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Improvement of feed efficiency (FE) is key for Sustainability and cost reduction in pig
production. Our aim was to characterize the muscle transcriptomic profiles in Danbred
Duroc (Duroc; n = 13) and Danbred Landrace (Landrace; n = 28), in relation to
FE for identifying potential biomarkers. RNA-seq data on the 41 pigs was analyzed
employing differential gene expression methods, gene-gene interaction and network
analysis, including pathway and functional analysis. We also compared the results with
genome regulation in human exercise data, hypothesizing that increased FE mimics
processes triggered in exercised muscle. In the differential expression analysis, 13
genes were differentially expressed, including: MRPS11, MTRF1, TRIM63, MGAT4A,
KLH30. Based on a novel gene selection method, the divergent count, we performed
pathway enrichment analysis. We found five significantly enriched pathways related
to feed conversion ratio (FCR). These pathways were mainly related to mitochondria,
and summarized in the mitochondrial translation elongation (MTR) pathway. In the gene
interaction analysis, the most interesting genes included the mitochondrial genes: PPIF,
MRPL35, NDUFS4 and the fat metabolism and obesity genes: AACS, SMPDL3B,
CTNNBL1, NDUFS4, and LIMD2. In the network analysis, we identified two modules
significantly correlated with FCR. Pathway enrichment of module genes identified MTR,
electron transport chain and DNA repair as enriched pathways. The network analysis
revealed the mitochondrial gene group NDUF as key network hub genes, showing
their potential as biomarkers. Results show that genes related to human exercise were
enriched in identified FCR related genes. We conclude that mitochondrial activity is a key
driver for FCR in muscle tissue, and mitochondrial genes could be potential biomarkers
for FCR in pigs.

Keywords: muscle transcriptome, pigs, feed efficiency, gene networks, candidate biomarkers

INTRODUCTION

In commercial pig production, the cost of feed is the highest individual economic factor (Jing et al.,
2015; Gilbert et al., 2017). Furthermore, reduction in feed consumption per unit growth is beneficial
for the environment, which is a key factor in being able to maintain sustainable and resource
efficient production. In this context, there have been continuous efforts to increase feed utilization
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efficiency in pigs through selective breeding. For the majority of
Danish production pigs, breeding boars are selected at a core
central facility where potential breeding boars are tested for
FCR through accurate individual measurements of feed intake
and growth. Most Danish production pigs are crossbred, with
the maternal line being Landrace x Danbred Yorkshire, and the
paternal line being Duroc. The Durocs are well known for being
heavily selected for growth and efficiency, while the two other
breeds have been heavily selected for litter size and piglet survival
related traits.

Feed efficiency can be defined in several ways, with the
main ones being Residual Feed Intake (RFI) (Koch et al., 1963)
and FCR. FCR is the ratio between feed consumed and weight
gain, while RFI is calculated by fitting a model with predicting
feed intake from weight gain, and finding the residual of the
model prediction for each animal. In general, it is reported that
selection for low FCR will result in co- selection for related
traits, namely growth rate and body composition (Nkrumah
et al., 2007; Gilbert et al., 2017; Yi et al., 2018). In contrast,
selection for RFI is more directly focused on metabolic efficiency
irrespective of daily gain and growth (Nkrumah et al., 2007;
Gilbert et al., 2017; Yi et al., 2018). In general, RFI and FCR
are strongly correlated, with a correlation above 0.7 and both
show low to medium heritability (Do et al., 2013). In general,
FCR is simpler to calculate, as RFI calculation is dependent
on individual population and production factors (Hoque et al.,
2009; Do et al., 2013). However, in pig production, the co-
selection of growth rate and body composition when selecting
for FCR selection and the simplicity of calculation are desired
traits. This may explain why FCR has been the main efficiency
phenotype used for selection (Gilbert et al., 2017) in the
pig population in Denmark and in general pig production.
One can also hypothesize that FCR is more easily translatable
between breeds/populations, as it is a simple dimensionless ratio,
which has a simple and generally comparable interpretation.
In contrast, it is more difficult simply compare RFI values
across different populations or breeds. The biological and/or
genetic background of FCR in pigs remains somewhat elusive
(Ding et al., 2018), thus inviting for further analysis on
the topic.

The key tissue in pig production is muscle, as pig carcasses
are valued according to lean meat content. Skeletal muscle is a
key organ in carbohydrate and lipid metabolism and plays a large
part in the storage of energy from feed (Pedersen, 2013; Turner
et al., 2014; Morales et al., 2017), especially as lean growth has
been one of the main goals of pig breeding programs. Increased
efficiency has also been positively associated with various meat
quality parameters (Czernichow et al., 2010; Lefaucheur et al.,
2011; Smith et al., 2011; Faure et al., 2013; Horodyska et al.,
2018a), showing that improved FE can have multiple positive
outcomes. There are only a few studies analyzing muscle tissue
transcriptome of pigs in a FE context (Jing et al., 2015; Vincent
et al., 2015; Gondret et al., 2017; Horodyska et al., 2018b), and
thus our knowledge of the muscle transcriptomic background of
FE is somewhat limited. In general, previous studies have relied
on small samples sizes, weak statistical thresholds and categorical
division of lines divergently selected for FE. This means that more

studies are still needed to uncover the connection between the
transcriptome and FE in muscle tissue.

It is well known that animal models have been used extensively
for the study of human diseases and human physiology. There are
many studies, which cannot be ethically performed on humans
(e.g., gene expression studies in multiple organs), but we are
able to take advantage of the similarities between animal models
and human in the molecular mechanisms to gain knowledge
across species. Conversely, one could use human results to gain
knowledge of animal physiology.

The Kolmogorov-Smirnov test (KS test) (Massey, 1951),
is a non-parametric test which can be used to test if an
empirical data distribution could be generated from a reference
continuous probability distribution. The test statistics is based
on calculating a discrete maximum divergence between the
theoretical cumulative probability distribution and the empirical
cumulative probability distribution. In statistical testing, it is very
common to use arbitrary significance thresholds, typically 0.05.
At the same time, typical multiple testing correction methods
such as Bonferroni or Benjamini-Hochberg (Benjamini and
Hochberg, 1995) have no implicit way of picking thresholds,
and can be overly conservative (Narum, 2006). In situations
where one is more interested in group properties than
individual tests, it could be advantageous to use a metric
like the overall divergence calculated in the KS-test, which
does not have any implicit thresholds, for selecting genes for
further analysis.

