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Abstract

Background: Cigarette smoke (CS) is the main cause in the development of chronic obstructive
pulmonary disease (COPD), the pathogenesis of which is related to an extended inflammatory
response. In this study, we investigated the effect of low and high doses of gas phase cigarette
smoke (GPS) on cultured lymphocyte progenitor cells, using techniques to assess cell viability and
to elucidate whether cells die of apoptosis or necrosis upon exposure to different doses of GPS.

Methods: In our approach we utilised a newly-established system of exposure of cells to GPS that
is highly controlled, accurately reproducible and simulates CS dosage and kinetics that take place
in the smokers' lung. This system was used to study the mode of cell death upon exposure to GPS
in conjunction with a range of techniques widely used for cell death studies such as Annexin V
staining, activation of caspase -3, cytoplasmic release of cytochrome C, loss of mitochondrial
membrane potential and DNA fragmentation.

Results: Low doses of GPS induced specific apoptotic indexes in CCRF-CEM cells. Specifically,
cytochrome C release and cleaved caspase-3 were detected by immunofluorescence, upon
treatment with |-3 puffs GPS. At 4 h post-exposure, caspase-3 activation was observed in western
blot analysis, showing a decreasing pattern as GPS doses increased. Concomitant with this
behaviour, a dose-dependent change in Ay, depolarization was monitored by flow cytometry 2 h
post-exposure, while at 4 h Ay, collapse was observed at the higher doses, indicative of a shift to
a necrotic demise. A reduction in DNA fragmentation events produced by 5 puffs GPS as compared
to those provoked by 3 puffs GPS, also pointed towards a necrotic response at the higher dose of
GPS.

Conclusion: Collectively, our results support that at low doses gas phase cigarette smoke induces
apoptosis in cultured T-lymphocytes, whereas at high doses GPS leads to necrotic death, by-passing
the characteristic stage of caspase-3 activation and, thus, the apoptotic route.

(page number not for

Page 1 of 13

citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19744320
http://respiratory-research.com/content/10/1/82
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Respiratory Research 2009, 10:82

Background

Tobacco smoke contains more than 4000 compounds
[1,2] that have been shown to cause carcinogenesis and
other serious lung diseases, such as chronic obstructive
pulmonary disease (COPD) [3-6]. Cigarette smoke (CS)
consists of the gaseous phase (GPS) and the particulate
matter (tar) [7]. Although the carcinogenic properties of
chemicals in tar are well known [8], more recent studies
have emerged demonstrating major cytotoxic effects on
pulmonary and immune cells attributed to the gaseous
phase [7,9-11]. The effect of these compounds can be
both direct on the most critical line of defence of the air-
way epithelium [7,12,13] and indirect evoking immune
responses, which in turn have a deleterious effect on lung
structure [13,14]. In the case of COPD, the progressive
destruction of pulmonary tissue has been attributed to
inflammation, oxidative stress and proteolysis, the under-
lying death mechanism of which is still a matter under
debate. However, several studies have clearly shown that
metabolically-activated or direct action genotoxic compo-
nents and inhibitors of DNA repair in GPS may contribute
to DNA damage and to smoking-related diseases of the
upper aero-digestive tract [15].

In the past decade, a number of studies were carried out in
order to characterise the mode of death of cells challenged
with different doses of cigarette smoke [16-19]. Taking
this into consideration, there has been increasingly
intense interest in the effects of GPS. A common denomi-
nator in many of these in vitro studies has been an over-
whelming system for CS administration. The practice of
cigarette smoke extract or condensate (CSE or CSC)
assumes the application of a large quantity of toxic sub-
stances on cell cultures, since the toxic load of a whole cig-
arette is withheld within a relatively small volume of
diluents [20-22]. This locally creates a direct and appro-
priate critical mass of toxic substances, so that the defence
mechanisms of the cells are promptly depleted. Such
cumulative condition with large quantities of toxic/carci-
nogenic substances in the cell culture could occur only
with exceptional difficulty during normal smoking.

