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With the rapid expansion of therapeutic proteins into an 
important class of medicines, the issue of unwanted immuno-
genicity has stimulated much research effort and regulatory 
attention. The consequences of immunogenicity, in particular 
the induction of antidrug antibodies (ADA), have the poten-
tial to become a serious issue during drug development, 
due to their impact on drug pharmacokinetics (PK), efficacy, 
and/or safety.1 Immunogenicity involves complex biologi-
cal mechanisms, which could span multiple system scales, 
from subcellular processing and cellular interaction, to organ 
and whole-body functions. Although various techniques 
have been developed to assess the immunogenicity risk of 
therapeutic proteins,2–7 success in predicting immunogenicity 
is still not prevalent, due to the involvement of complicated 
mechanisms and large numbers of impacting factors.

Mathematical modeling may serve as a complementary 
approach to help understand immunogenicity, since it can 
quantitatively recapitulate, and especially integrate, compli-
cated mechanisms. Mathematical models for the immune 
system mainly involve two categories of modeling tech-
niques, differential equations (DEs) and agent-based mod-
els. DEs have a long history in modeling the immune system. 
For example, Bell8 developed a mathematical model for B-cell 
clonal selection and antibody production as early as 1970. 
Recently, the adaptive immune response to influenza A virus 
infection was modeled.9 Conversely, agent-based models 
are a more recent approach and model each entity (e.g., an 
immune cell) as an “agent,” which adapts its behaviors over 
time (e.g., movement and differentiation) based on rules that 
have stochastic components. Some recent examples include 
ImmunoGrid, an integrated large-scale agent-based model 
environment to simulate the human immune system,10,11 

C-ImmSim, an agent-based simulator that combines com-
putational immunology with bioinformatics,12,13 and the Basic 
Immune Simulator.14,15 One limitation for agent-based mod-
els is that they tend to require larger number of parameters 
than their DE counterparts, so it is often difficult for sufficient 
experimental data to be acquired to inform the model.16 
Given the comparatively long experience with DE models, 
we developed our model using DEs, to minimize the number 
of required parameters. An added benefit of a DE model is 
that it can be easily integrated with downstream applications 
more traditional in drug discovery and development, such as 
PK/PD modeling.

The objective of this work was to establish a multiscale, 
mechanistic model that can capture the key underlying mech-
anisms for immunogenicity against antigenic therapeutic pro-
teins. To focus on the essential model components, while 
having the potential for modular expansion, this model con-
siders the antigen-presenting cells, CD4+ T helper cells, and 
B cells as the major immune cells. Since dendritic cells (DCs) 
are the most efficient antigen-presenting cells,17 they were 
chosen to represent all antigen-presenting cells in the model. 
DC activation could be driven by maturation/danger signals 
that are either signs of pathogen presence, e.g., endotoxin18 or 
by tissue damage upon drug administration. Due to the com-
plexity of this process and the unavailability of many param-
eters, DC activation was simplified and modeled as being 
directly driven by endotoxin, particularly, lipopolysaccharide, 
which is widely used in immunology studies to activate DCs19 
and is known to be present in many therapeutic protein dose 
forms.20 Once the DCs become activated, they uptake and 
process the therapeutic protein, in this context the antigen 
(Ag), and present the T-epitope from the Ag for subsequent 

Received 11 September 2013; accepted 19 May 2014; published online 3 September 2014. doi:10.1038/psp.2014.30

2163-8306

e133

CPT Pharmacometrics Syst. Pharmacol.

10.1038/psp.2014.30

Original Article

3September2014

3

11September2013

19May2014

2014

© 2014 ASCPT

Mathematical Model of Immunogenicity

Chen et al.