In this study, we aim to characterize the transcriptomic
profiles and link them to FE traits measured in Duroc and
Landrace, purebred pigs, by fitting FE as a continuous trait
over a full spectrum of efficiency, from high to low. The pigs
in this study were all young performance tested boars, with
the potential of becoming active breeding sires. Thus, none of
the pigs were negatively selected for FE as in other studies
(Vincent et al., 2015; Gondret et al., 2017; Horodyska et al.,
2018a), making the differences in FE and their underlying
causes more representative of real practical applications. We
analyzed the muscle transcriptome based on several layers of
statistical-bioinformatics analyses: differential expression (DE),
gene-to-gene expression interaction and weighted network
analysis. Pathway and functional analysis was performed based
on differentially expressed genes and genes from network
analysis. The rationale behind the approach was to reveal
potential biomarkers that are functionally important and are
predictive of FE in pigs. Dealing with complex yet subtle
phenotypes can be challenging, as the signal to noise ratio
can be high, and it may be impractical or costly to collect
large sample sizes. Therefore, we also suggest a novel method
for selecting features based on the KS-test statistic, the
divergent count.

To gain more insight on the molecular and functional
background of FE, we also hypothesized, that the mechanism
between differences in the muscle transcriptome of breeds with
different efficiency could be similar to the differences between
a rested and an exercised muscle. We adapted a translational
genomics approach to investigate this by comparing human data
with our pig data.

Frontiers in Genetics | www.frontiersin.org 2 June 2020 | Volume 11 | Article 650

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00650 June 22, 2020 Time: 13:28 # 3

Carmelo and Kadarmideen Muscle Transcriptome in Feed Efficiency

MATERIALS AND METHODS

Sampling and Sequencing
In total, 41 purebred male uncastrated pigs where sampled for
this study from two breeds, with 13 Danbred Duroc and 28
Danbred Landrace pigs. All pigs were raised at a commercial
breeding station at Bøgildgard owned by the pig research center
of the Danish Agriculture and Food Council (SEGES). The pigs
where raised from ∼7 kg until 100 kg at the breeding station.
Feed intake registrations for each pig were initiated based on a
minimum weight cutoff of 28 kg, and continued for a period
of 40–70 days based on a combination of the viability of each
pig, and a weight limit of 100 kg. Feed intake was measured via
single feeder setup, which could only be accessed by one pig at
a time. While corrections for feed waste are made if necessary,
no correction were made in any of the data on the pigs in this
study. The pig diet consisted of a feed mixture with the main
ingredients being: 39% barley, 27%, wheat, 14% soybean meal,
and 6% oats. All pigs were weighed at testing start and end for
calculation of FCR. FCR was calculated by dividing the growth in
the testing period by the feed consumption. Residual Feed Intake
(RFI) was also estimated based on the residuals of the following
model (Do et al., 2013):

DFIij = µ+ DWGi + βj

Where DFI is daily feed intake and DWG is daily weight gain in
the period, and β is the batch effect. RFI was calculated separately
for each breed, and based on data from a larger population
(Duroc n = 59 and Landrace n = 50).

Muscle tissue samples from the psoas major muscle were
extracted immediately post-slaughter and preserved in RNAlater
(Ambion, Austin, TX, United States). Sample were kept at
−25C◦, as per protocol, until sequencing.

Sequencing
RNA extraction, library preparation and sequencing was done
by BGI.1 The sequencing was unstranded mRNA sequencing on
BGI’s own BGISEQ-500 platform, using an in-house designed
protocol, with 100 base pair unstranded paired end reads. The
data was sequenced using the same protocol as the 75PE protocol
in Zhu et al. (2018), but with 100bp.

Quality Control, Mapping, and Read
Quantification
Reads were trimmed and adapters removed using Trimmomatic
(Bolger et al., 2014) version 0.39 with default setting for paired
end reads. The QC on the data was done both pre- and post-
trimming using FastQC v0.11.9, with over 99% of the reads
being kept on average (Supplementary Data 1). The reads were
mapped using STAR aligner (Dobin et al., 2013) version 2.7.1a
using default parameters with a genome index based on Sus scrofa
version 11.1 and using ensembl annotation Sus scrofa 11.1 version
96 for splice site reference. Default parameters were used for
mapping except for the addition of read quantification during

1www.bgi.com

mapping using the –quantMode GeneCounts setting. All statistic
for the reads can be found in Supplementary Data 1.

Differential Expression Analysis
To analyze the relationship between FCR and gene expression,
we applied the following overall model, and implemented it using
several different methods:

yijklm = µ+ β1i (FCR)+ β2j (RIN)+ β2k

(
age
)
+ BRl

+ BAm + ε (1)

y = normalized read counts
β1 = regression coefficient of feed conversion rate
β2 = regression coefficient of RIN (RNA Integrity value)
β3 = regression coefficient of Slaugter Age (days)
BR = effect size of Breed
BA=effect size of Batch

RNA integrity value (RIN) should be corrected for, as it affects
expression, and the most appropriate way to correct this is to
include it in the model (Gallego Romero et al., 2014). As the
samples had different slaughter days, which affected the collection
conditions, we also deemed it necessary to correct for this via the
batch effect. Finally, we corrected for breed and age at slaughter,
as these are important biological factors, which could cause
differences in expression.

We used the following three methods for the differential
expression analysis (DEA): Limma (Ritchie et al., 2015), edgeR
(Robinson et al., 2010), and Deseq2 (Love et al., 2014). This was
done to increase the robustness of our analysis, as our phenotype
of interest is expected to have a subtle effect on the transcriptome
due to the complex nature of FE. In addition, we also fit the
model for each breed separately using Deseq2, just removing the
Breed as a covariate.

Deseq2
We used Deseq2 version 1.22.2. In the Deseq2 analysis, the counts
were filtered a priori requiring a minimum of 5 reads for each
sample, resulting in a total of 10765 out of 25880 genes being
included in the DE analysis in the joint breed analysis, and
10687 and 11107 in Landrace and Duroc respectively. As the
overall read counts were very similar across experiments (see
Supplementary Data 1), it was deemed sufficient to filter pre
normalizing. We then used the default analysis method based on
our specified model.

Limma
We used Limma version 3.38.3. For the Limma analysis, the
counts were filtered based on the edgeR filterByExprfunction and
normalized using calcNormFactors from the same package, as
suggested in the limma manual. This filtering was done on the
full data including both breeds. This resulted in the inclusion of
11146 genes in the analysis. To fit the model we used the eBayes
method in conjunction with our specified model.

