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DPOP quantifies respiratory modulations in the photoplethysmogram. It has been proposed as a noninvasive surrogate for pulse
pressure variation (PPV) used in the prediction of the response to volume expansion in hypovolemic patients. The correlation
between DPOP and PPV may degrade due to low perfusion effects. We implemented an automated DPOP algorithm with an
optional correction for low perfusion.These two algorithm variants (DPOPa andDPOPb)were tested on data from 20mechanically
ventilatedORpatients split into a benign “stable region” subset and awhole record “global set.” Strong correlationwas found between
DPOP and PPV for both algorithms when applied to the stable data set: 𝑅 = 0.83/0.85 for DPOPa/DPOPb. However, a marked
improvement was found when applying the low perfusion correction to the global data set: 𝑅 = 0.47/0.73 for DPOPa/DPOPb.
Sensitivities, Specificities, and AUCs were 0.86, 0.70, and 0.88 for DPOPa/stable region; 0.89, 0.82, and 0.92 for DPOPb/stable
region; 0.81, 0.61, and 0.73 for DPOPa/global region; 0.83, 0.76, and 0.86 for DPOPb/global region. An improvement was found in
all results across both data sets when using the DPOPb algorithm. Further, DPOPb showed marked improvements, both in terms
of its values, and correlation with PPV, for signals exhibiting low percent modulations.

1. Introduction

DPOP (Delta-POP or ΔPOP) is a physiological parameter
calculated from the pulse oximeter signal—the photoplethys-
mogram or “pleth”—which measures the strength of respira-
torymodulations present in thewaveform.Theparameter has
been shown to be useful as an index of fluid responsiveness
with many studies showing favourable correlation between
it and pulse pressure variation (PPV), often used in the
determination of the response to volume expansion [1–7].
PPV is, however, an invasive parameter requiring an arterial
line, whereas a measure based on the pulse oximeter would
provide an entirely noninvasive technology. This is the main
driver of the current interest in this area.

Cannesson et al. [8] suggested DPOP as measure of the
“respiratory variation in pulse oximetry plethysmographic
(POP) waveform amplitude” and defined it as follows:

DPOP =
(AMPmax − AMPmin)

AMPave
, (1)

where AMP is the amplitude of the cardiac pulse waveforms
in the pleth, AMPave = (AMPmax + AMPmin)/2. DPOP is
usually expressed as a percentage. Note that the equation
for DPOP has the same mathematical formulation as PPV
[9, 10] and other similar formulations for pleth-based fluid
responsiveness parameter were proposed by other groups at
around the same time as Cannesson’s 2005 paper [11, 12].
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Figure 1: High-level schematic overview of the DPOP algorithm.

The basic computation of DPOP, expressed by (1), is
relatively simple, requiring only a few lines of computer code
to implement. However, for the development of a fully auto-
mated algorithm capable of coping with the extremes of data
characteristics in the clinical environment, significantlymore
processing is required. A fully automated DPOP algorithm
can be broken into three main parts: (1) preprocessing, where
the raw pleth is manipulated prior to the computation of
DPOP; (2) processing, where the computation of the DPOP
value according to (1) is carried out; and (3) postprocessing,
where the current computed value of DPOP is further
processed.This high-level structure of the algorithm is shown
in Figure 1. Preprocessing and postprocessing activities dom-
inate all commercial algorithms for physiological parameters.
This sophistication is necessary in order to produce a fully
automated algorithm with the necessary logic and decision
making processes required to provide a robust, clinically
useful number for display [13]. The pre- and postprocessing
steps involve filtering of the raw pleth waveform, assessment
of the quality of the signal coming in, removal of irregular
pulse waveforms, identification and removal of outlying data
points, smoothing, and, finally, incorporation of the most
recently calculated valuewithin the reported value (i.e., where
the value calculated over the recent segment of signal is used
to update the value displayed to the clinician). This latter
step may include an average of a number of previous points
weighted by temporal relevance and the quality of the data.

We coded a DPOP algorithm incorporating the steps
described above. During the development of the DPOP code
we found that an improvement in the correlation between
DPOP and PPV could be achieved at low perfusion values by
adding an extra postprocessing code module. Problems with
low perfusion are well documented in the literature and, in
fact, low perfusion is cited as an exclusion criterion in the
studies by Cannesson [1, 2] and Chandler et al. [7]. Hence,
we developed two versions of the algorithm: DPOPa, which
provides a robust DPOP parameter as given by the formula-
tion of (1) and DPOPb, which modifies the DPOP value at
perfusion indices <3% by decreasing it proportionately as the
perfusion index tends to zero.