A mechanistic, multiscale mathematical model of immunogenicity for therapeutic proteins was formulated by recapitulating key 
biological mechanisms, including antigen presentation, activation, proliferation, and differentiation of immune cells, secretion 
of antidrug antibodies (ADA), as well as in vivo disposition of ADA and therapeutic proteins. This system-level model contains 
three scales: a subcellular level representing antigen presentation processes by dendritic cells; a cellular level accounting for 
cell kinetics during humoral immune response; and a whole-body level accounting for therapeutic protein in vivo disposition. 
The model simulations for in vivo responses against antigenic protein challenge are consistent with many known immunological 
observations. By simulating immune responses under various initial parameter conditions, the model suggests hypotheses for 
future experimental investigation and contributes to the mechanistic understanding of immunogenicity. With future experimental 
validation, this model may potentially provide a platform to generate and test hypotheses about immunogenicity risk assessment 
and ultimately aid in immunogenicity prediction.
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T-cell activation. These processes are collectively called “anti-
gen presentation,” a critical step for efficient activation of the 
adaptive immune system, which ultimately evokes ADA pro-
duction and immune memory. Efficient antigen presentation 
eventually leads to the activation, proliferation, and differen-
tiation of T and B cells, as well as the secretion of ADA that 
modify the in vivo disposition of Ag. Although B-cell activation 
can be T cell dependent or independent,21 the current model 
focuses on the first, because it leads to more robust antibody 
response with affinity maturation and isotype switching and is 
associated with more impactful clinical observations, such as 
high and persistent antibody titer.21

Our model was developed for mouse and human using 
species-specific parameters. When applied to simulate pri-
mary and secondary immune responses, the model was 
able to reasonably reproduce many immunological phenom-
ena, such as enhanced secondary immune response and 
antibody affinity maturation. It was also applied to generate 
hypotheses regarding potential important factors for immu-
nogenicity development, including T-epitope affinity, Ag dose, 
and naïve T- and B-cell number, and suggested directions for 
future investigation. We believe that its current structure and 
features make this system model suitable to mechanistically 
study the immunogenicity of therapeutic proteins.

RESULTS
Mathematical model
The multiscale model structure can be represented by the 
subcellular, cellular, and whole-body levels (Figures 1–3): 
The subcellular model, capturing antigen presentation pro-
cesses in mature DCs (Figure 1), is built upon the work 
by Agrawal and Linderman.22 It is assumed that, when the 
mature DCs are first generated, no antigen presentation 
has happened, and all free major histocompatibility complex 
(MHC) molecules are located in the endosome.23 Antigenic 
proteins are then endocytosed into the endosomes of DCs 
and are digested into T-epitope peptides, which subsequently 
bind to MHC-II to appear on DC surfaces as T-epitope–MHC 
complexes for T-cell activation. The processing and presen-
tation of endogenous competing proteins by DCs are also 
modeled, to reflect the fact that endogenous peptides can 
compete with T-epitopes for antigen presentation. To repro-
duce the physiology of MHC-II, our model includes six clas-
sical human MHC-II (2 HLA-DR, 2 HLA-DP, and 2 HLA-DQ) 
and two classical mouse MHC-II (H-2A(I-A) and H-2E(I-E) 
subclasses). The idea to model antigen presentation in detail 
is motivated by the availability of parameters for these pro-
cesses, including, for example, in silico T-epitope prediction 
and experimental measurements of their MHC-binding affini-
ties.24 These Ag-specific parameters can be fed to the model 
to simulate Ag-specific immune response. In addition, by 
capturing the genotype of MHC-II in the model, it is possible 
to simulate host/subject-specific immune responses based 
on the MHC-II alleles each subject carries.

The cellular level accounts for immune cells kinetics. At the 
cellular level (Figure 2), DCs serve as a connection between 
the innate and the adaptive immune system, by presenting 
T-epitopes for the activation of corresponding naïve helper T 
cells. Once the Ag-specific naïve T cells are activated by the 
DCs, they proliferate and differentiate into functional T cells 

to facilitate downstream B-cell activation or give rise to mem-
ory T cells that can be immediately activated via interacting 
with antigen-presenting DCs. Subsequently, antigen-specific 
naïve B cells, which recognize Ag through B-cell receptor, 
were fully activated upon stimulations from functional T cells 
and Ag-bound B-cell receptor. Activated B cells proliferate 
and differentiate into short-lived and long-lived plasma cells, 
as well as memory B cells. The plasma cells secrete ADA that 
modifies antigenic protein elimination, while the memory B 
cells behave similarly as naïve B cells and immediately react 
to an antigen challenge.