EdgeR
We used edgeR 3.24.3. We used the same normalization and
filtering as in the Limma analysis, thus including the same
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number of genes. We used the glmQLfit function and glmQLTest
to implement our model.

While we used two different gene set sizes in the analysis,
this did not affect the results significantly, as the genes omitted
in the Deseq2 analysis were all lowly expressed. Furthermore,
in our further analysis we elected to use the smaller and more
conservative Deseq2 gene set to become our reference set for
further selections and analysis. In total, 99.9% of genes in the
Deseq2 gene set were also in the Limma/edgeR set.

Gene Pathway Analysis
Gene Selection
To select a robust set of genes for a gene enrichment analysis
when we have non-conservative p-value but only a limited
number of genes with a FDR below 0.05, we applied the
following strategy:

– Identify the overrepresentation of (low) p-values in
comparison to a uniform p-value distribution in our data.
We will call this the divergent count.

– Select the top N genes by p-value, where N is the estimated
divergent count.

– Among the top N genes, select those that are found in all
three methods.

To find the divergent count D, we find the interval with the
maximum positive divergence between our observed empirical
p-values and the same number of uniformly distributed p-values.
This is completely analogous to the KS-test with the uniform
distribution from 0 to 1 as a reference, and thus the probability
of a given divergence is simply the KS-test p-value between our
empirical data and the theoretical uniform distribution. It is
calculated as follows:

di =

( i=1∑
n

pi

{
0 for xi >

i
n

1 for xi ≤
i
n

)
− i (1)

D = max
{

d1, d2 . . . dn
}

(2)

Where n is the total number of p-values, pi is the i’th observed
p-value in increasing order. Here, i is both the index for x and the
expected number of p-values between 0 and i

n given a uniform
distribution. Note that to get the actual KS-test metric, di and i
are divided with n. D is the final divergent count, which is the
maximum over all possible values of d. This represents the excess
number of low p-values, given the following assumptions:

1. The p-value mass distribution is approximately decreasing
toward lower p-values.

2. The divergence should be significant.

Once the maximum divergence is found and the assumptions are
fulfilled, the next step is to assign a probability to this divergence.
As mentioned above, this is simply the KS-test between the
observed p-values and the uniform reference distribution.

GOrilla
To perform gene enrichment in GOrilla (Eden et al., 2007,
2009), we translated our Sus scrofra ensemble gene IDs into

human ensemble gene IDs. The background set of genes used
in GOrilla was the set of genes from the Deseq2 analysis. We
used default settings. Furthermore, we used the Revigo (Supek
et al., 2011) analysis through GOrilla to generate summaries of
our enrichment analysis, using default settings.

Feed Efficiency Measure
In this study, we elected to use weight gain/feed intake as our FCR
measure. It fit the data better than RFI, and FCR is the metric used
in the Danish breeding program.

Pairwise Gene Interaction Analysis
To continue our analysis of the top set of genes identified using
the divergent counts in our DE analysis, we decided to apply
a pairwise interaction model. First, we adjusted the expression
based on any factors and covariates that may affect expression
for each gene. These factors are the same as in the general DE
analysis, giving rise to the following linear model:

yjklm = µ+ β1j (RIN)+ β2k

(
age
)
+ BRl + BAm + ε

y = normalized read counts
β1 = regression coefficient of RIN (RNA Integrity value)
β2 = r egression coefficient of Slaugter Age (days)
BR = Breed
BA = Batch

We then centered and scaled the residuals and then run a model
for all pairwise gene interaction in our gene set We scaled and
centered because this leads to a more flexible and interpretable
model regardless of the type of interaction. The interaction model
was as follows:

yi = µ+ β1x1j + β2x2k + β3
(
x1j × x2k

)
+ ε

y=FCR values
β1 = regression coefficient of residual expression of gene 1
β2 = regression coefficient of residual expression of gene 1
β3 = regression coefficient of the interaction between gene 1 and

gene 2 x1j = residual expression of gene 1
x2k = residual expression of gene 2(
x1j × x2k

)
= product of the two residual expression values

The next step was then to identify significant interactions.
As the number of interactions in a dataset grows exponentially
to the square of the input space, it is often difficult to detect
effects based on classical multiple testing correction methods
such as Bonferroni or FDR. This is especially true when dealing
with complex phenotypes, as we generally do not expect to
find individual large effects. Therefore, instead of focusing on
individual results for each gene, we calculated the divergent
count, to assess the divergence of each genes’ distribution of
interaction p-values. We then bootstrapped with replacement
samples of 853 p-values from our empirical p-values 105

times, calculating the divergent count each time, giving us a
bootstrapped distribution of divergent counts, to compare with
our empirical distribution.

Weighted Gene Network Analysis
To perform network analysis, we used weighted gene correlation
network analysis (WGCNA) (Langfelder and Horvath, 2008).
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First, we filtered the read counts to only include genes with
a minimum of 5 un-normalized reads, as was done for the
Deseq2 analysis. We then created a correlation matrix based
on all pairwise correlation in the data. We calculated the
correlation matrix based on uncorrected expression values, as the
individual gene-gene pairwise correlation are based on within-
pig comparisons. We then fit the ß parameter for the scaling of
the network to create a scale free topology (Zhang and Horvath,
2005). The ß scaled correlation matrix was our adjacency matrix,
which was used to generate the Topological Overlap Measures
(TOM), which represents the final calculation of the relation
between genes.

The TOM values of the genes where clustered using the
dynamicTreeCut function from the dynamicTreeCut cut package
with default setting, resulting in a number of modules arbitrarily
differentiated based on colors. The eigenvalue of each module
was then calculated based on the normalized read counts and
RIN adjusted count. We did these corrections in this step to
remove the technical effects of library size differences and RIN
from the eigenvalues, as we did not want technical effects to
affect the eigenvalues. The counts were normalized based on the
calcNormFactors function from the edgeR package. After this,
the counts were adjusted for RIN by fitting the following linear
model: expression = µ+ RIN+ ε for all genes, and extracting
the residual expression values. Highly correlating models where
merged using the mergeCloseModules function using a default
cut-off. We then calculated the Pearson correlation between
corrected and normalized module eigenvalues and our traits
and covariates. Pathway analysis was performed on the genes
of highly correlated modules, with GOrilla and ReviGO as seen
above. Finally, we also identified the top hub genes in the high
correlation modules. This was done based on calculating the
intramodular connectivity using the intramodularConnectivity
function with default settings. We then selected the top hub genes
base on the k within measure, which represents the connectivity
within modules.