The aim of the present study reported here was to assess
the relative performance of the two photoplethysmographic-
derived indices in terms of correlation and agreement against
the pulse pressure-derived PPV measure in patients in the
operating room undergoing controlled mechanical ventila-
tion.

2. Methods

2.1. Patients. With institutional review board approval and
written informed consent, a convenience sample of adult

patients was enrolled at the Ohio State University (OSU)
Wexner Medical Center (Principal Investigator: Sergio D.
Bergese, MD). Ventilated patients requiring placement of
an intra-arterial line who have been scheduled to undergo
elective surgerywere enrolled in the study. No specific disease
states or pathophysiologic conditions were targeted during
enrolment. Exclusion criteria were (1) currently participating
in or having participated in an investigational drug study
within seven days of enrolment, (2) having known severe
contact allergies to adhesive materials, (3) having existing
health conditions preventing proper sensor application, and
(4) belonging to vulnerable groups (pregnant, breastfeeding,
and prisoners).

2.2. Data Acquisition. Each patient was fitted with a finger
sensor (Nellcor OxiMax Max-A, Covidien, Boulder CO) as
per the sensor’s device labelling.The sensor was connected to
a custom data-recording box that contained a Nellcor OEM
pulse oximeter of the same type found in the commercially
available N-600x monitor (Nell-1 board, Covidien, Boulder
CO). High resolution pleth waveforms were collected from
the Nell-1 board which was configured in its default, “Nor-
mal,” response mode. There were no displayed readings or
alarms with this investigational recording system; the hospi-
tal’s bedside or multiparameter pulse oximeter was used for
patient care. The blood pressure signal from an intra-arterial
blood pressure monitor (Solar 8000, by GE-Marquette) was
also recorded. This passed through an Ethernet cable to a
laptop with BedMaster Software (Exel Medical, Florida). A
synchronized acquisition of the pulse oximeter and arterial
pressure signals was performed during the whole procedure
and saved to a laptop for later analysis.

Demographic information, sensor types and sensor sites
used, and intraoperative data sheets for manual listing of
significant events during the data acquisition were collected
as useful references for informing the data analysis. These
events included the administration of drugs (both time
and type of drug), the times of significant patient motion,
surgical incisions, washing patients, attachment to a heart
lung machine, time of significant changes (±20mmHg) of
blood pressure, induction, extubation, central line insertion,
patient/patient bed position change, arterial line rezeroing,
flushing, or height adjustments.

2.3. Data Analysis. The resulting OR data set comprised
36 patient records where pleth and arterial line waveforms
were collected simultaneously. 16 data sets were excluded
from analysis for a variety of reasons, including the absence
of, or missing, information in the case report form (CRF),
absence of a blood pressure waveform recording, absence
of a pleth waveform recording, presence of an arrhythmia,
corrupted data files, and pleth data with artifacts due to BP
cuff inflations on the same arm as the oximeter probe. The
remaining 20 subjects had a mean length of data record
of 115 minutes, with the shortest recording of 43 minutes
and longest recording 204 minutes. All subjects were pro-
vided with general anaesthetic drugs before and during the
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Table 1: Original and PMod corrected DPOP results.

Parameter Data set 𝑅 𝑃 Sensitivity Specificity DPOP threshold AUC
DPOPa Stable 0.826 <0.01 0.858 0.699 18.69 0.877
DPOPb Stable 0.852 <0.01 0.892 0.819 18.14 0.917
DPOPa Global 0.467 <0.01 0.810 0.609 23.01 0.733
DPOPb Global 0.728 <0.01 0.834 0.756 21.37 0.863
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Figure 2: Selection of a stable region ((b) finger pleth and (a) arterial
BP).

procedure. 14 subjects were also provided with vasoactive
drugs at specific points during the procedure.