The whole-body level accounts for therapeutic protein in 
vivo disposition (Figure 3). The PK profile of therapeutic pro-
teins is usually modeled by empirical compartmental models, 
which lump rapidly equilibrated tissues for drug distribution 

Figure 1.  Model structure for the subcellular level, including 
processes for antigen presentation in mature dendritic cells. 
The symbols in the figure legends are described below, with 
corresponding equation number in Supplementary Materials 
shown between parentheses. : Antigenic protein, including 
antigenic protein in plasma (Ag, Eq. 27 in Supplementary 
Material) and antigenic protein in the endosome: (AgE, Eq. 4 in 
Supplementary Material); : antigenic peptide in endosome (pj

E, 
Eq. 5 in Supplementary Material); : competing protein in the 
endosome (cpE, Eq. 9 in Supplementary Material); : competing 
peptide in the endosome (cptE, Eq. 10 in Supplementary Material); 

: MHC-II molecules, including those in the endosome (ME
k, 

Eq. 6 in Supplementary Material) and those on dendritic cell 
membrane (Mk, Eq. 13 in Supplementary Material); : antigenic 
peptide-MHC complex, including those in the endosome (pjM

E
k, 

Eq. 7 in Supplementary Material) and those on cell membrane 
(pjMk, Eq. 8 in Supplementary Material); : competing peptide-
MHC complex, including those in the endosome (cptME

k, Eq. 11 in 
Supplementary Material) and those on cell membrane (cptMk, Eq. 
12 in Supplementary Material).
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into a single compartment. In the current model, plasma is 
modeled as the space for the immune cells to reside and for 
the antigenic proteins to interact with the immune system, by 
assuming that lymphocyte move fast between lymph organs 
and the blood. To accurately describe the PK of the antigen, 
while modeling interaction between the Ag and the immune 
system, a modified compartmental model was constructed. 
An extended two-compartment model is illustrated as an 
example. A peripheral compartment includes slowly perfused 
tissues, as is usually done. The central compartment gener-
ally includes plasma and other rapidly perfused tissues and 

therefore can be regarded as the sum of plasma volume (Vp) 
and any extra volume in the central compartment (Vec). It 
is assumed that plasma and the extracentral compartment 
equilibrate very fast. By fitting the PK profile of the antigenic 
protein using this modified compartment model, the rate 
constants (k13, k31, and kel) and Vec can be estimated (once 
plasma volume and plasma to extracentral rate constants are 
assumed). Then, the modified compartmental model can be 
integrated into the rest of the mechanistic model to specifi-
cally model the Ag in vivo disposition.

The model details are provided in the Supplementary 
Materials, with the following organization:

1.	 DC activation and differentiation;
2.	 Antigen presentation by DCs;
3.	 T-helper cell activation and differentiation;
4.	 B-cell activation and differentiation;
5.	 ADA in vivo disposition;
6.	 Antigenic protein in vivo disposition.

The definitions of all model variables and parameters are 
provided in Supplementary Tables S1 and S2. By using 
the same model structure, but species-specific parameters, 
the model can be used to simulate immune responses in 
mouse and human. Parameters were collected from the 
literature as much as possible. More parameters are avail-
able for mouse compared with human: when there is no ref-
erence for human-specific parameters, the current model 

