words, a GPCR may not interfere with
the cAMP pool associated with a different receptor, despite residing at the same plasma
membrane and perhaps even in close proximity with one another [43]. It should also
be noted here that RGS4, like all other canonical RGS proteins identified to date, does
not directly affect (i.e., inactivates) Gsα subunits, to which βARs normally couple [11].
The presence of this RGS4-mediated regulatory crosstalk between βARs and FFAR3 is
entirely consistent with the finding by Kimura et al. that the effect of propionate/FFAR3
on heart rate was suppressed by pretreatment with the non-subtype selective β-blocker
propranolol, which suggested reciprocal regulation of FFAR3 signaling by βARs [4]. It is
also in line with the role of PKA in PLCβ blockade, (in part) via RGS4 activation, in gastric
smooth muscle cells [13]. Thus, it seems that PKA activates RGS4 via phosphorylation
in the heart, as well. Moreover, since β2AR-activated RGS4 obstructs cardiac FFAR3 pro-
inflammatory and pro-fibrotic signaling (Figure 5), these findings are also consistent with a
potential beneficial role for the cardiac β2AR subtype in cardiac reverse remodeling [26,31],
in direct juxtaposition to the much more abundant β1AR subtype [28,36,44]. Of note,
in addition to the cardiac βAR–FFAR3 crosstalk via RGS4, a similar negative feedback
crosstalk also exists between sympathetic neuronal FFAR3 and cardiac βARs (Figure 5).
More specifically, neuronal FFAR3 increases the amount of NE that activates cardiac βARs,
promoting βAR homologous desensitization and downregulation in the myocardium
that, over time, diminishes cardiac βAR function and number [36]. RGS4 again opposes
neuronal FFAR3-dependent NE release, thereby helping to counteract βAR homologous
desensitization/downregulation and to preserve myocardial βAR function (Figure 5).

The present study has two major limitations: (a) Although it was done in physiolog-
ically relevant (cardiomyocyte-like and sympathetic neuron-like) cells, these cells were
not, nonetheless, primary bona fide differentiated cells; and (b) Our findings obviously
require confirmation in in vivo models and settings. Nevertheless, given that the cell lines
we employed closely mimicked primary, differentiated cell cultures and were still phys-
iologically relevant, our present findings are quite likely to hold true in the heart and in
cardiac sympathetic neurons in vivo, as well.

In summary, we report here, for the first time to our knowledge, that: (a) Cardiac
FFAR3 promotes inflammation and fibrosis via its classic Gi/o protein signaling, which
is opposed by RGS4; (b) Catecholamines negatively modulate cardiac FFAR3 signaling
via PKA-mediated RGS4 activation; and (c) RGS4 dampens FFAR3 signaling towards NE
release in sympathetic neurons, thereby potentially affording sympatholysis that can help
preserve cardiac βAR function, especially in the setting of chronic heart failure. Cardiac, as
well as neuronal, RGS4 stimulation might, thus, be advantageous in helping the failing heart
cope with the toxic effects, both direct and indirect (via sympathetic hyperactivation), of
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SCFAs that are aberrantly upregulated in human heart failure [45,46]. If confirmed in vivo,
these findings will expand the growing list of beneficial effects of RGS4 in the myocardium,
which already includes keeping heart rate and post-pressure overload cardiac hypertrophy
in check. Although the focus of RGS protein-targeted drug discovery efforts has been
almost exclusively on development of inhibitors, stimulation of specific RGS proteins is
therapeutically desirable for certain conditions [10] and pharmacologically feasible, at least
indirectly, by targeting RGS protein expression (i.e., inhibiting degradation/increasing
stability of the RGS protein) [7]. Our present study provides substantial evidence that,
in the case of cardiac FFAR3 signaling, development of an RGS4 activator or expression
enhancer may be worth pursuing.

4. Materials and Methods
4.1. Materials

All chemicals and pharmacological agents, including propionic acid, forskolin, isopro-
terenol, and salbutamol, were from Sigma-Aldrich (St. Louis, MO, USA).

4.2. Cell Culture, Transfections, and Treatments

The H9c2 rat cardiomyoblast and Neuro-2A mouse neuroblastoma cell lines were
purchased from American Type Culture Collection (Manassas, VA, USA) and cultured as
previously described [4,47]. For siRNA-mediated knockdown of RGS4 in H9c2 cells, an
siRNA against rat RGS4 [Target RefSeqID: NM_017214, Rgs4 gene of the Rattus norvegi-
cus species; Sequences: CCAAAUAUUGAUCUGUAUUdTdT (Sense); AAUACAGAU-
CAAUAUUUGGdTdT (Antisense)] was designed and synthesized (Sigma-Aldrich), along
with a negative control (scrambled siRNA oligo, Cat. #SIC001; also from Sigma-Aldrich).
Cells were transfected with either the RGS4-specific siRNA or the negative control (Scram-
bled) using the Mission® siRNA transfection reagent (Cat. #S1452; Sigma-Aldrich) and 48 h
later, Western blotting for RGS4 protein levels was performed to ascertain the efficiency
of the knockdown. For RGS4 overexpression in Neuro-2A cells, the cells were first trans-
fected (via the Lipofectamine® 3000 Transfection Reagent method; ThermoFisher Scientific,
Waltham, MA, USA) with a human FFAR3-encoding cDNA (CloneID #OHu24442, RefSeq
#NM_005304.4; GenScript Biotech, Piscataway, NJ, USA) to overexpress FFAR3, and then
differentiated into sympathetic-like neurons via daily treatments with 50 ng/mL NGF
(Sigma-Aldrich) for 5 consecutive days [48]. Subsequently, infections of the differentiated
Neuro-2A cells were performed with either a lentiviral construct encoding for full-length
RGS4 (Lenti-CMV-RGS4v1, Cat. #LH848503; Vigene Biosciences/Charles River Laborato-
ries, Rockville, MD, USA) to overexpress RGS4, or a control construct encoding for GFP
(Cat. #CV10002; also from Charles River Laboratories). RGS4 overexpression was verified
via Western blotting 48 hrs post-infection. For the Giα activity assay, plasma membranes
were prepared from the H9c2 cells, and the ligands/agonists were added directly into the
assay’s well plate immediately prior to the addition of the membrane suspension. For
cAMP accumulation and p38 MAPK activation determinations, cells were harvested 30 min
after agent/drug application, whereas for the ELISA measurements of IL-1β, Il-6, and
TGFβ, cells were harvested 12 h post-treatment. Finally, NE release was measured 6 h
post-propionate treatment, while H9c2 cardiomyocyte βAR density was assayed 24 h (the
next day) post-propionic acid application to the H9c2-N2a cell co-culture.

