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Abstract: Prostate adenocarcinoma (PRAD), also named prostate cancer, the most common visceral
malignancy, is diagnosed in male individuals. Herein, in order to obtain immune-based subtypes,
we performed an integrative analysis to characterize molecular subtypes based on immune-related
genes, and further discuss the potential features and differences between identified subtypes. Simul-
taneously, we also construct an immune-based risk model to assess cancer prognosis. Our findings
showed that the two subtypes, C1 and C2, could be characterized, and the two subtypes showed
different characteristics that could clearly describe the heterogeneity of immune microenvironments.
The C2 subtype presented a better survival rate than that in the C1 subtype. Further, we constructed
an immune-based prognostic model based on four screened abnormally expressed genes, and they
were selected as predictors of the robust prognostic model (AUC = 0.968). Our studies provide
reference for characterization of molecular subtypes and immunotherapeutic agents against prostate
cancer, and the developed robust and useful immune-based prognostic model can contribute to
cancer prognosis and provide reference for the individualized treatment plan and health resource
utilization. These findings further promote the development and application of precision medicine in
prostate cancer.

Keywords: prostate adenocarcinoma (PRAD); immune-based; molecular subtypes; prognostic model

1. Introduction

Prostate adenocarcinoma (PRAD), also termed prostate cancer, is the second most
commonly diagnosed malignant cancer in males, especially for elderly men over 65 years
of age [1], which has been a leading cause of cancer-related morbidity and mortality [2,3].
Some patients (approximately one third of patients) may experience disease progression
and develop metastases, most commonly to bone and soft tissues (such as liver and
lung) [4,5]. It is still a significant global heath burden in the future, because long-term
survival and advanced stages still need be improved [6]. A healthy immune system is
necessary for controlling many malignant diseases, and immune suppression in cancer may
contribute to progression [7]. Recent studies based on immunology and cancer biology have
provided the new directions to the immune-based therapy of prostate cancer, especially
focusing on passive and active immunotherapies [8,9]. Metabolic inhibitors, including
the anti-metabolite class of chemotherapy, have been used in cancer therapies for many
years [10,11], but no metabolic inhibitors are approved for use in PRAD. It is necessary
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to characterize and verify novel biomarkers for diagnosis and treatment, and to develop
novel targeted therapies and/or neoadjuvant therapies.

Major changes in gene transcription and metabolic signaling contribute to tumorige-
nesis [12]. Many studies have shown that some genes, also including non-coding RNAs
(ncRNAs), largely contribute to tumorigenesis. For example, rAAV-based PTEN/CDKN1B
delivery is promising for the development of novel therapeutics for PRAD because of its
potential contribution [13], miR-338-3p may be a possible predictor of poor prognosis [14],
some lncRNAs may be novel biomarkers in the diagnosis and prognosis of PRAD [15], and
the lncRNA H19 regulates tumor plasticity in neuroendocrine prostate cancer [16]. These
findings indicate the potential biological roles of some crucial genes in the occurrence and
development of cancer, and further studies can be performed based on the potential crucial
genes to explore the biomarkers in cancer diagnose and prognosis and even to characterize
molecular classification. Molecular classification has been an important topic in clinical
management because of the heterogeneity caused primarily by the molecular and genetic
characteristics of cancer cells, which actually determine the aggressiveness and sensitivity
of further treatment. An integrative analysis based on multi-omics data characterizes
molecular subtypes that can guide the androgen receptor signaling inhibitor treatment of
prostate cancer [17], which can contribute to targeted therapy in precision medicine.

Based on the significant curative effect of immunotherapy in cancers, in order to
comprehensively understand the detailed immune-based molecular classification, we
performed an integrative analysis to screen candidate crucial immune-related genes to
explore the molecular subtypes associated with PRAD. We finally obtained two immune-
related molecular subtypes that showed potential difference in immune characteristics,
which definitely describe the heterogeneity of diverse immune microenvironments in
different patients. Further, we also constructed a prognostic model using four dysregulated
immune-related genes that could provide a robust and useful model for individualized
treatment. Our findings provide a powerful data basis for further immunotherapy of PRAD
that will contribute to the application of precision medicine.

