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Abstract
The FOXP3 gene encodes for a protein (Foxp3) involved in the development and functional

activity of regulatory T cells (CD4+/CD25+/Foxp3+), which exert regulatory and suppres-

sive roles over the immune system. After allogeneic stem cell transplantation, regulatory

T cells are known to mitigate graft versus host disease while probably maintaining a

graft versus leukemia effect. Short alleles (�(GT)15) for the (GT)n polymorphism in the
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promoter/enhancer of FOXP3 are associated with a higher expression of FOXP3, and hypo-

thetically with an increase of regulatory T cell activity. This polymorphism has been related

to the development of auto- or alloimmune conditions including type 1 diabetes or graft

rejection in renal transplant recipients. However, its impact in the allo-transplant setting has

not been analyzed. In the present study, which includes 252 myeloablative HLA-identical

allo-transplants, multivariate analysis revealed a lower incidence of grade III-IV acute graft

versus host disease (GVHD) in patients transplanted from donors harboring short alleles

(OR = 0.26, CI 0.08–0.82, p = 0.021); without affecting chronic GVHD or graft versus leuke-
mia effect, since cumulative incidence of relapse, event free survival and overall survival

rates are similar in both groups of patients.

Introduction
Allogeneic stem cell transplantation (allo-SCT) is nowadays the therapy of choice for several
neoplastic and non-neoplastic diseases [1]. After allo-SCT, donor derived immunocompetent
cells recognize recipient cellularity and promote an immunological reaction called graft versus
host disease (GVHD), which is one of the most important causes of morbi-mortality after allo-
SCT [2]. However, donor versus recipient immune reactions also harbor a beneficial effect
since they mediate the immunological eradication of residual tumor cells, in the context of the
so called graft versus leukemia (GVL) effect [3]. Approaches aimed to reduce the incidence and
severity of GVHD unfortunately also reduce its anti-tumor benefit [4], making the appropriate
regulation of the GVHD/GVL alloreactive balance one of the milestones in the allo-SCT
setting.

CD4+/CD25+/Foxp3+ regulatory T-cells (Tregs) constitute the most relevant leukocyte
subtype with regulatory and suppressive functions over the immune system, playing a crucial
role in autoimmunity and self-tolerance in humans [5].

After allo-SCT, there is a physiological expansion of Tregs, which are involved in the alloto-
lerance-alloreactivity balance between donor and recipient [6,7], by suppression of antigen spe-
cific T cell responses [8]. Increased numbers of functional Tregs are known to lead to GVHD
mitigation [9–12], an effect that is not necessarily associated with a decrease in the anti-tumor
activity (GVL) of the allogeneic graft. However, this is still an open issue, since some authors
have described attenuation of GVHD together with preservation of GVL mediated by Tregs
[13,14], while others reported increased incidence of relapse in such cases [15].

Donor versus recipient immune reactions are also influenced by polymorphisms in certain
genes coding for antigen-presenting molecules, antigen receptors, immune mediators or cellu-
lar proliferation molecules, which contribute to the development of complications after allo-
SCT [16,17].

The FOXP3 gene, located on the X chromosome (Xp11.23), which mediates the develop-
ment and functional activity of Tregs [18], encodes a forkhead/winged helix transcription fac-
tor. In fact, upregulation of FOXP3 expression is required for Treg development. Interestingly,
several studies have found an association between FOXP3 gene polymorphisms and autoim-
mune diseases, such as systemic lupus erythematosus [19] or preeclampsia [20]. A functional
(GT)n microsatellite polymorphism in a region with promoter/enhancer activity has been
reported to influence FOXP3 gene expression [21]. The presence (homo- or heterozygous
females and homozygous males) of short alleles (with 15 or less microsatellite repeats;
�(GT)15) is associated with a higher expression of FOXP3, and probably with an increase of
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regulatory T cell activity [22]. A number of studies have analyzed the association between this
polymorphism in the promoter of the FOXP3 gene and the development of auto- or alloim-
mune conditions [21,22]. Although some of them reported negative results [23–25], other
showed a positive association between this polymorphism and an increased susceptibility to
type1 diabetes [21] or graft rejection in renal transplant recipients [22]. Within this scenario,
the (GT)n polymorphism in the FOXP3 gene might play a role in the development of certain
complications after SCT, but the impact of this polymorphism in the outcome of allo-SCT has
not been analyzed.