The collected signals were subdivided into two distinct
data sets: (1) a stable region data set and (2) a global data
set. The “stable data set” corresponds to a few minutes of
high quality signal segments selected from within the post-
inducation, pre-incision period, where only general anaes-
thetic drugs had been administered (i.e., no vasoactive drugs)
and where the pleth and BP signal were reasonably artifact-
free. The stable data set is intended to provide a comparison
to results from studies based onmanually selected high signal
quality regions often reported in the literature.The identifica-
tion of the stable region was performed by visual inspection.
An example of a stable region selected for analysis is shown in
Figure 2.The artifact in the BP signal within region A caused
the exclusion of this part of both signals for analysis (although
the pleth signal is of relatively good quality here).The artifact
in both signals within region B caused the exclusion of this
part of the signals from the stable region data set.The selected
pleth region is shown shaded in the plot.The “global data set”
contains the entire data record of the patient (i.e., including
sections such as A and B in Figure 2) and is indicative of all
the data encountered by a commercial device in practice.The
global data set provides amuch tougher test for an automated
algorithm which has to make decisions on signal quality and
optimize the reported parameter accordingly via advanced
signal processing measures.

2.4. Statistical Analysis. Theperformance analysis of theDPOP
parameter against the PPV signal comprises computing
statistics that describe quantitatively the relationship between

them, including correlation and receiver operator character-
istic (ROC) curve analysis. A best fit line for DPOP versus
PPV was plotted based on linear least square regression.
The Pearson correlation coefficient, 𝑅, describes how well
DPOP fits the linear relationship with PPV. The statistical
significance (𝑃 value) of 𝑅 was also calculated. By computing
a ROC curve, we also determined sensitivity, specificity, and
area under the curve (AUC) values. These correspond to
the hypothetical substitution of DPOP for PPV achieved by
setting a fixed threshold for PPV of 13%, as used in several
studies for indicating the boundary between nonresponsive
and responsive patients (e.g., de Figueiredo et al. [11], Can-
nesson et al. [8], Natalini et al. [12], Landsverk et al. [14],
and Westphal et al. [5]). A ROC curve is then computed
by determining the sensitivity and specificity pairs over a
range of DPOP thresholds. We selected the optimal DPOP
threshold from the predefined criterion of maximising the
Youden index (sensitivity + (specificity − 1)) [6, 12, 15].

3. Results

The results of the analysis are summarized in Table 1.
Figure 3(a) shows a plot of DPOPa versus PPV for the stable
regions of the OSU data set, corresponding to an 𝑅 value of
0.83. Figure 3(b) shows the corresponding plot for DPOPb
for the stable data set which can be compared to the DPOPa
results in Figure 3(a).The correction for low perfusion causes
a small improvement of the 𝑅 number for the stable region
runs (from 0.83 to 0.85). Although the overall correlation
improves very slightly, it is obvious when comparing the plots
of Figures 3(a) and 3(b) that a distinct subset of outlier data
points (indicated by the arrow in Figure 3(a)) is dealt with by
DPOPb algorithm. The removal of outliers in this way is a
critically important part of algorithm design, which should
not be driven solely by the improvement in global statistics
(e.g., R, AUC, sensitivity, specificity, etc.). In fact, outliers
often provide the largest hurdle in the design of clinical
algorithms.

Figure 4(a) shows the scatter plot of DPOP versus PPV
for the global data records of the OSU data set. This plot
clearly exhibits poorer performance than the corresponding
stable region plot of Figure 3(a), with a lower value of 𝑅 of
0.47. Figure 4(b) shows the corresponding plot for DPOPb.
However, for this data set we see an improvement in the
global statistics due to the correction for low perfusions,
with 𝑅 increasing from 0.47 to 0.73. An arrow marks the
region in Figure 4(a) plot for the DPOPa data where many
points exhibit distinctly greater values than expected for the
corresponding PPV values. We can see from Figure 4(b) that
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Figure 3: Original and Percent modulation (PMod) corrected DPOP results for stable regions. Note: vertical axes are set to the same scale
across plots.
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Figure 4: Original and PMod corrected DPOP results for global regions. Note: vertical axes are set to the same scale across plots.

many of these outlier points are removed from this region
by the low perfusion correction, resulting in the pronounced
increase in correlation between DPOP and PPV.

Figure 5 contains the ROC curves corresponding to the
results data plotted in Figures 3 and 4.The points correspond-
ing to the maximum Youden index are superimposed on
the curves for reference. The ROC statistics are summarized
in Table 1, including the sensitivity and specificity at the
maximum Youden index and the DPOP threshold that this
operating point corresponds to. The stable region data has
relatively high ROC statistics: sensitivities of 0.86 and 0.89,
specificities of 0.70 and 0.82, and AUCs of 0.88 and 0.92
for DPOPa and DPOPb, respectively. The corresponding
values for the global data set are sensitivities of 0.81 and

0.83, specificities of 0.61 and 0.76, and AUCs of 0.73 and
0.86, respectively, highlighting both the poorer results due
to distinctly noisier characteristics of the global data and the
ability of the DPOPb algorithm to improve results in both
cases.