Various studies present conflicting evidence as to whether
cells exposed to tobacco smoke die of apoptosis or due to
necrosis, or both [16-20,22]. Given that the approach of
CSE or CSC administration relates to overdosing cultured
cells with CS constituents, then it is not surprising that
many of these studies support the idea of necrotic death.
Our approach is unique as we employed a method
[11,23] for highly controlled and accurately reproducible
cell exposure to gas phase CS that closely resembles the
dosage and gas kinetics of CS in the smokers' lung, in con-
junction with standard techniques to evaluate and quan-
tify the mode of cellular death. In our study, we utilised a
well-established lymphoblast cell line to examine CS tox-
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icity in vitro. The lymphocyte cell system has previously
been used in cell death research and is now considered a
model system for similar studies [24-26]. In our experi-
ments, the use of the CCRF-CEM cell line served an addi-
tional purpose: T cells are widely recruited in the sites of
lung inflammation attributed to CS [27]; however, their
precise function and involvement in lung tissue destruc-
tion remain to be elucidated. It is therefore of paramount
importance to study the fate of T cells in response to vari-
ous doses of tobacco smoke in vitro. Our results clearly
demonstrate that the effects of CS administration are both
dose- and time-dependent and that apoptosis is an active
process triggered by tobacco smoke constituents at low
toxicity. Necrosis, on the other hand, is a predominant
phenomenon in cultures exposed to high toxicity GPS.

Methods

Cell culture

The human T-lymphoblastoid cell line CCRF-CEM (ATCC
cat. No. CCL-119) was maintained in RPMI 1640 medium
(Biochrom, Berlin, Germany) supplemented with 10%
fetal bovine serum (FBS), L-glutamine (2 mM) and peni-
cillin/streptomycin (100 U/ml). Cultures were grown in
suspension in a 37°C/5% CO, humidified incubator.
Prior to experiments, cells were counted on a Neubauer
Haemocytometer and cell viability was assessed with
0.5% Trypan Blue staining. For experimental purposes,
cells were transferred to 6-well or 96-well tissue culture
plates (Greiner Bio-One, Austria) at a density of 1 x 10°
cells/ml, unless otherwise stated.

Cell exposure to Gas Phase Smoke (GPS)

Kentucky 1R3F research-reference filter cigarettes (The
Tobacco Research Institute, University of Kentucky, Lex-
ington, KY) were used throughout this study. Prior to use,
cigarettes were conditioned for at least 48 h (up to 6 days),
in a controlled environment chamber (Environ-Cab, Lab-
Line Instruments Inc., IL, USA) at 22 + 0.5°C temperature
and 60 + 1% humidity. Smoke was generated with a
mechanical smoking machine (SM410, Cerulean, UK)
according to ISO rules (2 seconds puff duration, 35 ml
puff, bell shape puff profile, 1 minute puff cycle). In order
to remove the particulate matter and obtain gas phase
smoke (GPS), the cigarette smoke was passed through
Cambridge filters rated to withhold 99.9% of all particles
> 0.01 um in diameter.

The second puff of a single 1R3F cigarette was used to gen-
erate each puff of GPS. The GPS was pumped directly into
a gas-tight volumetric exposure chamber containing the
cells in the lid-less multi-well format plates. Following
GPS exposure, the cells were returned to the 37°C/5%
CO, incubator for the specified incubation time.
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Cytotoxicity Assay

Cytotoxicity was assessed using the LDH assay (Roche
Applied Science, Indianapolis, IN, USA), according to the
manufacturer's instructions. Briefly, 2 x 104 cells per well
were seeded in four flat-bottomed 96-well plates. The cells
were treated with the required GPS dose (1, 3 or 5 puffs),
whereas a plate was left untreated (control). Five repli-
cates were included for each sample.

All cells were washed in 1% FBS medium and were finally
resuspended in 1% FBS medium for assaying purposes. In
the control plate, one row of cells was resuspended in 1%
Triton buffer (1% Triton-X-100 in 1% FBS medium) and
was incubated at 37°C for the maximum time allowed
(24 hours) to assay for the maximum amount of LDH
released from the cells (high control). Control cells that
were assayed for LDH immediately after seeding provided
the low control to determine basal levels of LDH release
in the cell population. LDH was also assayed for in the 1%
FBS medium to correct for LDH background in serum.
Experimental samples were assayed at 1, 4 and 24 hours
post-exposure to GPS. Like control cells, the treated sam-
ples were washed and resuspended in 1% FBS medium
prior to assaying.

Following incubation, the supernatants of all samples
were collected and spun to rid of cell remnants. The
cleared supernatants were mixed 1:1 with the dye/catalyst
mix, as per the manufacturer's protocol. The amount of
LDH was measured using a TECAN spectrofluorimeter at
430 nm, using a 620 nm reference filter. Percent (%) cyto-
toxicity was calculated using the average of the 5 replicates
and the formula provided by the manufacturer.

Annexin V-Propidium lodide assay

To determine the percentage of apoptotic cells and differ-
entiate these from necrotic populations, an Annexin V-flu-
orescein isothiocyanate (FITC)/Propidium Iodide (PI)
detection kit (556547, BD Biosciences, UK) was used.