Comparison to Human Exercise Data
To test the hypothesis that differences in the muscle tissue
transcriptome of Duroc and Landrace and/or FCR related genes
mimic differences in rested and exercised muscle tissue, we
compared our results with three human data sets, all analyzing
the leg muscle transcriptome during exercise (Murton et al., 2014;
Devarshi et al., 2018; Popov et al., 2019). The Murton et al.
(2014) dataset was from an analysis of the time series analysis of
transcriptome changes based on resistance training in leg muscle
in 8 untrained men. The Popov et al. data came from an analysis
of acute changes in the leg muscle transcriptome after endurance
training, with 7 male subjects. Finally, the Devarshi et al. (2018)
dataset was an analysis of the effect of acute aerobic exercise on
the leg muscle transcriptome in lean and obese men, with a total
of 30 subjects. For each data set, we performed the following:

1. We selected the genes differentially expressed between
breeds, based on the edgeR analysis.

2. For FCR, we used the 853 genes from divergent count set.

3. We found the same set of genes in the human data –
the breed/FCR matching genes. Genes were matched
using the biomart R package, based on retrieving
the external_gene_name of our Sus scrofa ensemble
gene identifiers.

4. We separated the human data into two parts – the breed
matching set and the background set. The breed matching
set is the set of genes which were differentially expressed
by breed, at 0.05 FDR in between breeds, which were
then matched to the human genes by translating the gene
identifiers between species. The background set were the
remaining human genes.

5. We applied the Fisher Exact test to compare the number
of differentially expressed genes for the exercised vs. rested
muscle in the background set vs. the breed matching set.

6. The steps for the breed were also applied to our divergent
count set for FCR.

7. Pathway analysis using GOrilla was performed in both the
breed and FCR gene sets. The genes used were the intersect
between all the DE genes from the human studies and the
breed and FCR sets, respectively.

In this part of the analysis edgeR was used because it was more
flexible to fit to the publicly available data, allowing us to compare
our results to the other studies. As each dataset was formatted and
analyzed differently, we had to process them individually. In the
data set from Devarshi et al. (2018) (dataset 1), we chose to use the
lean pre exercise vs. lean post-exercise group as our comparison,
and significance was based on the reported cuffdiff analysis. For
the set of Murton et al. (2014) (dataset 2), we pooled all control vs.
exercise samples and analyzed them using Limma as the data was
microarray data, using the same Limma pipeline as mentioned
above in our FE analysis. As the results were weaker in Murton
et al. (2014), we chose to use P < 0.05 as a cutoff for the Fisher
exact test. For the set from Popov et al. (2019) (dataset 3), we
grouped all the 4 h post-exercise results vs. all 4 h control non-
exercised and performed DE analysis using edgeR with no other
covariates using the same settings as our FE analysis above, with
significance based on the found FDR values.

RESULTS

Differential Expression Analysis
Based on PCA, there is no clear separation between the two
breeds based on the first two components (Figure 1). This
confirms the relevance of a joint breed analysis. It is still possible
that principal components beyond the two first are well correlated
with breed. However, as lower components will explain less
of the overall variation, the majority of the variation cannot
be explained by breed alone. Naturally, this does not mean
individual genes do not have different expression due to breed,
as we see in the DEA. In the Deseq2 DEA, the Landrace analysis
had one gene with an FDR < 0.1, the Duroc analysis had 8, and
we found 4 in the joint breed analysis (Table 1). This is quite low
numbers in comparison with the rest of the covariates (Table 1).
When we viewed the overall p-value distribution for FCR in the
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FIGURE 1 | Visualization of the two first principle components in the expression data, with DD being Duroc and LL being Landrace. There is not a clear separation
between breeds based on the overall expression, giving credence to a joint breed analysis of the data.

Deseq2 DEA, we found that the Duroc distribution was slightly
skewed toward high p-values (Supplementary Figure S1 right),
the Landrace distribution had a slight excess of high p-values
(Supplementary Figure S1 left), but the joint analysis had a
clear excess of low p-values (Figure 2 right). As the results
for FCR were somewhat limited, we chose to continue with a
different strategy based on the joint breed analysis. We chose
to calculate the DE using 3 methods, ensuring that the results
were robust and replicable, as individual methods can vary in
output (Seyednasrollah et al., 2015). Observing the distribution
of uncorrected p-values for FCR in all 3 methods (Figure 2),
we found an anti-conservative distribution regardless of the
method. If FCR was unrelated to gene expression in general, we
would expect a uniform p-value distribution in our model. To
test the likelihood of the observed results being generated by
a uniform distribution, we applied the KS-test, comparing the
empirical values with a theoretical uniform p-value distribution.
The results showed that it was very statistically unlikely that
the p-values had an underlying uniform distribution for all
three DE methods (p < 10−16). This lead us to conclude that
there was a relation between the muscle tissue expression and
FCR. Overall, the most significant covariate was RIN (Table 2),
highlighting the importance of correcting for the RIN values
when analyzing samples acquired in a non-laboratory setting. It
has been previously shown that RIN has an impact on expression
values, but explicitly controlling for this in a modeling framework
should appropriately correct the data (Gallego Romero et al.,
2014). Furthermore, many genes were differentially expressed
between the breeds and due to age differences. To quantify the

observed link between expression and FCR, we continued with
two strategies – analyzing the overall pathway enrichments for
the most significant genes and creating gene expression modules
based on network analysis of the gene expression profiles.

Enrichments Analysis
The first step in an enrichment analysis is to select a suitable
set of genes. The most general strategy is to pick genes that
are differentially expressed after multiple testing correction for
such a set. Based on the DE results, we did not have enough
of DE genes for selecting a meaningful gene set for enrichment
analysis, but we were able to demonstrate an overall relation
between FCR and gene expression (Figure 2). One could select
genes with an uncorrected p-value below 0.05 for pathway
enrichment, but this is somewhat arbitrary selection (Butler and
Jones, 2018). Instead, we made an estimation of the number
of surplus low p-values in comparison to uniformly distributed
p-values. The uniform p-values represented the null hypothesis
of no overall relation between FCR and gene expression. We
called this value the divergent count. In essence, we estimated
the interval with the maximum positive divergence between our
observed p-value frequencies and the same number of uniformly
distributed p-values, assuming an approximately monotonely
decreasing p-value distribution in our results (Figure 3). This
had the advantage of not relying on arbitrary cutoffs, instead
giving a set of genes proportional to the overall divergence of the
p-value distribution. As the divergence calculated was analogous
to the test metric of the KS-test, the probability of observing
the empirical observed divergence was given by our KS-test
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TABLE 1 | Overview of genes with a FDR value < 0.1 in all 3 differential
expression analysis.