4. Discussion and Conclusion

Thepresent study demonstrates a strong relationship between
DPOP and PPV and its further improvement through
accounting for low perfusion signals within the algorithm. In
addition, DPOPwas able to identify PPV values either side of
a 13% threshold with high sensitivity and specificity.
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Figure 5: ROC curves corresponding to the data in Figures 3 and 4.

DPOP has been proposed as a noninvasive surrogate for
pulse pressure variation (PPV) used in the determination of
the response to volume expansion in hypovolemic patients
[8, 11] andmany studies have found good agreement between
the two parameters in the OR and ICU [1–8, 11, 12]. Although
considered a minimally invasive technique, the placement of
a peripheral arterial line is time-consuming and associated
on rare occasion with potentially harmful complications,
including infection, thrombosis, and hematoma [5]. Numer-
ous studies have now reported on the DPOP parameter and
many research groups have constructed algorithms for its
computation from first principles where the implementation
details have been described (e.g., Cannesson et al. [1–3],
Feissel et al. [4], Westphal et al. [5], Høiseth et al. [6], and
Chandler et al. [7]). However, a number of authors draw
attention to the already preprocessed nature of the pleth
with which they are working. This is aptly summed up by
Cannesson et al. [16] who state that it is well known that

the pleth is “a highly processed signal, and that only the
raw waveform can display consistent respiratory variations.”
Landsverk et al. [14] echo the sentiment commenting that the
commercial pulse oximeter used in their study had “filters
built in” and hence the analog output signal they used was
therefore not a “raw signal.”They therefore could not exclude
the possibility that the respiratory variations could have been
altered by the preprocessing of the device. Cannesson et al.
[3] state that visual analysis of the respiratory variations in
the waveform is unreliable, since the amplitude of the curve
“is constantly processed and smoothed bymost of the devices
commercially available.” Delerme et al. [17] describe the
plethysmographic signal as a “highly processed and position
dependent signal” and results might vary from one pulse
oximeter to another. In the present study, we are fortunate in
our ability to access the raw pleth waveform and manipulate
it in order to mitigate both poor quality signal and low
perfusion effects. In addition, we have access to a toolbox
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Figure 6: DPOP results for low PMod values.

of tried and tested signal processing modules specific to
the extraction of respiratory modulations from the pleth on
which to base the algorithm [13, 18].

There is a temptation to believe the pulse pressure
waveform and pulsatile pleth waveform to be essentially
the same signal, and indeed Westphal et al. [5] comment
on the resemblance between the two. However, additional
complex, nonlinear pressure-mechanical coupling and light
absorption phenomena separate the physiological system
that provides us with the pleth from that of the arterial
waveform. Thus a correction is required for DPOP at low
perfusions as the pressure-mechanical dynamical system
changes state. The correction we employed for low perfusion
(DPOPb) improved all results in the present study. The
most marked improvement was for the more challenging
global data set where 𝑅 improved from 0.47 to 0.73. Detailed
visual inspection of the pleth waveforms indicates that, as
perfusion lowers, there appears to be a differentially faster
decrease in the mean component of the DPOP calculation
(the denominator of (1)) than in the modulation component
(the numerator).This behaviour should not be surprising due
to the complex nonlinear nature of the pressure-mechanical

interaction of the pulse wave at the vessel wall [19, 20].
In addition, studies have shown that the DPOP and PPV
parameters vary differently during the hypovolemic state due
to the changing relationship between the stroke volume and
pulse pressure when the compliance of the aorta is greatly
increased [21, 22]. Thus we see from both physiomechanical
and phenomenological considerations that there is an expec-
tation of deviation from a linear relationship. (It is also the
reason we should not expect a 1 : 1 linear relationship between
DPOP and PPV.) Many studies have, in fact, commented on
the deleterious effect of variable and/or low perfusion levels
on methods to extract respiratory modulation information
from the pleth [6, 8, 23, 24] and some, in fact, cite low
perfusion as a criterion for excluding the data from analysis
[1, 2, 7]. Furthermore, Broch et al. [25] clearly demonstrated
the dependency of a commercially available pleth-based res-
piratory modulation strength parameter (PVI) on perfusion
index. They stated that “PVI showed a poor ability to predict
fluid responsiveness if different perfusion states of the index
fingerwere not considered” and concluded that the parameter
had limited capabilities to predict fluid responsiveness in the
presence of low perfusion.
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Figure 7: DPOP results reported on a one-point-per-patient basis.