In this context, our objective was to analyze the impact of donor (GT)n polymorphism in
the promoter/enhancer of the FOXP3 gene on the development of complications and ulti-
mately on the success of conventional HLA-identical SCT.

Patients and Methods
This retrospective study includes 252 patients with hematological malignancies, treated with
myeloablative HLA-identical peripheral blood SCT (Table 1), from which donor and recipient
DNA samples were available for genotyping from the DNA bank of the Spanish Group for
Stem Cell Transplantation (GETH). The present study was approved by the “Area 1 Clinical
Research Ethics Committee (CEIC-A1)” and therapeutic approaches, sampling and diagnostic
procedures were performed after written informed consent. Diagnosis, classification and grad-
ing of GVHD were made by clinical criteria and confirmed when necessary by pathological
examination of histological samples from gut, skin, liver or lung, according to international
consensus criteria [26]. The median follow-up time for the cohort was 28.8 months (range 0.5–
120.4).

Genotyping of the (GT)n microsatellite polymorphism
Donor and recipient genomic DNA was purified from EDTA anticoagulated peripheral blood
before allo-SCT. Genotyping of the (GT)n microsatellite polymorphism in the FOXP3 gene was
performed by a fluorescence-based short tandem repeat-polymerase chain reaction (STR-PCR)
method (GeneAmp 7900; Applied Biosystems) and sized by capillary electrophoresis (POP7—
ABI PRISM 3130 xL Genetic Analyzer; Applied Biosystems) and fragment analysis (GeneMap-
per 4.0 Software; Applied Biosystems) as previously described [21]. FOXP3 alleles were divided
in two groups: short alleles (with 15 or less microsatellite repeats;�(GT)15) and long alleles
(with 16 or more microsatellite repeats;�(GT)16) [22]. Hemizygous individuals were included
in their respective homozygous genotype group [27]. As suggested by Engela et al. [22], short/
long heterozygous females were included in the short allele group.

Functional effect of the (GT)n microsatellite polymorphism
Luciferase assays were performed in order to determine the influence of the number of (GT)n
microsatellite repeats in the promoter/enhancer on the expression of the FOXP3 gene. Pro-
moter activity was evaluated through the firefly luciferase activity driven by the inserted frag-
ments upstream of the firefly luciferase gene [21]. A fragment of approximately 500 bp was
amplified by PCR using the following forward: 5’-AAGGTACCGCCTCCTCACTAGCCC
CACT-3’ and reverse: 5’-TTGAGCTCAAGGGCAGGCTGCGTAGACAA-3’ primers. KpnI
and SacI restriction enzyme sites were introduced into each primer. PCR was carried out using
Phusion DNA polymerase (Thermo Scientific Massachusetts, USA). PCR products were puri-
fied, digested by KpnI and SacI restriction enzymes at 37°C for 2 h, and incorporated into the
KpnI and SacI sites of the luciferase-reporter plasmid, pGL3-Basic Vector. Five hemi- or homo-
zygous (GT)15 and 5 (GT)16 healthy individuals were selected for this experiment. All the
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constructs with alleles (GT)15 or (GT)16 were verified by sequencing the inserts and flanking
regions of the plasmids. HeLa cells were cultured in 1ml of DMEMmedium supplemented
with glutamine, antibiotics and 10% fetal calf serum under a 95% humidified air containing 5%
CO2. HeLa cells were suspended at 7.5x103 cells/ml and seeded into each of six-well plates.
One day later, 1 ug (0.5 ug/well) of each plasmid construct and 0.5 ug (0.25 ug/well) of Renilla

Table 1. Patients, SCT features and complications developed post-SCT in the patients included in the
present study.

All patients

n (%)

N 252

Age Median (range) 38 (19–67)

Patient Sex Male 140 (55.6)

Female 112 (44.4)

Donor Sex Male 153 (60.7)

Female 99 (39.3)

Donor/Recipient sex Female D to male R 73 (29)

Disease ALL 61 (24.2)

AML 92 (36.5)

MDS 18 (7.1)

MM 3 (1.2)

Lymphoma 24 (9.5)

Other (CML, AA, etc.) 54 (21.4)

Disease Status at SCT (1) CR 155 (68.6)

non CR 71 (31.4)

Conditioning TBI 109 (43.3)

non TBI 143 (56.7)

Acute GVHD (2) Grade II-IV 79 (33.5)

Grade III-IV 27 (11.6)

Chronic GVHD (3) Any grade 105 (52.5)

Extensive 55 (27.5)

Relapse (4) Incidence 71 (31.7)

Exitus (5) Total 88 (34.9)

Relapse 37 (47.4)

Infectious 17 (21.8)

GVHD 16 (20.5)

Otros 8 (10.3)

Median OS (months) of uncensored patients (range) 45.5 (5.7–122)

D:donor; R:recipient; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia; MDS:

myelodysplastic syndrome; MM: multiple myeloma; CML: chronic myeloid leukemia AA: aplastic anemia

CR: complete remision; TBI: total body irradiation.