CCRF-CEM cells were exposed to 1, 3 or 5 puffs of GPS
and were subsequently incubated for 2 hours. At the end
of the incubation period, cells were collected, washed in
cold PBS and stained with Annexin V FITC/PI, according
to the manufacturer's instructions. Untreated cells were
also stained, in order to determine the spontaneous apop-
totic index of the cellular population. A 2 uM stau-
rosporine (S4400, Sigma-Aldrich) (STS)-treated cell
population, which was also harvested at 2 hours, was
included as a positive control for apoptosis. Vehicle con-
trol was also included.

The cell suspensions were immediately analyzed using a
FACSCalibur flow cytometer (BD Biosciences, UK),
equipped with a 488 nm argon laser and the appropriate
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filter sets. Green fluorescence for FITC was collected using
a 530/30 bandpass filter and red fluorescence for PI using
a 585/42 bandpass filter. For each sample, ten thousands
events were acquired and statistically analysed using Cel-
1Quest software version 7.5.3 (BD Biosciences, UK).

FACS analysis of mitochondrial membrane potential

For analysis of the mitochondrial inner membrane poten-
tial (Ay,) in whole cells, the membrane-permeable
lipophilic cationic fluorochrome JC-1 was utilised (Mito-
screen kit, BD Biosciences, UK). In live cells, JC-1 exhibits
potential-dependent accumulation in mitochondria
forming J-aggregates. These aggregates can be detected
within the red fluorescence spectrum (~590 nm), in con-
trast to the green fluorescence (~529 nm) emitted by JC-1
monomers. An increase in green fluorescence indicates
depolarization of the mitochondrial membrane potential.

Briefly, CCRF-CEM cells, treated with GPS or STS as previ-
ously described, were collected by centrifugation (400 g).
The cells were resuspended at 1 x 10¢/ml in pre-warmed
JC-1 working buffer containing 2 uM JC-1 and incubated
for 15 min in a 37°C/5% CO, incubator. Subsequently,
the cells were washed in assay buffer and directly analyzed
in a FACSCalibur flow cytometer using the appropriate fil-
ter settings. Red and green populations were gated for
quantification analysis using CellQuest software. Ten
thousands events were acquired for each sample.

Western Blot Analysis

Whole cell lysates were prepared in RIPA buffer (50 mM
Tris-HCI pH 8, 150 mM NaCl, 1 mM EDTA, 1 mM DTT,
0.5% NP-40) on ice, including a mix of protease inhibi-
tors (P8340, Sigma-Aldrich). For cytoplasmic extracts, the
lysates were centrifuged at 12,000 g for 15 min, at 4°C.
Protein concentration was measured using the Bradford
assay (B6916, Sigma-Aldrich) and approximately 40 pg
from each sample were boiled in Laemmli buffer (50 mM
Tris-HCL pH 6.8, 2% SDS, 1,25% B-MSH, 5% glycerol,
0.0125% bromophenol blue). Proteins were analysed on
11% SDS-PAGE followed by transfer onto nitrocellulose
membrane. Active caspase-3 was detected using a com-
mercially available antiserum (1:100; AB3623, Chemicon
Millipore-MA, USA) and labelled with a HRP-conjugated
secondary antibody (AV132P, Chemicon Millipore). For
loading control, a monoclonal anti-a tubulin antiserum
(MCA78G, ABD Serotec) was used (1:500) to identify cel-
lular tubulin, together with an anti-rat HRP-conjugate
(A9037, Sigma-Aldrich). The blots were developed using
Amersham ECL Kit (GE Healthcare, UK).

Confocal microscopy

Control cells or cells exposed to 1, 3 or 5 puffs GPS and
harvested at 1, 4 or 24 hours post-exposure were fixed in
4% paraformaldehyde/PBS, pH 6.9. The cells were perme-
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abilised with 0.1% Triton-X-100 and non-specific sites
were blocked with 1% BSA in PBS. As CCRF CEM were
grown in suspension, prior to staining, cells were attached
onto microscope slides using Shandon Cytospin Cytocen-
trifuge (Thermo Scientific, MA, USA).

Active caspase-3 staining was performed using a commer-
cial antiserum (1:150; 9661; Cell Signaling, USA) and
anti-rabbit FITC antibody (1:80; F0382, Sigma-Aldrich).
Cytochrome C was identified using a monoclonal anti-
body (1:150; 13561; Santa Cruz Biotechnology) and anti-
mouse Alexa 488 conjugate (1:100; A11029; Molecular
Probes). Where necessary, nuclear counterstaining with 1
pg/ml propidium iodide (PI) was included. Apoptosis
was induced using 2 uM staurosporine (positive control).
Secondary antibody negative controls were also included.