Figure 2.  Model structure for the cellular level, including cells, antigen, antidrug antibody, and B-cell receptor. The links between the three 
levels of the multiscale model are also illustrated to help interpretation. The acronyms are explained below, along with the corresponding 
equation number in the Supplementary Material shown between parentheses. MS: maturation signal (Eq. 1 in Supplementary Material); 
ID: immature dendritic (Eq. 2 in Supplementary Material); MD: mature dendritic (Eq. 3 in Supplementary Material); NT: naïve T (Eq. 14 
in Supplementary Material); ATN: activated T from naïve T (Eq. 15 in Supplementary Material); ATM: activated T from memory T (Eq. 16 in 
Supplementary Material); MT: memory T (Eq. 17 in Supplementary Material); FT: functional T (Eq. 18 in Supplementary Material); NB: 
naïve B (Eq. 19 in Supplementary Material); ABN: activated B from naïve B (Eq. 20 in Supplementary Material); ABM: activated B from 
memory B (Eq. 21 in Supplementary Material); MB: memory B (Eq. 22 in Supplementary Material); PS: short-lived plasma (Eq. 23 in 
Supplementary Material); PL: long-lived plasma cell (Eq. 24 in Supplementary Material).
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assumes that they are the same as the mouse parameters. 
The software Matlab (The MathWorks, Natick, MA) was 
used for model implementation and for the simulations 
described below.

Simulation of immune responses in human against a 
hypothetical antigen
By inputting antigen-specific parameters for a hypothetical 
antigenic therapeutic protein, the basic model could simulate 
the human kinetic profiles for DCs, T cells, B cells, ADA, and 
average ADA affinity upon the injection of antigenic protein 
(Figure 4). In addition, the antigen presentation processes, 

including the internalization, processing, and presentation of 
antigenic protein and competing protein, are also captured 
by the model (Supplementary Figure S1). For this particular 
antigenic protein, the model predicts the generation of strong 
immune responses, reflected by the rapid activation and pro-
liferation of immune cells, and the production of high level 
of ADA. The model also predicts greatly enhanced immune 
response upon secondary immunization, consistent with the 
immune memory phenomenon. The average antigen-binding 
affinity of ADA was also calculated to increase over time, 
which agrees with the antibody affinity maturation phenom-
enon observed after immunization.

Figure 4.  Simulation results of immune responses in human against a theoretical antigenic protein. The results include kinetic profiles 
for (a) dendritic cells; (b) helper T cells; (c) B cells; (d) antigenic protein, ADA, and immune complex; (e) polyclonal ADA (total 17 clones, 
whose antigen-binding affinity increases by twofold between clones, from clone 1 to clone 17); (f) average antigen-binding affinity of ADA. 
ADA, antidrug antibody.
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Simulation of immune responses in human under vari-
ous immune system conditions
Several potential impacting factors for immunogenicity 
development, including naïve T-cell number, naïve B-cell 
number, binding affinity of T-epitopes to MHC-II, antigen 
dose, were tested for their impact on ADA generation by 
changing the parameter values over physiologically plau-
sible range. The ADA kinetic profiles and the cumulative 
amount of ADA under various parameter conditions were 
summarized in Figure 5. The naïve T-cell number has a 
significant impact on the magnitude and the timing of ADA 
generation. The cumulative ADA response as a function of 
naïve T-cell number exhibited a bell shape (Figure 5b). In 
addition, a greater naïve T-cell number generally leads to a 
faster rise of the ADA (Figure 5a), with the earliest rising 
time around 40 days. In contrast, naïve B-cell number has 
less impact on ADA generation (Figure 5d). Within the nor-
mal parameter range (from 10–7 % to 101 % of total B cells), 
the cumulative ADA amounts varied only within twofold. 
Only when excessive number of naïve B cells are present 
(10–100% of total B cells), the amount of ADA drops dra-
matically. The binding affinities for T-epitopes (dissociation 
constant, Kd) demonstrate a strong impact on ADA magni-
tude, with the most sensitive range of 1 nmol/l to 1 µmol/l 
(Figure 5f). Ag dose also exhibited a bell-shaped relation-
ship with the amount of ADA generated (Figure 5g,h).

Sensitivity analysis
A sensitivity analysis for the Ag amount and the total ADA 
amount was performed against model parameters. The top 
10 sensitive parameters are listed in Table 1. Six parameters 
are shared between Ag and ADA, including rate constants 
for the proliferation and death of activated T cells (ρAT, βAT), 
differentiation fraction of T cells (f1) and B cells (g1, g2), and 
elimination rate of the Ag (βAg). The other four parameters 
that have high sensitivity on ADA response are involved in 
T-cell activation (δNT), B-cell proliferation and death (ρAB_N, 
βAB), and T-cell–B-cell interaction (CCN). The other four sensi-
tive parameters for Ag response include Ag PK parameters 
(Ag0, VP), number of T-epitope–MHC on DCs for half-maxi-
mum T-cell activation (KpM,M), and death rate for functional T 
cell (βFT).