(1) Unknown in 26 patients. GVHD: graft versus host disease; OS: overall survival.

(2) Patients at risk (alive and in complete remission) of developing: grade II-IV aGvHD n = 236. Patients

censored n = 16 (11 relapsed and 5 dead); grade III-IV aGvHD III-IV n = 232. Patients censored n = 20 (13

relapsed and 7 dead).

(3) Patients at risk: cGvHD n = 200. Patients censored n = 52 (25 relapsed and 27 dead).

(4) Patients at risk: relapse n = 224. Patients censored n = 28 (relapsed in complete remission first year).

(5) Unknown n = 10

doi:10.1371/journal.pone.0140454.t001
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luciferase control vector (pRL-TK Renilla) were introduced to HeLa cells by the lipofection
method, using Lipofectamine plus (Gibco BRL, Gaithersburg, USA). Twenty-four hours later,
firefly and Renilla luciferase activities were measured using the Dual-Luciferase Reporter Assay
System (Promega). Relative luciferase activity was calculated as the ratio of firefly to Renilla
luciferase activity. Three different transfections were performed for each construct and each
experiment was repeated three times.

Statistical analysis
For statistical analysis, quantitative variables were expressed as median or mean and range,
while qualitative variables were expressed as frequency and percentage. Testing for normality
was performed with the Kolmogorov–Smirnov test. Univariate and multivariate regression
analysis was performed using logistic regression (OR). For multivariate analyses, the p values
were two sided and the outcomes were considered to be significant for p<0.05. Estimates of
grade III-IV acute GVHD and relapse were calculated using cumulative incidence (CI) rates.
Overall survival (OS) and event free survival (EFS) was calculated using the Kaplan-Meier
method. Survival curves for different groups were compared by the log-rank test. Overall statis-
tical analyses were performed using SPSS v18 for Windows (SPSS Inc., Chicago, IL, USA) and
CI rates were performed by R Statistical Software ver. 2.15.0. The Hardy-Weinberg equilibrium
was tested using contingency tables and Pearson's χ2 test with SNPator software.

Results and Discussion
Several studies have established the regulatory and suppressive functions of Tregs, mediated by
FOXP3 gene expression, over the immune system including autoimmunity and self-tolerance
[5,6]. Moreover, in the allo-SCT setting Tregs are known to modulate the allotolerance-allor-
eactivity balance between donor and recipient [7], mitigating GVHD [9–12] while probably
preserving the anti-tumor effect (GVL) of the donor graft [13].

Polymorphisms in certain genes have shown to be implicated in the development of compli-
cations after allo-SCT [16,17]. In this context, our aim was to analyze the influence of the
(GT)n polymorphism in the FOXP3 gene in the success of allo-SCT. Short alleles for such poly-
morphism have been shown to promote higher FOXP3 expression and hypothetically an
increase of regulatory T cell activity [21]. In our hands, luciferase assays performed to test
influence of the number of repeats in the (GT)n microsatellite polymorphism on the expression
of the FOXP3 gene showed that the (GT)15 allele produces significantly higher expression of
the FOXP3 gene than the (GT)16 allele (Fig 1).

Genotyping for the (GT)n microsatellite polymorphism was carried out in a cohort of 252
unselected myeloablative HLA-identical allo-SCT patients and donors. Allelic and genotypic
frequencies observed were similar to those previously reported (S1 Table) [25]. Results were in
accordance with the Hardy-Weinberg equilibrium (p = 0.58).