Gene name Breed FDR Regulation

PNCK Landrace 0.0007 Down

Patr-A Landrace 0.08 Down

MTMR11 Duroc 0.07 Up

C3 Duroc 0.02 Down

LCP1 Duroc 0.02 Up

TRIM63 Duroc 0.08 Down

KLHL30 Duroc 0.07 Down

NANOS1 Duroc 0.08 Up

IGHM Duroc 0.07 Up

ETV5 Duroc 0.02 Down

MTFR1 Both 0.068 Down

MGAT4A Both 0.098 Down

SLC38A2 Both 0.098 Up

MRPS11 Both 0.067 Up

There is only a limited amount of genes differentially expressed at 0.1 FDR level
for FE. Notably, out of 4 genes in the joint breed analysis there are two genes
with mitochondrial related Gene Ontologies – MRPS11, MTRM1. MTFR1 has been
implicated in eating quality (measures of meat quality post-cooking) in cattle (Jiang
et al., 2009) and as a meat PH QTL in pig (Chung et al., 2015). Also interesting to
note that TRIM63 has been suggested as a biomarker for difference in response
to exercise-induced muscle damage (Baumert et al., 2018), KLHL30 has been
associated with intramuscular fat and muscle metabolism in Nelore Cattle (Dos
Santos Silva et al., 2019). MGAT4A has been linked to diabetes and glucose
transport (Ohtsubo et al., 2005).

above (p < 10−16). Based on the overlap of the genes selected
between the 3 DE methods, the majority of the selected genes
are identified by all three methods (Figure 4). This indicates
that the final gene set for pathway enrichment was robust. To
identify enriched functional pathways in the final overlapping
gene set, we used GOrilla (Eden et al., 2009). In GOrilla, it is
possible to give a background set to base the analysis on, making
it advantageous for expression data, as it allows us to use genes
expressed in our data as a background. We identified, 5 terms
as significant post-multiple corrections, with 4 out of these being
related to mitochondrial ontologies (Supplementary Data 2).
A summarized output of the significant GO terms after multiple
testing correction based on the GOrilla analysis, using Revigo
(Supek et al., 2011) revealed translation elongation as the main
overall grouping of the terms (Figure 5).

Gene-to-Gene Expression Interaction
Analysis
Many strategies can be used to take advantage of the interaction
or co-expression between genes. We applied modeling of pairwise
gene interactions explicitly including the phenotype as an
outcome variable in the model. This can be advantageous when
dealing with complex phenotypes, as it may make it possible
to capture subtle biological variation. We performed the gene
interaction analysis based on the set of genes we identified from
the overlap of all 3 methods from the DE analysis, based on the
calculated divergent count for each method. When comparing
the empirical values with the bootstrapped values the maximum
bootstrapped divergent count was 83, while there were 193 genes

with a divergent count over 83 in the empirical data. As the
bootstrapping was based on 105 samplings, it verifies that the
empirically observed interactions are quite unlikely to be random
effects. One caveat is that as this analysis was based on genes
pairs, the divergent counts of each gene were not independent
from the values of other genes. Due to the issue of independence
and general concern of data size and weak effects we used a
conservative qualitative heuristic and focused on the top 20 genes
based on our methodology in the discussion.

Weighted Gene Network Analysis
Based on our network analysis, we identified 19 distinct modules
after correcting for RIN and merging the modules based on
similarity. Due to the initial DE results, we decided not to
focus individually on Landrace or Duroc pigs in the network
analysis, and thus the network was generated combining both
breeds. The hierarchical clustering of the modules might give
the impression that the network is poorly constructed, as the
module dendrogram representation is not very clear (Figure 6A).
In general, some modules were tightly clustered based on the
dendrogram, such as the red module, while others seemed
more diffuse. One should realize however, that the modules
themselves were based on N × N matrix, where N is > 105.
Thus, the dendrogram could only act as a visual guide, and not
show the full picture. Therefore, we relied on the correlation
between module eigenvalues and traits combined with pathway
analysis of the modules to assess if the modules were biologically
meaningful. The effect of the removal of the effect of RIN
on a gene by gene basis effectively removed any correlation
between RIN and the eigenvalues of our modules (Figure 6B).
Several of the modules were well correlated with the breed and
age, with correlation > 0.5, while FCR was mainly correlated
with two modules, the red and turquoise (Figure 6B). The
red and turquoise modules included 391 and 3744 genes,
respectively. The red module was more correlated to breed and
age than FCR, but previous knowledge indicated that breed and
FCR are generally correlated between Durocs and Landrace,
as Durocs are more efficient. Furthermore, age was correlated
with FCR (0.5) in the sampled pigs. It should, however, be
noted that the age-FCR correlation in the pigs was created
due to the ending of the feeding trail being based of a fixed
weight of 100 kg. Thus, the lower FCR pigs took longer time
to reach 100 kg, and had a higher slaughter age and tissue
sampling age. This means that the correlation was not due
to underlying biological effects. The turquoise module showed
highest correlations with FCR (Figure 6B). We performed
pathway analysis using GOrilla and Revigo on the genes in
the red and turquoise modules (Figures 6C,D, respectively).
In both the red and turquoise modules, a large number of
GO terms were significantly overrepresented after multiple
testing correction (see Supplementary Data 4, 5 for the full
list of red and turquoise GO-terms, respectively), indicating
that the modules represented specific biological pathways. In
the red module, the most significant group of terms was
related to mitochondria. These terms were grouped into three
overall groups – translation elongation, electron transport chain
and hydrogen ion transmembrane transport (Figure 6C). This
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FIGURE 2 | Visualization of the distribution of the p-values testing the relation between FCR and gene expression for all three analysis methods. It is clear in all cases
that we observe an anti-conservative distribution, that is, there is an overweight of low p-values.

mirrors our finding from the DE analysis and the gene interaction
analysis. As the module had a negative correlation with FCR,
indicating a relation between higher mitochondrial activity and
lower FCR, thus higher efficiency. In the turquoise module, there
was one large grouping of terms – DNA repair. This category
included many GO terms, related to RNA, DNA, amino acid
and nucleic acid metabolism and processing (Figure 6B). We
also calculated the top 10 genes in terms of module connectivity
in the red and turquoise modules (Supplementary Data 6).
Interestingly, in the red module, 7 out of 10 genes belonged to
the NADH ubiquinone oxidoreductase group (NDUF), with the
remaining 3 also being implicated in mitochondrial function.
Thus, the mitochondrial genes were both overrepresented in
the red module and the most connected within the module.
In the turquoise module, the results were unclear, as the most
connected genes did not belong to any specific process, but
instead covered a range of general processes that are important
for cell function. This fits well with the large size of the module
and the overrepresented GO terms found.