4.3. Giα Activity Assay and cAMP Accumulation Determination

Giα activation was determined on isolated plasma membranes from H9c2 cells us-
ing a HTRF (homogeneous time-resolved fluorescence)-based GTP Gi binding assay kit
(Cat. #62GTPPET; Cisbio-PerkinElmer, Inc., Waltham, MA, USA) and following the man-
ufacturer’s protocols/instructions [49]. In essence, this assay measures the level of Giα
activation following agonist stimulation of a GPCR, thanks to the use of a europium-labeled
GTP analog (Eu-GTP). During the activation process of the heterotrimeric Gi protein, GDP
dissociates from the Giα subunit and gets replaced by the assay’s fluorescent Eu-GTP
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analog that now binds to the Giα subunit, as the latter goes from its inactive to its active
state. The fluorescent signal emitted by the Giα-bound Eu-GTP analog is detected via
addition of an anti-Giα antibody, with the fluorescence intensity levels measured being
directly proportional to the level of Giα activity. cAMP accumulation was measured with
the “Direct cAMP ELISA kit” (Cat. #ADI-900-066; Enzo Life Sciences, Farmingdale, NY,
USA), as described previously [27].

4.4. ELISA and Western Blotting

H9c2 cell extracts were prepared, as described previously [47], in a 20 mM Tris pH 7.4
buffer containing 137 mM of NaCl, 1% Nonidet P-40, 20% glycerol, 10 mM PMSF, 1 mM
Na3VO4, 10 mM NaF, 2.5 mg/mL aprotinin, and 2.5 mg/mL leupeptin. Protein concen-
tration was determined and equal amounts of protein per sample were used for ELISA or
Western blotting. ELISA determinations for rat IL-1β (Cat. #EA-3005), rat IL-6 (Cat. #EA-
3002), and rat TGFβ (Cat. #EA-3016) were done using kits from Signosis, Inc. (Santa Clara,
CA, USA). NE levels released into cell culture medium/supernatant were also determined
via ELISA, using the Alpco Ltd. Bi-CAT (Epinephrine and Norepinephrine) ELISA kit (Cat.
#50-751-3487; ThermoFisher Scientific). RGS4 protein levels and p38 MAPK phosphory-
lation/activation were measured via Western blotting with antibodies against rat RGS4
(Cat. #9195; Cell Signaling Technology, Danvers, MA, USA), coupled with immunoblotting
for GAPDH, as loading control, with an anti-GAPDH antibody (Cat. #sc-25778; Santa
Cruz Biotechnology, Santa Cruz, CA, USA), and against phospho-p38 MAPK (Cat. #4511;
Cell Signaling Technology). Immunoblots were revealed by enhanced chemiluminescence
(ECL, Life Technologies, Grand Island, NY, USA) and visualized in a FluorChem E Digital
Darkroom (Protein Simple, San Jose, CA, USA), as described previously [27]. Densitometry
was performed with the AlphaView software (Protein Simple) in the linear range of signal
detection (on non-saturated bands).

4.5. βAR Density Measurements

βAR density was measured in isolated plasma membranes using 125I-CYP (Iodocyanopin-
dolol; PerkinElmer, Inc.), as described [37]. Briefly, at 24 h post-propionate application,
H9c2 cells were harvested, and plasma membrane fractions were prepared via lysis in a
hypotonic buffer containing Tris.Cl (pH 7.5), EDTA (pH 8), EGTA, and protease inhibitors,
followed by ultracentrifugation (62,000 rpm for 1 h at 4 ◦C). Protein content was determined
and then incubations with 125I-CYP were performed in the presence of 80 µM alprenolol
(for non-specific binding determination). The reactions were terminated in a cell harvester,
followed by sample loading onto a gamma counter (Beckman Coulter, Brea, CA, USA)
for radioactivity counts determination. Receptor densities are expressed as fmol/mg of
membrane protein.

4.6. Statistical Analysis

Data are generally expressed as mean ± SEM. Unpaired 2-tailed Student’s t test and
one- or two-way ANOVA with Bonferroni test were generally performed for statistical com-
parisons, unless otherwise indicated. For most 3-group statistical comparisons, Dunnett’s
test using SAS version 9 software (Cary, NC, USA) was used, as well. For all tests, a p value
of <0.05 was generally considered to be significant.
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