The samples were visualised using a Nikon C1 Digital
Eclipse Confocal Microscope system, equipped with a 488
nm Argon and a 543 Helium Neon laser through an oil
immersion x60/1.4 objective.

Detection of DNA fragmentation by flow cytometry

DNA fragmentation was assessed in smoke-treated cells
and compared to healthy cells, as well as staurosporine-
treated apoptotic cells using the Apo-BrdU Kit (556405,
BD Biosciences, UK).

Approximately 2 x 10 cells were collected and briefly
fixed in 1% paraformaldehyde/PBS, pH 6.9, followed by
overnight fixation in 70% ethanol at -20°C. TdT-catalysed
end-labelling of fragmented DNA with bromolated deox-
yuridine triphosphates (Br-dUTP) was carried out at
37°C. End-labelled DNA was probed with anti-BrdU
monoclonal antiserum provided in the kit. All cells were
counterstained with a 5 pg/ml PI/200 pg/ml RNAse A
solution.

All samples were analysed using a FACSCalibur cytometer
and the appropriate green/red filter settings. Ten thousand
events from each sample were analysed.

Statistical analysis

All data presentations (graphs etc.) and corresponding
statistical analysis was performed using SigmaPlot and
SigmaStat software packages (SPSS Inc.). All data in
graphs are expressed as mean values + SD. For one way
ANOVA analysis a P < 0.05 was considered significant.

Results
The results described are representative of three or more
independent experiments.

http://respiratory-research.com/content/10/1/82

Cytotoxicity measurements

The cytotoxicity of gas phase cigarette smoke (GPS) on
cultured lymphocytes was assessed using a kit to measure
lactate dehydrogenase (LDH) release from compromised
cell membranes (Figure 1). The amount of LDH released
from cells exposed to the different doses of GPS (1, 3 or 5
puffs) at 1, 4 or 24 hours post-exposure was directly com-
pared to the amount of enzyme from untreated cells (low
control-basal levels of LDH in the cell culture) and cells
treated for the lengthiest part of the experiment (24
hours) with 1% Triton-X buffer (1% Triton-X in 1% FBS
medium) (high control-maximum LDH release). The
mean of measurements for the spontaneous LDH activity
in the culture media due to the presence of serum was sub-
tracted from all experimental values.

The measurements taken at 1 hour post-exposure were not
significantly different (p > 0.47) among all three GPS
doses. The average percentage of cytotoxicity at that expo-
sure time was about 5.8% (+ 0.8%). At 4 hours post-expo-
sure, the percentages were markedly different,
demonstrating a dose- and time-dependent increase in
cytotoxicity. Exposure to 1 puff GPS resulted in cytotoxic
death of approximately 7.15 + 2.42% of the cells. The per-
centages were more than three-fold (22.76 + 4.65%) and
quadra-fold (32.92 + 14.77%) higher for cells treated with
3 and 5 puffs GPS, respectively. It has to be noted, that the
high standard deviation of the 5-puff data at 4 hours expo-
sure did not allow for a statistically significant differentia-
tion between the 3 and 5 puffs cytotoxicities, as
determined by one-way ANOVA analysis (p < 0.22)
although both 3 and 5 puff data were significantly differ-
ent than the data for 1 puff (p < 0.05). At 24 hours post-
exposure, LDH release from cells revealed the same cyto-
toxicity pattern. Cells treated with 1 puff GPS reached
42.46 + 7.07% cytotoxicity, which was significantly lower
than the percentages recorded for the cells treated with
either 3 or 5 puffs (90.89 + 5.98% and 93.49 + 6.75%,
respectively). As with 4 hours post exposure, at 24 hours
the percentages of cytotoxicity of the cells treated with the
higher doses (3 and 5 puffs) were not significantly differ-
ent (p < 0.62).

FACS analysis of Annexin VIPl-stained cells

To determine the mode of cell death upon GPS treatment,
cells were stained with AnnexinV/PI and analysed by flow
cytometry, 2 h post-exposure. As seen in Figure 2, the per-
centage of the Annexin V-stained populations (early apop-
totic cells - lower right quadrants) in the control group
and all groups of GPS-treated cells were not significantly
different (one-way ANOVA, p < 0.43).