To further investigate the performance of the algorithm
at low perfusive states we considered subsets of the data
at percent modulations below a range of threshold values.
Percentmodulation, PMod, is the ratio of the pulse amplitude
to the overall signal intensity. We reran the algorithm for
a range of PMod thresholds equal to 0.5%, 1%, 2%, and
3%. Some examples of the results are presented in Figure 6.
Figures 6(a) and 6(b) contain the global data split into
two subgroups corresponding to a PMod less than 0.5%—
one corresponding to DPOPa and the other to DPOPb. We
can see that, through the correction for low perfusion, the
DPOP values are moved down to those more in line with
the relationship depicted in Figure 4(b). In addition, the
corresponding 𝑅 value improves from 0.36 to 0.62. Figures
6(c) and 6(d) contain similar plots for data with PMod
values less than 3%. Again we see both an improvement
in the location of the data and a marked improvement in
the correlation coefficient, 𝑅 (from 0.07 to 0.60). Similar

behaviour was found for the 1% and 2% threshold, which
gave improvements in 𝑅 from 0.13 to 0.73 and 0.22 to 0.63,
respectively (not shown).

The present results fit well with most previous studies
involving OR data which show good correlation between
DPOP and PPV, with 5 out of 6 reported studies exhibiting
𝑅 values above 0.7 [2, 3, 6, 8, 15].The remaining study carried
out by de Souza Neto et al. [26] reported 𝑅 = 0.48. Note
that Hengy et al. [15] found a relatively high 𝑅 value of 0.79
for the correlation between mean values for all patients and
lower value of 𝑅 = 0.47 when considering the mean value of
intrapatient coefficients of correlation. Hengy also manually
deleted 5.7% of the respiratory cycles because of poor quality
signal, whereas, in the present study, the whole data record
was fed into the algorithm. (In fact, this is a prime require-
ment of our automated algorithm: it has to work with all
signal characteristics encountered in practice.) The literature
contains a wide range ofmethods for pre- and postprocessing
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of the data. Many studies have performed manual selection
of optimal data segments, while others have attempted to
automate the process. This may account for some of the
variability in reported values. However, it should also be
noted that many studies resort to plotting a single averaged
data point per subject, and often this may be averaged over
a few hand-picked respiratory cycles, while others attempt
much longer term averaging schemes. Averaging can greatly
increase the signal to noise ratio of the system and generally
leads to improved results. As an example, Figure 7 contains
the correlation plots corresponding to the stable and global
regions depicted in Figures 3 and 4, but with a single point
representing the mean of the data for each subject. The cor-
relations improve for all data sets, with stable region 𝑅 values
for DPOPa and DPOPb showing slight improvements to 0.86
and 0.88, respectively. The 𝑅 values for DPOPa and DPOPb
in the global region, however, exhibit distinct improvements
from 𝑅 = 0.47 to 0.63 and 0.73 to 0.87, respectively, as the
global averaging proves particularly good at suppressing the
signal noise in this more challenging data set. Thus care has
to be taken when interpreting reported results. Plotting in
this way may serve some use in that it denoises the data in
a global sense, leading to an improved resolution of a distinct
underlying relationship. However, it does not represent the
reported parameter in practice which is computed over a
more localised signal segment and therefore not amenable
to the improved signal to noise characteristics provided by
very long-term averaging. Reported results should, therefore,
be interpreted in the context of the method used to produce
them. Cannesson et al. [16] echoes this sentiment arguing
that for such studies “the way in which the data are recorded,
analyzed, and reported should be standardized in order to
avoid potential confounding factors.”

In conclusion, a sophisticated algorithm for the deter-
mination of a robust DPOP parameter has been developed
which serves as a proxy for PPV information, in terms of its
correlation with PPV and its ability to predict PPV values
either side of a predefine threshold (of 13%). We further
enhanced the performance of the parameter by providing a
correction for low perfusion signals.
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