Human Exercise Data
To test the hypothesis that improvements in efficiency could be
linked to a state mimicking exercise, we compared our divergent
counts genes for FCR and the genes differentially expressed

between breeds with three different human exercise datasets
[33–35]. We compared if there was a higher proportion of
genes that were significant for exercise-mediated changes in the
subset of genes which were identified based on differences in
breed and FCR, in relation to the remaining background set
of genes remaining genes. For all 3 datasets there was a higher
proportion of significant genes in the breed and FCR sets versus
the background set, as the odds ratio between the subsets and
the background was always below one (Table 3). In general, the
results for the breed related genes were more significant than
for the FCR genes, but they showed similar ratios. This is likely
because there were roughly 4 times more breed genes, yielding

TABLE 2 | Overview over the number of genes with FDR < 0.1 in the joint breed
analysis for all 3 methods and each covariate.

Trait Deseq2 Limma EdgeR

FCR 4 0 0

Breed 3633 3679 3428

RIN 5572 5763 5779

Age 503 189 328

In general, we have modest amount of DE genes for FE, while our other covariates
have many significant genes associated with them.
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FIGURE 3 | Schematic representation of the divergent counts. Here we see to theoretical p-value distributions, one which is uniform (in red) and one which is
anti-conservative (blue). The purple area is where they overlap, and the blue area is the area used to estimate the divergent counts.

higher statistical power. The results did give some confirmation
to the hypothesis that the FCR and breed related genes were more
significant than for exercise related changes than the background
genes. We also did pathway enrichment analysis for the genes
that were significant in any of the human data sets and in the
breed, and FCR set respectively (Figures 7A,B). In the human-
breed overlap genes, the main categories were cellular metal ion
homeostasis and anatomical structure development, based on 702
genes. For FCR, only 42 genes overlapped with the significant
human genes. This means the overall pool of genes was too small
for significant enrichment, but the main pathway identified was
regulation of transcription from RNA polymerase II promoter.

DISCUSSION

There have been four previous studies analyzing the muscle
transcriptome in an FE context (Jing et al., 2015; Vincent et al.,
2015; Gondret et al., 2017; Horodyska et al., 2018b).

The study by Gondret et al. was based on selecting divergent
FE lines of Large White pigs for 8 generations. It included a total
of 24 pigs and was based on microarrays. They reported a high
number of differentially expressed genes between the low and
high RFI groups (2417), but it is not clear from their paper how
many probes were included in the statistical analysis and how this
may have affected multiple testing correction. They also reported

that a gene was considered differentially expressed if one probe
met the cutoff regardless of the amount of probes in a given gene.
They reported mitochondrial electron chain transport, glucose
metabolic process and generation of precursor metabolites and
energy as pathways significantly associated with RFI.

The study from Horodyska et al. used 16 pigs, but included 8
pigs of each gender. They used an uncorrected p-value of 0.01 as
their significance threshold for DE, without properly motivating
this decision. They reported 272 genes with p < 0.01, which is
similar to what we found in the DESeq2 analysis (243 genes with
p < 0.01). However, we have included less genes in the analysis
(14497 vs. 10563).

Vincent et al. (2015) included 16 female Large Whites from
divergent RFI lines. Their study was based on microarray.
They reported their results based on uncorrected p-values
in both expression and proteomics. As in our study, they
found mitochondrial related probes being significantly
associated to RFI.

Finally, in Jing et al., a total of 6 Yorkshire pigs were used,
based on the selection of high and low extreme values for RFI
values in 236. They reported 645 DE genes, with 99 genes
having a reported FDR lower than 0.05. However, selecting
such few samples at the extreme end of FE does raise the
question of replication, as the large differences in RFI/FCR
they achieved could easily be caused by factors that are not
generally applicable, such as underlying disease. Indeed, it is not
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FIGURE 4 | Venn diagram of the overlap in the divergent counts between the three methods. We see here that the Limma is overall less conservative than the two
other methods, but in general, the methods are in high agreement with each other. The final set of genes selected for the enrichment analysis was the 853 triple
overlapping set.

realistic to observe such large differences in FE based solely on
genetics in a production population, based on the distribution we
find in our data. They found that the most significant pathways
in their data were mitochondrial activity, glycolysis and the
myogenesis pathways.

If we compare our study with the previously reported studies,
we have the highest number of samples reported (41) and
we included two breeds, which none of the other studies did.
In contrast to other studies, we did not have any divergent
selection for FE, but the Duroc pigs in this study have been
more strongly selected for FCR than the Landrace pigs, giving
us a level of divergence based on real breeding goals and current
pig industry practices. Having this setup does present advantages
and disadvantages. The advantage in relation to the other studies
is that the results may generalize better across breeds. The
disadvantage is that we may have fitted breed effects instead of
phenotypic effects, but breed is accounted for in all the performed
analysis. The other main difference is that we have fitted FCR as
a continuous value. In general fitting a continuous value should
be more applicable to pig production. In breeding populations,
FE is a continuous variable, and so are breeding values. When
breeding values are predicted, they are assumed to be a sum of

additive effects, and not a binary categorization. Beyond this,
in pig production, there is no low FE selected line to contrast
with, so while the studies using divergent lines may identify
biological factors that affect FE, these may not be relevant to non-
divergent populations. Despite the issues presented with these
four previously conducted studies, it is notable that mitochondria
are reported to be related to FE multiple times, as well as in
this study. Another general issue which arose, is how to deal
with statistical issues in analysis of FE. From the various studies
presented above it is clear that the connection between FE and
the muscle transcriptome is subtle. Here, we tried to tackle
this issue by not being overly conservative, but still applying
multiple testing correction using a FDR of 0.1 level for individual
results in our DE analysis. Furthermore, we relied on the overall
distribution of results and/or combination of genes in groups, to
avoid relying on individual weak effects.