A clear dose-dependent increase of cells stained with both
Annexin V and PI (late apoptotic cells - upper right quad-
rants) was observed (one-way ANOVA, p < 0.001). The
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Cytotoxicity of GPS-exposed cells increases in a
dose- and time-dependent manner. Cytotoxicity was
measured in terms of LDH release in the culture medium
from cells exposed to |, 3 or 5 puffs at |, 4 and 24 hours
post-exposure. The graph incorporates mean values + SD of
data derived from one representative experiment of three
independent series performed in quintuplets. * P < 0.05 com-
pared with control, ** P < 0.000] compared with control
(one-way ANOVA).

percentage of double-stained cells treated with 1 puff was
11.37 + 1.45% compared to 5.10 + 0.41% for the
untreated cells, representing an almost 2-fold increase. At
higher toxicity conditions, there was a steady increase in
the AnnexinV/PI-positive cell numbers, with the corre-
sponding population reaching 17.62 + 0.82% at 3 puffs
and 26.66 + 1.66% at 5 puffs. A similar pattern was
observed in the Pl-stained cell population (necrotic cells;
upper left quadrants) as judged by one way ANOVA (p <
0.0001), with the exception of the 1 puff treated cells that
showed no statistically significant differences compared
to the control (untreated) cells group (p < 0.33).

Analysis of the mitochondrial membrane potential

The dissipation of the mitochondrial inner membrane
potential (Ay,,) is considered as an early sign of apopto-
sis, preceding phosphatidylserine exposure on the outer
plasma membrane [28]. In necrotic cells, Ay, and mito-
chondrial integrity are irreversibly compromised. In order
to typify the mode of GPS- induced cell death, we exam-
ined the status of the mitochondrial membrane potential,
Ay, from cells treated with different doses of GPS, using
the marker JC-1.

The status of the mitochondrial membrane potential was
examined initially at 2 hours post-exposure (Figure 3A-B).
Following exposure to 1 puff GPS, the cell population
with disrupted Ay, (green), was almost double (31.62 +
1.74%) compared to control cells (16.64 + 0.52%). At
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higher doses, green fluorescence increased remarkably,
reaching 48.27 + 3.18% for cells treated with 3 puffs and
75.90 + 3.07% for cells exposed to 5 puffs. The results
were more prominent at 4 h post exposure (Figure 3C),
especially for cells treated with the higher doses. Ay,
depolarization ascended to 81.90 + 0.40% for the cell
sample treated with 3 puffs and to 90.24 + 1.33% for cells
exposed to 5 puffs GPS. Cells exposed to 1 puff, at 4 hours
post-exposure did not exhibit such a dramatic increase in
the percentage of the population (42.06 + 2.03%) with
disrupted Ay, when compared to the equivalent at 2
hours post-exposure. One way ANOVA analysis among
groups of data for untreated and GPS-treated samples
showed high statistical significance (p < 0.001 or p <
0.0001) in all cases, both for 2 hours and 4 hours exam-
ined samples, accentuating the observed dose-dependent
effect of GPS on the depolarization of the mitochondrial
potential in treated cells.

Confocal microscopy of cytochrome C and active caspase-
3

Confocal laser scanning microscopy was utilised to visual-
ise two events that are characteristic in the classical apop-
totic process: the cytoplasmic release of cytochrome C
from compromised mitochondria and the downstream
activation of caspase-3.

Cells treated with 1, 3 or 5 puffs were harvested and fixed
in 4% paraformaldehyde/PBS, pH 6.9 at 1, 4 or 24 hours
post-exposure. Staining of untreated cells for cytochrome
C (Figure 4B) showed bright fluorescence, which was
localised in a distinct pattern in the perinuclear area. Cells
treated with 1 puff, exhibited diffuse cytoplasmic staining
for cytochrome C from 4 hours post-exposure (data not
shown). Cells treated with 3 puffs GPS showed a wide-
spread cytoplasmic staining pattern, resembling that
observed in the staurosporine control, which increased in
a time-dependent manner (Figure 4C-D). At 5 puffs GPS,
cytoplasmic staining appeared as early as 1 hour post-
exposure, and by 24 hours almost every cell was shrunk
and exhibited a diffuse, yet fading pattern of fluorescence
(data not shown).