2. Materials and methods
2.1. Data Resource

A total of 551 samples of PRAD, including 499 tumor and 52 normal samples, were
retrieved from the cancer genome atlas (TCGA, https://tcga-data.nci.nih.gov/tcga/ (ac-
cessed on 21 May 2021)) via UCSC Xena database [18]. Some samples were removed
before further analysis if there were many missing clinical values. A total of 28 gene sets,
containing 782 genes, were first collected from immune cell types [19]. In order to further
understand the detailed expression patterns for screened key genes, a pan-cancer analysis
was also performed in diverse cancers that were obtained from TCGA. Furthermore, a total
of 1,793 immune-related genes were obtained from ImmPort database [20,21].

2.2. Characterization of Immune-Based Subtypes

Based on 782 immune-related genes, single sample gene set enrichment analysis
(ssGSEA) was first analyzed in each sample using GSVA package [22]. Consensus clustering
analysis of ssGSEA score was performed with ConsensusClusterPlus package [23] using
k-means clustering algorithm with 50 iterations (each analysis used 80% of samples). Then,
the best cluster number was selected according to the cumulative distribution function
(CDF) curve, which was further validated using t-SNE method.

2.3. Evaluation of Immune Characteristics in Subtypes

In order to understand the potential difference of immune characteristics between
identified subtypes, two features, including stromal signature and immune signature, were
screened using ESTIMATE [24]. Scores of stromal and immune signatures were estimated
using ssGSEA analysis, and the ESTIMATE score was finally obtained to assess tumor
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purity from the two scores. Then, the potential differences of related immune characteristics
between different subtypes were estimated using Kruskal–Wallis test.

2.4. Functional Enrichment Analysis

For the screened subtypes in PRAD, functional enrichment analysis was performed
to understand their potential biological function, especially the potential contributions in
the occurrence and development of cancer. Firstly, differentially expressed genes in the C2
subtype (screened based on the C1 subtype) were performed gene set enrichment analysis
(GSEA), and FDR < 0.05 was considered with a significant difference.

2.5. The Potential Differences of Immune and Chemical Response Prediction

To explore the potential differences of immunotherapy and chemotherapy between
the two subtypes, the clinical responses of immune subtypes were predicted and analyzed.
According to the public available pharmacogenomic database, Genomics of Drug Sensi-
tivity in Cancer (GDSC) [25], the chemotherapy response in each sample was predicted.
Simultaneously, six commonly used drugs were specifically selected, including Bortezomib,
Paclitaxel, Epirubicin, Vincristine, Gemcitabine, and Vorinostat, to carry out drug response
analysis using oncoPredict package [26].

2.6. Analysis of Differentially Expressed Immune-Related Genes

To obtain differentially expressed immune-related genes associated with PRAD, limma
package [27] and DESeq2 [28] were used to perform differential expression analysis. Genes
with |log2FC| > 1.5 and padj < 0.05 were considered abnormally expressed genes that
were performed further analysis.

2.7. Survival Analysis and Cox Regression Analysis

Based on the screened differentially expressed immune-related genes, Cox regression
analysis was used to estimate the correlation of gene expression level and the overall
survival (OS) in patient using survival package using univariate cox regression analysis.
The candidate crucial genes associated with cancer prognosis were screened based on
Walk test (p < 0.05 was considered with statistical difference). Then, the candidate genes
were performed to Cox multivariate regression analysis to construct several Cox regression
models, and the dominant model was identified according to Akaike information criterion
(AIC) value. Genes in the finally identified model were critical genes associated with PRAD,
which were used to estimate the risk score according to the following formula (1):

Riskscore =
N

∑
i=1

(Expi × Ci) (1)

in which N was the number of critical genes associated with cancer prognosis, Expi indi-
cated expression level of the gene, Ci was estimated regression coefficient of the gene.