Differential Expression Analysis and
Pathway Enrichment
In the DEA, we identified 14 genes with an FDR value below 0.1.
Of these 14, six genes had been associated with production traits
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FIGURE 5 | Summarized representation of significant GO- for the genes set generated from the divergent count (853 total genes) overlap based from the DE
analysis of FCR. The size of the boxes is scaled according to the −log10 of the p-value. The most significant individual terms are all in the translation, indicating a link
between mitochondrial activity and FE.

or other functionality that could be relevant in an FE context.
As in previous studies, we found genes related to mitochondria
(MRPS11, MTRM1). We also identified a gene associated with
glucose metabolism (MGAT4A) (Ohtsubo et al., 2005). Two
genes were associated with meat quality phenotypes in cattle and
pig (MTRF1, KLH30) (Jiang et al., 2009; Chung et al., 2015; Dos
Santos Silva et al., 2019). Perhaps the most interesting result,
is that one of the genes found in the Duroc analysis, TRIM63,
has been associated as a biomarker for differences in response
to exercise induced muscle damage (Baumert et al., 2018), which
ties into our comparison to human data. No general conclusions
about the general pathways involved in FCR could be made, given
the low amount of DE genes.

Instead, we chose to use a novel approach for selecting an
expanded set of genes to make a pathway analysis possible.
First, to make the analysis more robust, we choose to base the
pathway analysis on results from three DE expression methods.
Furthermore, we chose to select genes based on the overall
divergence from the null hypothesis of our p-value distribution,
as this should represent a set of genes that was likely to be
associated with our trait, even if the genes were not significant
based on individual FDR corrected p-values. To our knowledge,
this was a novel way of selecting a group of genes, which we
called the divergent count. This method was motivated and
based on two important factors. First, we required a left-skewed

p-value distribution, which should be approximately monotonely
decreasing, which was the empirical distribution of our p-values
(Figure 2). Second, the divergence must be significant. Due
to the way we calculated our divergence, the probability of a
given divergence is well understood, and is simply the KS-test
of the p-values. The enriched pathways in our dataset selected
based on the divergent counts revealed that all significantly
enriched pathways were associated with mitochondrial genes
(Supplementary Data 2). The association of mitochondrial
activity and FE has been found in several species beyond the
pig studies already mentioned above, such as cattle and broiler
chicken (Connor et al., 2010; Bottje et al., 2017). While this
is not a novel result, we found it in a novel setting, with a
larger sample size, a novel population and using a continuous
value for FCR. This acts as further evidence to the link of
mitochondrial activity and FE, but also as evidence that it may be
relevant in real breeding populations, and not only in divergently
selected test populations. Finally, it also gives us some biological
confirmation of the genes selected by the divergent count, due to
the confirmation of previous results.

Gene-to-Gene Expression Interaction
The gene expression interaction analysis was a novel way of
finding genes with a high degree of interaction with other genes
in relation to a trait of interest, which had not been applied to
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FIGURE 6 | (A) Dendrogram over the module clustering. Looking at the visual clustering not all the modules look equally well defined, but it should be noted that the
actual relations in given module cannot be simplified to two dimensions, as the all the relations between the genes exist in N dimensional space, where N is the
number of genes. (B) Correlation between module eigenvalue and our traits, including RIN. We see here that the correlation to RIN is essentially 0 in all cases,
indicating our linear correction method has worked well. Based on the top two modules (C) Summarized representation of significant GO- for genes in the red
module of the WGCNA network analysis. The three largest groups are all associated with mitochondria, mirroring the results found in the differential expression
analysis and the gene interaction analysis. (D) Summarized representation of significant GO- for genes in the turquoise module of the WGCNA network analysis. The
main grouping here is DNA repair, which is not found in our other analysis. This may represent that increased energy expenditure on maintenance processes is
reducing FE.

FE in pigs before. According to the way we modeled the effects
and selected the top genes identified were the genes that had
most significant interactions effects with other genes in relation
to changes in FCR. From the top 20 genes (Supplementary
Data 3), the most interesting genes based on previous literature
and function were: several transcription regulators: ETV1 (an
androgen receptor activated gene), LF1 (transcription factor)
and KDM4C (transcription activator and growth related gene)
(Bray and Kafatos, 1991; Cai et al., 2007; Gregory and Cheung,
2014); two mitochondrial genes, KMO and MRPS11 (Meinke
et al., 2019); two genes related to muscular atrophy – GEMIN7
and PLPP7 (Baccon et al., 2002; Meinke et al., 2019); one
gene implicated in heart development BIN1 (Nicot et al., 2007),

two lipid metabolism/obesity related genes ACOT11 and GPD1
(Adams et al., 2001; Park et al., 2006); and finally 3 genes
associated with specific traits in pig IL2RG (Immune system in
pigs) (Suzuki et al., 2012), GGPS1 (meat quality) and PPARA
(weak association with fat percentage) (Szczerbal et al., 2007).
Interestingly, MRPS11 was also differentially expressed in the
DEA. How should one interpret such a mixed set of functional
results? Given the way these genes were identified, we did
necessarily expect them to be from a single pathway, but we
would expect them to have functions that would allow for
significant interaction with many genes, while being relevant
to FCR. Thus, transcription factors, genes involved in energy
metabolism and muscle development all qualitatively fit genes
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TABLE 3 | Results of Fisher exact test comparing the number of genes significant
for difference in rested and exercised muscle in divergent count genes for genes
found in the divergent count for FCR and breed and the background for each of
the 3 human data sets [dataset 1 (Devarshi et al., 2018), dataset 2 (Murton et al.,
2014), and dataset 3 (Popov et al., 2019)].

Data P-value breed Odds ratio breed P-value FCR Odds ratio FCR

Dataset 1 0.0017 0.79 0.0046 0.71

Dataset 2 0.0012 0.85 0.22 0.9

Dataset 3 0.12 0.84 0.47 0.88

that could have an important role in FE related processes. Finally,
we also found mitochondrial genes in the interaction analysis,
giving further evidence to the link between mitochondria and FE.