The genotype of the recipient for the (GT)n polymorphism did not influence SCT outcome
(data not shown) supporting previous observations [11] that showed that the amount of Tregs
in the donors influenced SCT outcomes. Indeed, as expected from the reported observations
mentioned above, the presence of short alleles in the donor was associated with a lower inci-
dence of grade III-IV acute GVHD with statistically significant association (OR = 0.36,
CI = 0.16–0.82, p = 0.016; Table 2). After multivariate analysis introducing all potentially con-
founding variables (Table 3), the presence of short alleles in the donor remained as an indepen-
dent protective factor for the development of grade III-IV acute GVHD (OR = 0.26, CI = 0.08–
0.82, p = 0.02). Total body irradiation (TBI) used within the conditioning regimen for ALL
patients has shown to be associated with the development of GVHD [28] and these two factors
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(ALL and TBI) are also identified in the present study (Table 3). Additionally, CI of grade
III-IV acute GVHD was significantly lower in patients transplanted from short allele donors
(CI 100 days 8.3% vs. 20.7%, p = 0.016, Fig 2A). On the other hand, no significant association
was observed for moderate-severe chronic GVHD (OR = 1.1, CI = 0.56–2.19, p = 0.86;
Table 2).

Treg cell counts were not measured prospectively and the registry-based nature of the pres-
ent study does not allow such information to be obtained. However, T cell (CD3/CD4/CD8)
reconstitution data were available for a subset of patients (S1 Fig). Although no statistical dif-
ferences were observed, T cells, mainly CD8 + cells, were lower at day +60 in (GT)15 patients.
Interestingly, differences are lost later on after transplant (day +90). The effect of the polymor-
phism on the immune response after transplantation might be restricted to the early post-SCT

Fig 1. Results of the luciferase assays performed to test influence of the number of repeats in the (GT)n microsatellite polymorphism on the
expression of the FOXP3 gene. The (GT)15 allele produces significantly higher expression of the FOXP3 gene than the (GT)16 allele.

doi:10.1371/journal.pone.0140454.g001
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period and have less influence in later post-SCT phases. This fact that could account for the
absence of relationship between the polymorphism in FOXP3 and the development of
cGVHD.

Table 2. Univariate analysis of the association between the presence of FOXP3 short alleles in the
donor and the development of post-SCT complications.

Univariate

OR (95% CI) p-value

Grade II-IV aGVHD 0.67 (0.37–1.19) 0.174

Grade III-IV aGVHD 0.36 (0.16–0.82) 0.016*

cGVHD 0.84 (0.46–1.54) 0.58

Extensive cGVHD 1.1 (0.56–2.19) 0.76

Relapse 0.62 (0.35–1.1) 0.1

Mortality

Overall 1.28 (0.72–2.25) 0.4

Relapse 0.59 (0.22–1.59) 0.3

GVHD 0.63 (0.19–2) 0.43

Infections(1) 3.93 (0.82–1.89) 0.087

aGVHD: acute graft versus host disease; cGVHD: chronic GVHD.

(1)Seventeen patients died from infections. Data available for 12 patients, all of them due to bacterial

infections, 5 died during the first year (range 2–10 months) and 7 died beyond the first year (range 15–48

months).

* p<0.05

doi:10.1371/journal.pone.0140454.t002

Table 3. Univariate andmultivariate analysis for variables potentially associated with the development of grade III-IV aGvHD.

Univariate Multivariate

OR (95% CI) p-value OR (95% CI) p-value

FOXP3 short allele donor 0.36 (0.16–0.82) p = 0.016* 0.26 (0.08–0.82) p = 0.021*

FOXP3 short allele recipient 1.1 (0.47–2.6) p = 0.81 1.74 (0.54–5.6) p = 0.35

Patient age 1.12 (0.5–2.5) p = 0.78 1.4 (0.5–3.95) p = 0.52

Donor sex 1.05 (0.47–2.39) p = 0.9 2.32 (0.84–6.41) p = 0.11

Recipient sex 1.4 (0.63–3.1) p = 0.4 1.36 (0.41–4.49) p = 0.62

Female donor/male recipient 1.44 (0.56–3.77) p = 0.44 0.99 (0.27–3.65) p = 0.99

Disease

ALL 2 (0.87–4.71) p = 0.1 4.55 (1.09–18.94) p = 0.037*

AML 0.35 (0.13–0.97) p = 0.043 0.43 (0.1-.079) p = 0.25

MDS 1.17 (0.25–5.52) p = 0.83 0.89 (0.15–5.49) p = 0.9

MM 1 1

Lymphoma 1.37 (0.38–5.04) p = 0.63 1.54 (0.27–8.85) p = 0.63

Other 1.34 (0.49–3.11) p = 0.65 1.14 (0.45–2.91) p = 0.78

Disease status at allo-SCT 1.45 (0.6–3.5) p = 0.42 1.62 (0.59–4.49) p = 0.35

TBI in the conditioning 2.24 (0.91–5.52) p = 0.081 6.45 (1.79–23.16) p = 0.04*

ALL: acute lymphoblastic leukemia; AML acute myeloid leukemia; MDS: myelodysplastic syndromes; MM: multiple myeloma; CML: chronic myeloid

leukemia; SCT: stem cell transplantation; TBI: total body irradiation.