Cells treated with 1 or 3 puffs GPS and stained for active
caspase-3 exhibited a gradual increase in the occurrence of
FITC-positive cells over time during the acute phase (1
and 4 hours post-exposure) (Figure 5, selected data
shown). At 4 hours post-exposure (Figure 5, panels 5J-5L),
the detected fluorescence was similar to the stauroporine
control (panels 5D-5F) with some blebbing apparent. By
24 hours, the cells looked markedly shrunk and staining
was non-specific (panels J-L). Moreover, 5 puff GPS treat-
ment resulted in extremely limited signal at 4 hours and
non-specific signal at 24 hours (Panels 5M)-50).
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Figure 2

GPS induces apoptotic and necrotic cell death in CCRF-CEM cells. CCRF-CEM cells were exposed to various doses
of GPS (I, 3 or 5 puffs) and stained with Annexin V/PI, followed by flow cytometry analysis 2hr post-exposure. Panels A-E
depict representative data. Lower left quadrants represent unstained cells and the upper left quadrants include Pl-positive cells.
The lower right quadrants encompass Annexin V-only positive and the upper right contain the Annexin V-FITC/Pl-stained cells.
A) control cells (untreated), B) 2 uM STS, C) | puff GPS, D) 3 puffs GPS, E) 5 puffs GPS. F) The plot represents mean values
(£ SD) of events for stained cells obtained from three independent experiments. * P < 0.000] compared with control, ** P <
0.001 compared with control (one-way ANOVA).
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Figure 3

Loss of mitochondrial membrane potential is both GPS dose-dependent and time-dependent. Ay, depolarization
monitored by FACS analysis of JC-1 mitochondrial potential marker staining 2 h post-exposure (panels A and B), and 4 h post-
exposure (panel C). In panels A-C representative dot plots from a single analysis are shown. Gated region R1 (red) includes
cells with intact mitochondrial membranes and gated region R2 (green) depicts cells with loss of Ay, . A) Control (untreated)
cells and cells treated with 2 uM staurosporine (STS; positive control) for 2 h. B) |-5 puffs GPS-treated samples analyzed 2 h
post-exposure and C) 4 h post-exposure. D) Graphic representation of mean values for R2 region data (cells with Ay, col-
lapse) * SD. Asterisks above bars denote p values for one way ANOVA analysis: * P < 0.0001 compared with control, ** P <
0.001 compared with control. Analyzed data derived from 4 and 3 independent experiments performed for the 2 hand 4 h

time points, respectively.

Immunoblot analysis of active caspase-3

Caspase-3 activation was detected in Western blots
probed with a specific polyclonal antibody that recog-
nized the 17 kDa cleaved form of caspase-3 (Figure 6).
CCRF-CEM cells were treated with 1, 2, 3 or 5 puffs of GPS
and samples were harvested 30 min, 1, 2, 4 and 24 hours
post-exposure. In apoptosis-positive control cells, apopto-
sis and caspase-3 activation were induced for 2 hours with
2 uM staurosporine.

In immunoblots, optimal signal for active caspase-3 was
detected 4 hours post-exposure in the samples exposed to

1, 2 and 3 puffs, whereas in samples treated with 5 pulffs,
caspase-3 cleavage was undetected at all time-points
examined (data not shown). At 4 hours post-exposure
(Figure 5 panels J-L), caspase-3 activation was most prom-
inent in the sample treated with 1 puff (Figure 6). Detec-
tion of the cleaved caspase-3 gradually decreased in the
rest of the samples, as the number of puffs increased.
Active caspase-3 was absent from the sample exposed to 5
puffs. Equal loading was verified by probing the samples
analysed with an anti-a-tubulin antiserum.
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Figure 4

GPS treatment results in the cytoplasmic release of
cytochrome C. Confocal microscopy of cytochrome C
localisation in untreated and GPS-exposed (3 puffs) CCRF-
CEM cells: A) secondary antibody control, B) untreated
cells, C) 3 puff GPS-treated cells at 4 hr post-exposure and
D) 24 hr post-exposure. Scale bar = [0 um.

DNA fragmentation analysis by flow cytometry

DNA fragmentation of cells treated with GPS was assessed
quantitatively using DNA end-labelling (TUNEL) and
flow cytometry (Figure 7). Cell populations exposed to 1,
3 or 5 puffs of GPS were treated with BrdU and DNA nicks
were identified with an anti-BrdU monoclonal antiserum.