DISCUSSION

By integrating key biological mechanisms for immunogenic-
ity development, a mathematical model was developed for 
simulating humoral immune responses against antigenic 
therapeutic proteins. The model can reasonably reproduce 
many immunological phenomena, such as the enhanced 
secondary immune response, antibody affinity maturation, 
and antigen presentation. Figure 4 illustrates the simula-
tion results for immune responses in human against two 
doses of a therapeutic protein. Notably, upon the secondary 
immune challenge, the magnitude of the immune response 
(number of immune cells, amount of ADA) is much higher 
than the primary response, consistent with the notion of 
immune memory. The model behavior for enhanced second-
ary immune response was achieved by the following model 

features: (i) incorporating memory T and memory B cells, 
which can get activated, proliferated, and differentiated 
into functional cells upon antigen stimulation; (ii) assign-
ing lower activation threshold for memory cells compared 
to naïve cells25,26; (iii) assigning higher proliferation rate for 
activated memory B cells compared to activated naïve B 
cells.27 Another interesting result is the time profile of the 
average ADA affinity (Figure 4f), which gradually increases 
over time. This model behavior is achieved by treating the 
B-cell lineages, and the corresponding ADA, as polyclonal 
populations with different antigen-binding affinities. The 
model assumes that the activation, proliferation, and differ-
entiation of B cells are dependent on the B-cell receptor 
occupancy, which is affected by their antigen-binding affin-
ity. Therefore, when the amount of antigen is limited, B cells 
that have higher receptor-binding affinity to the antigen will 
be preferentially activated, producing ADA with higher aver-
age affinities over time.

After confirming that the model behaviors are reason-
able, we also investigated the impact of several parameters 
of interest on the ADA responses, by changing the param-
eter values over a wide, physiologically plausible range 
(Figure 5).

Four parameters, including the number of naïve T cells, 
number of naïve B cells, MHC-binding affinity of T-epitope, 
and Ag dose, were studied in the simulation. Although not 
routinely assessed for immunogenicity risk, the naïve T- 
and B-cell numbers were probably important; this would be 
expected, since more naïve cells likely better prepare the 
immune system against antigen challenge. Interestingly, 
the model suggests that a bigger impact on ADA response 
may come from the number of naïve T cells, rather than 
naïve B cells (Figure 5b,d). The results indicate that a suf-
ficient number of naïve T cells needs to be present to effi-
ciently initiate an immune response, while the initial naïve 
B-cell number is not as critical. Even a small number of 
naïve B cells can be activated and proliferate to a sufficient 
size for mounting ADA response, as long as enough stimu-
lation (T cells and Ag) is present. Studies have suggested 
that the size of naïve T-cell repertoire can vary dramati-
cally depending on the antigenic T-epitope.28–30 Our result 
emphasizes the potential importance of measuring naïve 
T-cell number when assessing the immunogenicity risk of 
therapeutic proteins. The model simulations also indicate 
that excessive amounts of naïve T and B cells may cause 
the expected immune response to decline, rather than to 
increase (Figure 5b,d). This model behavior is caused by 
competition for resources, such as competing for DC help 
among T cells or competing for T-cell help and for antigen 
stimulation among B cells. Under the current simulation 
settings, frequencies to achieve the peak response are 
around 102 per million for naïve T and around 104 per mil-
lion for naïve B cells.

MHC-binding affinity of T-epitope also demonstrated 
strong impact on the ADA response (Figure 5e,f). The 
simulation shows that higher MHC-binding affinity gener-
ally leads to greater ADA response, because of the higher 
number of peptide-MHC presented on DCs. Under the cur-
rent settings, the sensitive affinity range for T-epitope is 
between 1 nmol/l and 1 µmol/l (dissociation constant, Kd), 
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suggesting that T-epitopes with Kd weaker than 1 µmol/l 
are unlikely to induce strong immune response, while epi-
topes with very strong binding (Kd stronger than 1 nmol/l) 
probably have reached a plateau for inducing response. 