Gene Network Analysis
The gene network analysis revealed that the red and turquoise
modules were the only modules with a correlation > 0.4
with FCR. Based on the GO term analysis enrichment of the
red module, we found many enriched GO terms related to
mitochondrial processes, confirming our finding the DEA and
network analysis, and from other studies (Connor et al., 2010;
Jing et al., 2015; Vincent et al., 2015; Bottje et al., 2017; Gondret
et al., 2017). More specifically, the negative correlation between
the red module eigenvalue and FCR also showed that higher
mitochondrial activity was positively associated with higher
efficiency. This was further confirmed, as the top ten most
connected genes in the module were all related to mitochondria.
Interestingly, seven of the top ten genes were from the NDUF
family, making this gene family into an interesting candidate
for future study and biomarker development. The turquoise
module was the module with the highest overall correlation

(0.49). Furthermore, it was more correlated to FCR than traits,
meaning the correlation was less likely to be driven by collinearity
with the other traits. Based on the GO term analysis, we found
that the module was highly enriched for genes related to DNA
repair, which included GO terms related to RNA, DNA, amino
acid and nucleic acid metabolism and processing. To the best of
our knowledge, this is the first evidence of these processes being
related to FE in general. The only previous link to DNA repair
in livestock was a feed restriction study of cattle (Connor et al.,
2010). These processes could be generic growth and maintenance
processes, and as the module is positively correlated with FCR,
we can speculate that higher activity in DNA repair and related
processes are increasing energy expenditure on maintenance,
thus lowering efficiency. The large number of genes in the module
somewhat confirms the general metabolism and maintenance
theory, as it is unlikely that very specific functional pathways
should cluster together to form a large cluster. Further evidence
to this was that the top ten hub genes of this module did not
belong to a single specific pathway as in the red module, with
the genes being involved in a wide range of processes related to
general cell maintenance.

The Mitochondrial Link
How does the ubiquitous link between mitochondria and FE
functionally work? It does makes sense that an organelle which
provides cellular energy will have an effect on the overall energetic
efficiency of an animal. However, even though this link seems to
well established, there are conflicting reports in the literature. Jing
et al. (2015) and Vincent et al. (2015) report lower mitochondrial
expression in more efficient pigs, while Bottje et al. (2017)
and Gondret et al. (2017) report the opposite in pigs and
broiler chicken. The down-regulation camp could argue that

FIGURE 7 | (A) Summarized representation of significant GO- for genes significantly associated with exercise in one of the three human dataset and between the
breeds, based on a total of 702 genes. The size of the boxes is scaled according to the −log10 of the p-value. Here we find two overall main categories, cellular
metal ion homeostasis and anatomical structure development. (B) Summarized representation of significant GO- for genes significantly associated with exercise in
one of the three human dataset and in our divergent set for FCR. The size of the boxes is scaled according to the −log10 of the p-value. Here the main process is
regulation of transcription from RNA polymerase. Overall, the categories are not very significant here as it is only based on 42 genes.
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less mitochondria represent less energy spent. The effect of up-
regulation in improving efficiency could be reduced oxidative
stress and increased cell damage control (Bottje et al., 2017). The
gene network analysis in this study pointed toward increased
efficiency being related to higher expression. However, two DE
mitochondrial genes from the joint breed analysis had opposite
fold changes. Thus, while it is interesting that we confirmed the
link between FE and mitochondria using pigs from an active
breeding population, it is clear that a study specifically targeting
the function of mitochondria and FE in pigs is necessary for
explaining the exact functional background of this effect.

Human Exercise
The overall functional background of FE in muscle tissue is still
not very well established, despite some hints of mitochondrial
effects. While there are a relatively small number of FE based
muscle transcriptome studies, there are many studies analyzing
other properties of the muscle transcriptome for other purposes.
If it was possible to use previously published experiments as
a tool for identifying functional aspects of FE, this could be
a valuable resource that is relatively cheap to implement. This
could generate and test novel hypothesis, and serve as a guide
for further studies. As pigs as are commonly used as animal
models for human disease, one could also do the reverse,
and take advantage of human studies in the analysis of pig
data. We hypothesized that differences between the Duroc and
Landrace breeds, which have different overall FE, were more
likely to be involved in processes related to exercise. The same
hypothesis was also extended to genes related to FCR. This
hypothesis was motivated by the fact that pigs are selected for
lean growth. Exercise induced changes in muscle could thus
be related to factors affecting lean growth in pigs. We found
a slight confirmation of this hypothesis, as we found similar
favorable odds ratio for our hypothesis in all three datasets,
we tested for both FCR and our breed genes. The pathway
enrichment analysis for the FCR and exercise related genes was
not very statistically significant, as it only included genes. The
main enriched category identified, based on four GO terms,
was regulation of transcription from RNA polymerase II (pol
II) promoters. Interestingly, Actin has been associated with
the pre-initiation complex necessary for transcription by RNA
polymerase II (Hofmann et al., 2004), which could be relevant
given the importance of actin in muscle tissue (Tang, 2015). There
are also links between a poll II subunit and myogenesis (Corbi
et al., 2002). These results do provide relevant reasons for the
observed enrichment, although more data is needed to confirm
this due to the low number of genes used in the enrichment.

In the genes overlapping between exercise and breed
differences, the results were more statistically robust, as they were
based on a larger gene set of 702 genes. Here we found two
main enrichment groups – cellular metal ion homeostasis and
anatomical structure development. For the first term, we know
that the transport of ions is generically vital to muscle function
(Wolitzky and Fambrough, 1986; Mohr et al., 2007). The second
term, anatomical structure development, is very generic in terms
of function, and includes sub-categories that are related to muscle
development, such as muscle structure development.

The results from the Human data analysis represented a novel
hypothesis, but more analysis and new experiments on a larger
population of pigs are necessary to strengthen the link between
FE and exercise. One interesting aspect of this analysis is that
pigs could be used as a model for lean growth in sedentary
conditions, which could yield interesting therapeutic possibilities
applicable to humans.

CONCLUSION

Using multiple types of transcriptomic analysis based on novel
biostatistical/bioinformatics methods (gene-to-gene expression
interaction model, weighted network analyses, the divergent
count method for gene selection and pathway enrichment
using Kolmogorov-Smirnov test), we have reinforced the
knowledge that mitochondrial activity is important for FE.
The use of a non-divergently FE selected pig population
reflects real pig industry practice that relies on naturally
occurring genetic variation within breeds and populations for
selective breeding. Based on the findings, we postulate that
mitochondrial genes, and in particular genes from NDUF
group or MRPS11 could be used as potential biomarkers for
FCR in pigs and could be included in genomic selection
program that distinguishes genomic regions. Furthermore,
all our top genes from our interaction analysis also show
promise as potential FCR biomarkers, that could be useful
in selective pig breeding for FE. Finally, we found that there
is a putative link between genes involved in exercise related
changes in human, and FE in pigs, hinting at a new functional
hypothesis for FE which requires further validation through more
experiments and analyses.
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