* p<0.05

doi:10.1371/journal.pone.0140454.t003
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Interestingly, increased numbers of functional Tregs are not necessarily associated with a
decrease in the anti-tumor activity (GVL) [13]. In fact, the presence of short alleles in the
donor was not associated with a higher risk of relapse (OR = 0.62, CI = 0.35–1.1, p = 0.1;
Table 2) in this cohort. Moreover, CI of relapse was not different between patients transplanted
from short or long allele donors (CI at 2 years 33.3% vs. 25%, p = 0.11, Fig 2B). Therefore, the
presence of short alleles in the donor did not affect GVL in the present series.

Finally, an impact of the (GT)n polymorphism on the risk of death was not observed
(OR = 1.28, CI = 0.72–2.25, p = 0.4, Table 2). Moreover, no statistically significant association
was found in terms of EFS and OS (EFS, median time 54.1 months vs not reached, p = 0.71 and
OS, 113.2 vs 110.6 months, p = 0.344; Fig 2C and 2D). Noteworthy, patients transplanted from
short allele donors showed a trend to a higher incidence of mortality derived from infectious
complications (OR = 3.93, CI = 0.82–18.9, p = 0.087, Table 2). In fact, the suppressive function
of regulatory T cells has been related to a higher incidence of infections [29].

Of note, the association described above between the presence of short alleles and the devel-
opment of grade III-IV aGVHD is also observed when transplants from male and female
donors are analysed separately (S2 Table).

Fig 2. Influence of the genotype of the donor for the polymorphism (GT)n in the promoter/enhancer of FOXP3 on the outcome of allo-SCT. (A)
Cumulative incidence of grade III-IV GVHD. (B) Cumulative incidence of relapse. (C-D) Kaplan-Meier curves of event free survival (B) and overall survival
(C).

doi:10.1371/journal.pone.0140454.g002
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Summarizing, our results are in agreement with previous observations since donors harbor-
ing short alleles, which have been associated with higher FOXP3 gene expression and greater
production of Tregs [21] are less alloreactive and, therefore, their recipients develop less acute
GVHD. Interestingly, these patients do not show higher relapse rates since Tregs are thought
to reduce acute GVHD probably without affecting the beneficial GVL effect [13]. Greater num-
bers of Tregs in GVHD target tissues–accounting for the amelioration of GVHD–than in the
BM of transplanted patients–allowing effective GVL responses to be mounted–has been postu-
lated as a possible explanation for this observation [14]. Further prospective studies correlating
the genotype analysis with Treg frequency would be of interest to confirm these data.

To the best of our knowledge, this is the first report of the implication of (GT)n microsatel-
lite polymorphism of the promoter/enhancer region of FOXP3 gene in the outcome of allo-
SCT. Analysis of this polymorphism can help in appropriate donor selection and, more impor-
tantly, drive a tailored management of patients submitted to allo-SCT.

Supporting Information
S1 Fig. Box plot showing CD3+, CD4+ and CD8+ cell counts as determined by flow cytom-
etry in erythrocyte-lysed whole PB samples obtained at days +60 and +90 after stem cell
transplantation in patients transplanted from (GT)15 (white boxes; n = 37) or (GT)16 (grey
boxes, n = 29) donors. Although not significant differences are observed, cell counts (mostly
CD3+ and CD8+ cells) at day +60 appear higher in patients transplanted from (GT)16 donors.
Such differences are lost when patients are studied at day +90.
(TIF)

S1 Table. Genotypes for the (GT)n polymorphism in the FOXP3 gene observed in the
cohort of patients and donors included in this study.
(XLS)

S2 Table. Univariate analysis of the association between the presence of FOXP3 short alleles
in female or male donors and the development of post-SCT complications. aGVHD: acute
graft versus host disease; cGVHD: chronic GVHD.
(XLS)
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