Interestingly, under the current simulation, the suggestion 
of 1 µmol/l as a weak binding affinity agrees with other pub-
lications’ cutoff for binders vs. no-binders for class II T-epit-
ope prediction and shows biological relevance.31,32

Figure 5.  Model simulated ADA responses under physiologically plausible range of parameter values. (a,c,e,g) Model simulated 
kinetic profiles for ADA.(b,d,f,h) Cumulative amount of ADA during the simulation time against parameters of interest. The parameters of 
interest are: panels a and b, initial naïve T-cell number; panels c and d, initial naïve B-cell number; panels e and f, affinity of T-epitope for 
MHC-II; panels g and h, antigen dose. The numbers 1 to 10 on the left panels stand for 10 different parameter conditions, from low to high 
amounts. More details can be found in the Methods section. ADA, antidrug antibody.
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Lastly, the dose of the antigenic protein is a recognized 
impacting factor for immunogenicity development.33 In our 
simulation, a bell-shaped antigen dose–ADA response curve 
was obtained (Figure 5g,h), suggesting that the model can 
reasonably capture the immune tolerance phenomenon. As 
demonstrated above, the model can potentially be applied 
to formulate or test hypotheses related to immunogenicity 
development, by modifying the model components or chang-
ing the parameter values.

In order to identify sensitive model parameters for ADA 
and Ag kinetics, sensitivity analysis was performed for the 
model with human parameters (Table 1). Overall, ADA 
kinetics is much more sensitive to model parameters than 
Ag kinetics (except that, as expected, Ag kinetics is very 
sensitive to antigen elimination rate, βAg). This is reason-
able when we consider that the model is constructed for 
simulating ADA response, so its parameter values have 
more direct impact on ADA kinetics, while the impact on 
Ag kinetics is mostly secondary, through the formation of 
immune complexes. The sensitivity analysis indicates that 
the activation, proliferation, and differentiation of helper T 
cells and B cells are critical processes in the development 
of immunogenicity, and these parameter values have a big 
impact on the model outcome. It would be helpful to further 
confirm these parameter values by doing controlled in vitro 
or in vivo experiments in the future.

The current model represents a starting point and has 
potential for future development. For example, while plasma 
is assumed as the space for the immune response, ideally 
the site of action should also include lymphoid organs such 
as lymph nodes, spleen, and bone marrow, where vari-
ous immune reactions such as antigen presentation, clonal 
selection, and long-lived plasma cell survival take place. DC 
activation is modeled rather empirically in the current set-
tings. Upon the availability of more information to expand this 
module, the LPS activation signal could be replaced or com-
plemented by other danger signals, e.g., tissue damage on 
injection. Some human-specific parameter values are directly 
taken from mouse values, and they may be properly scaled 
from mouse to human or be determined by performing appro-
priate experiments.

Several features of this model should be highlighted. 
First, the model recapitulates and integrates essential 

biological components and mechanisms for the develop-
ment of immunogenicity and provides a wide spectrum of 
predictions for the kinetics of the immune system. Second, 
the model simulations agree with many known immunologi-
cal phenomena, such as immune memory, antibody affin-
ity maturation, and immune tolerance. Last but not least, 
the model was developed by incorporating both antigen- 
and host-specific characteristics, since immunogenicity 
ultimately depends on both the antigenic properties of the 
protein and the immunological environment of the host. 
Antigen-specific characteristics, such as T- and B-epitope 
content and affinity, and host-specific characteristics, such 
as MHC-II genotype and naïve T- and B-cell numbers, are 
designed as potential inputs for simulation. Since many 
antigen or host characteristics can be obtained from exper-
imental approaches, the model can potentially be applied 
to quantitatively integrate results from immunogenicity 
assessment studies and provide simulations/predictions 
about the putative immune responses in human.