The untreated cells (Figure 7A) demonstrated basal levels
(2.20 + 0.48%) of DNA fragmentation (BrdU/PI-positive
cells; upper right quadrant), with the majority of the pop-
ulation (97.09 + 0.25%) located at the upper left quadrant
(propidium iodide staining). The positive control was
indicative of the DNA fragmentation occurring upon a
two-hour induction of apoptosis with 2 uM staurosporine
(Figure 7B). When treated with 1 puff GPS, there was
almost a three-fold increase in the cell population with
fragmented DNA (6.95 + 0.65%) (Figure 7C), when com-
pared to the negative control (one-way ANOVA, p <
0.0011). The cells treated with 3 puffs showed a maxi-
mum population stained for BrdU incorporation (81.77 +
3.11%) (Figure 7D). At 5 puffs (Figure 7E), the BrdU/PI-
positive population revealed a statistically significant
decrease (70.78 + 3.99%, p < 0.037) when compared to
cells exposed to 3 pulffs.

http://respiratory-research.com/content/10/1/82

Discussion

In smokers' lungs, circulating lymphocytes are exposed to
cigarette smoke through the wall of the capillary vessels
on the surface of alveoli. T cells are one of the major
groups of immune cells activated and recruited at the sites
of lung lesions caused by CS inhalation [3,27,29]. In our
study, we focused on the immediate effects of the gaseous
phase of CS (GPS) on T lymphocytes, a cell group of the
immune system, which has received little emphasis in the
past. The objective was to determine the mode of lym-
phocyte cell death upon exposure to the gaseous phase of
cigarette smoke (GPS) in vitro. For this purpose, we uti-
lised a well-established T lymphoblast cell line to examine
the effects of GPS.

Our results demonstrated that the mode of cell death was
dose-dependent. We examined early and late events in the
apoptotic pathway using cells exposed to low (1-2 puffs)
and higher (3 or 5 puffs) doses of the gaseous phase.
Experiments pertaining to the cytoplasmic release of cyto-
chrome C and the subsequent activation of caspase-3, col-
lectively pointed towards the activation of the caspase-3
dependent apoptotic pathway in a dose-dependent, as
well as time-dependent manner. Furthermore, our results
from the quantitative evaluation of the mitochondrial
inner membrane potential and the late event of DNA frag-
mentation further supported a dose- and time-dependent
change in the mode of cell death, albeit both DNA frag-
mentation [30] and mitochondrial inner membrane
depolarization can occur both in apoptotic and necrotic
cells [18].

Annexin V detection of phosphatidylserines on the outer
plasma membrane indicated a dose-dependent increase
in cell death, although it did not provide a solid basis for
discrimination between apoptotic and necrotic death. The
presence of Annexin V-positive cells at the higher doses of
GPS cannot rule out a caspase-independent death. The
apoptosis-specific markers cytochrome C and active cas-
pase 3 prevailed at the low dose (1 puff) and partly at
some of the higher doses (3 puffs) up to 4 hours post-
exposure. Therefore, our findings are in agreement with
previous work that supported a caspase 3-dependent
apoptotic death [31,32]. In our system, we observed a
dose-dependent decrease in caspase-3 activation, as GPS-
doses increased. A switch from apoptosis to necrosis was
evident in samples examined at a later time-point (24 h),
mainly in cells treated with 3 puffs. The use of the higher
dose (5 puffs) resulted mainly in necrotic death, as cas-
pase-3 activation was undetectable. This was further sup-
ported by examination of the mitochondrial membrane
potential (Ay,,) of cell treated with low or high doses of
GPS. At low toxicity, Ay, was disturbed enough so that
caspase-dependent apoptosis would follow. When
exposed to high toxicity, the majority of the cell popula-
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Figure 5
Activation of caspase-3 in response of cell exposure to GPS. Confocal microscopic examination of CCRF-CEM cells

exposed to 3 puffs GPS for the activation of caspase-3. First row: FITC-staining (green), second row: Pl counterstain (red),
third row: superimposed FITC/Pl images. A-C) untreated cells, D-F) cells treated with 2 uM staurosporine, G-l) cells har-
vested at 4 hr post-exposure, J-L) cells harvested at 24 hr post-exposure. Scale bar = 10 um.
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GPS causes a dose-dependent change in active cas-
pase-3 protein levels. Western blot showing cleaved cas-
pase-3 in CCRF-CEM cells exposed to 0, |, 2, 3, or 5 puffs
GPS and analyzed 4 hr later. Lane 1) 2 uM STS-treated cells,
lanes 2-6: 0-5 puffs GPS respectively. Active caspase-3,
showed by an arrow, was recognized by a specific polyclonal
antibody (AB3623, Chemicon), that reacts with the 17 kDa
cleaved form of the enzyme. Equal loading was verified using
a-tubulin as sample internal protein control. The blot is rep-
resentative of three independent experiments.

tions exhibited great loss of Ay, thus becoming deprived
of mitochondrial ATP production, which is required for
an apoptotic response together with cytosolic ATP [33].
Similarly, the results from DNA fragmentation point
towards a dose-dependent transition from apoptosis to
necrosis. This was most evident in the cell populations
examined following exposure to 3 or 5 puffs. Although
the cells exposed to the 3 puffs showed a maximum of
BrdU/PI-positives, at 5 puffs the equivalent population
was a lot less. Perhaps, the toxic shock that lead to the
depletion of intracellular ATP resulted in the inhibition of
endonucleases, which require ATP to be active [30]. Yet,
necrosis following caspase-independent apoptosis cannot
be ruled out.