In summary, a novel multiscale, mechanistic model was 
constructed for the development of immunogenicity against 
antigenic/therapeutic proteins, by mathematically describing 
key underlying mechanisms and collecting physiologically 
plausible parameters from scientific publications. As a result, 
the current model simulations reasonably agree with many 
accepted immunological phenomena. Here, we used the 
model to formulate and test some hypotheses on influential 
factors for immunogenicity. We believe that the model can be 
explored to potentially serve as a supplemental tool to aid 
immunogenicity risk assessment, by quantitatively integrat-
ing protein- or patient-specific information from in vitro and 
in vivo experiments or from clinical studies.

METHODS
Simulation of immune responses in human against a 
hypothetical antigen
The in vivo immune responses in human against a hypotheti-
cal antigenic protein were simulated. The protein, with molec-
ular weight of 150 kD, and a half-life of 2 days, was injected 
i.v. at 50 mg/kg on day 0 and day 14. It is assumed that one 
promiscuous T-epitope is present on this protein, which binds 
to three of the six MHC-II molecules for one human subject, 
with a strong binding affinity of 150 nmol/l. Assumptions are 
also made for antigen-specific naïve T and B cells, with naïve 
T-cell frequency at 0.33 per million and B-cell frequency at 
10 per million. Other parameters are kept the same as the 
generic human parameter set. The simulation was run for 100 
days from day 0, and the kinetics for cell populations, antigen 
presentation, antigenic protein, ADA, and immune complex 
were recorded.

Simulation of immune responses in human under various 
immune system conditions
To explore the model behavior while changing the values 
of several factors of interest, the corresponding parameters 
were varied within a large range. The factors tested included 
naïve T-cell number (NT

0), naïve B-cell number (NB0), anti-
genic protein dose (Ag0), and T-epitope–binding affinity 

Table 1. Sensitivity analysis: top 10 sensitive parameters

Ranking

ADA Ag

Parameter CCmax Parameter CCmax

1 ρAB_M 7.772 βAg −23.773

2 g1 −4.126 Ag0 1.000

3 ρAT 3.568 ρAT 0.033

4 g2 −3.421 g1 −0.032

5 βAg −3.356 f1 0.025

6 βAB −2.668 βAT −0.021

7 f1 2.400 VP −0.020

8 βAT −2.103 g2 −0.019

9 CCN 2.010 βFT −0.017

10 δNT 2.005 KpM,M −0.015

ADA, antidrug antibody; Ag, antigen.
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against MHC-II (Kd). The naïve T-cell frequency ranges from 
3.3∙10–4 to 3.3∙105 per million, and the naïve B-cell fre-
quency ranges from 10–3 to 106 per million. The antigenic 
protein doses are from 3.3 × 101 to 3.3 × 1010 pmol, while the 
MHC-II–binding affinities (Kd = koff/kon) of T-epitope are from 
10–3 to 106 nmol/l. The other model parameters were adapted 
from the model for human response against a hypothetical 
protein. The ADA profiles and cumulative ADA over 154 days 
(area under the curve for ADA-time profile) were simulated.

Sensitivity analysis
We performed a sensitivity analysis to evaluate the impact of 
individual parameter values on the interested state variables. 
The sensitivity calculation was performed for two key state 
variables (amount of therapeutic protein and amount of ADA) 
against the system parameters. The parameter set used for 
sensitivity analysis is the human set.

Control coefficients are used as indicators for sensitivity. 
The control coefficients of variable x to parameter p (CCp

x ) 
were calculated using the following equation34,35:

CCp
x x

p
p
x

=
∂
∂

⋅

The finite difference method was used to approximate the 
derivative in the above equation, where h is the step size:

CCp
x x p h x p

h
p
x

≈
+( ) − ( )

⋅

The step size h was chosen as h = 1%·p, because 1% 
increase in the value of p has been shown to yield numeri-
cally stable results.34 We reported CCmax, the CCp

x value 
with the maximum absolute value over the time course of 
the system. A positive CCmax suggests that the parameter 
increase results in a increase in x value, while a nega-
tive CCmax means that the parameter increase causes a 
decrease in x value.
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