Earlier studies supported that treatment with cigarette
smoke condensate or extract (CSC or CSE) resulted in
apoptosis in a range of cell lines, such as A549 alveolar
epithelial cells [34,35], HFL-1 lung fibroblasts [22],
human aortic endothelial cells [31], human umbilical
vein endothelial cells [32] and alveolar macrophages [36].
Some cases showed a dose-dependent increase of acti-
vated caspase-3 [31,32]. There has also been evidence for
caspase-independent apoptosis in CSE-treated cells, as
shown with the use of caspase inhibitors [34,36].

Other groups concluded that necrosis was the only out-
come following CSE treatment of A549, Jurkat and
human umbilical vein cells [37], or human primary and

http://respiratory-research.com/content/10/1/82

BEAS-2B cells [18,20]. Finally, other research supported
that CSE induced both apoptosis and necrosis in a dose-
dependent manner in A549 [34], HFL-1 [38], U937
human premonocytic [39] and BEAS-2B cells [40].

Most of the times, the application of CSC or CSE on cul-
tured cells assumes the concentration of the toxic compo-
nents of one full-flavoured cigarette in a small volume of
saline buffer or growth medium. The practice of CSC or
CSE results in an overwhelming toxic shock to a small
number of cultured cells. The lung epithelium cells are
interconnected in a vast area structure, which almost uni-
formly accepts the toxic chemicals per CS inhalation
[7,41]. These chemicals are in turn diluted in the existing
air volume in the airways so that the resulting toxicity is
not instantly detrimental for the epithelium, or the tissues
surrounding it. Instead, chronic smoking results in the
well-documented loss of the lung internal structures [27],
which is due to the accumulation of toxic insults,
increased epithelial cell death and a decline in immune
cell function.

Exposure of cells to CS by means of CSC or CSE does not
provide a reliable simulation system of normal smoking.
In human lungs, the inhaled tobacco smoke is extensively
diluted (approximately 15 times) due to the huge volume
of air inhaled (500 c.c.) after each puff [41]. This dilution
of the CS prevents the acute accumulation of a toxic criti-
cal mass and the ensuing cell damage, which more than
likely happens when either CSC or CSE is used to chal-
lenge cultured cells. Furthermore, using either of these
methods, it is very difficult to determine the quantity and
the quality of the supplied dose and its toxicity. To our
knowledge, there has never been in the literature a system-
atic and quantitative analysis of the tobacco components
present in such a preparation. Therefore, it is plausible
that only the water-soluble components of CS and a small
part of the particulate matter contribute to the toxicity of
these preparations. According to our method, the toxic
substances in the gaseous phase of CS that are supplied to
cells are diluted in a measured air volume within the vol-
umetric chamber so that their contact with the cells simu-
lates normal smoking conditions. In addition, each dose
of the GPS supplied has previously been tested for its toxic
component load using a well-established method [23].

Previous research mainly focused on the effect of CS on
airway epithelium cells, since they are the first cell lineage
directly exposed to the toxic effects of tobacco smoke
[22,34,35]. Smoking, however, triggers inflammation of
the airways, which is brought about by a cascade of events
attributed to both innate and acquired immune reactions
[27,29]. It is therefore of interest to study the immediate
effect of CS on immune cells, as they have the ability to
both initiate and perpetuate inflammatory responses in
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the diseased lung. To date, there are several accounts in
the literature that report impaired responsiveness of
immune cells -mainly T cells- in murine models that have
been attributed to mainstream tobacco smoke [42,43]. It
is possible that further research into the impact of CS on
immune cells will open up new routes for COPD diagno-
sis and improve our understanding on the inflammatory
versus immunosuppressant cascades, which will allow the
design of more effective treatments for the related dis-
eases.

Conclusion

In conclusion, from our work it is evident that: 1) expo-
sure of cells to low toxicity GPS leads to apoptosis, while
high toxicity GPS results in necrotic cell death; 2) supply
of GPS should be carried out in an appropriately designed
volumetric space, where CS is diluted at approximately
the same proportion as in the smoker's airways, and 3)
with each supply of CS to cell cultures, prior measurement
of the toxic components of CS is necessary, using a well-
established and reproducible method.
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