According to the developed prognostic model, risk score was assessed in each patient,
and high-risk and low-risk groups were divided according to risk scores. Kaplan–Meier
method [29] was then used to perform survival analysis. Further, to validate accuracy
and effectiveness of the developed prognostic model, the receiver-operating characteristics
(ROC) was used to compare the diagnostic power according to the area under the ROC
curve (AUC).

2.8. Statistical Analysis

Unpaired t test, chi-square test, Wilcoxon rank sum test and trend test were performed
to validate the potential statistical difference between groups. A Pearson or Spearman
correlation coefficient was used to calculate the expression correlations among genes. All
statistical analysis was performed using R programming language (version 4.0.5).
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3. Results
3.1. Two Molecular Subtypes Identified using Immune-Based Genes

In order to identify subtypes in PRAD, 782 genes from 28 immune-associated gene
sets were analyzed to estimate ssGSEA score in each sample using expression profiles
(Figure 1A), and the median ssGSEA score was 0.6579 (the range was from −0.1541 to
0.8459). The ssGSEA scores showed significant difference based on different gene sets
from different immune cells (p < 2.20 × 10−16), and genes in memory B cells were found
to have a lower score (the median score was 0.1741) than others, while genes in immature
dendritic cell showed the highest score (the median score was 0.8448). Then, based on the
ssGSEA scores, k subtypes (2–6) could be divided, and the optimal number of clusters was
defined k = 2 according to the consistency matrix heatmap and CDF curve (Figure 1B–D,
Figures S1 and S2). Further analysis using t-SNE method also showed that two molecular
subtypes were distinguished, including C1 and C2 subtypes (Figure 1E).

3.2. Immune Characteristics of the Two Identified Subtypes

To estimate immune characteristics of the two identified subtypes, each was queried for
the potential difference in different immune-related features using ESTIMATE. For genes in
different cell types, higher ssGSEA scores in the C2 subtype could be detected with relevant
gene sets in regulating T cell, macrophages, Th1 cell and other relevant immune processes
(Figure 1F). The C2 subtype showed higher levels of stromal (FC = 0.53, = 1.75 × 10−17),
immune (FC = 0.57, p = 2.44 × 10−20) and ESTIMATE (FC = 0.57, p = 1.78 × 10−22) scores
than those in the C1 subtype, indicating that the C2 had higher degree of infiltration than
that in the C1 subtype. Further, the C2 showed lower level of tumor purity than that in
the C1 (FC = −0.95, p = 3.19 × 10−18) (Figure 2A), implying that the lower level of tumor
purity was relevant with the higher degree of immune infiltration.

Six genes (including PDCD1, CD274, PDCD1LG2, CTLA4, LAG3, and HAVCR2) asso-
ciated with immune checkpoint were used to understand expression divergence between
different subtypes. Genes in the C2 subtype were prone to have higher expression levels
than those in the C1 subtype (FC ≥ 1.32, p ≤ 2.13 × 10−6 for all genes) (Figure 2B,C). The
expression distributions showed the obvious expression divergence between the C1 and
C2 subtypes, and the total expression fold change was 1.49 (p = 2.20 × 10−16) (Figure 2C).
Although the expression difference could be detected between the two subtypes, they were
always more stably expressed in tumor samples than those in normal samples (the total
fold change was 0.88, p = 0.8672) (Figure 2D,E), and only CTLA4 showed higher expression
in tumor samples (FC = 1.96, p = 7.57 × 10−6). Compared to expression distribution of
all other human genes (the median log2(FPKM + 1) value was 2.99), these six genes had
lower expression levels (Figure 2D), which demonstrated that the involved genes were
not active enough in tumor samples compared to those in normal samples. The relative
higher expression patterns in the C2 subtype indicated the potential divergence between
the two classified subtypes. To further verify the expression pattens of the six genes as-
sociated with immune checkpoint, pan-cancer expression analysis was performed. As
expected, these genes were stably expressed in most cancers, and some of them were found
significantly up-regulated in several cancers, especially in kidney renal clear cell carcinoma
(KIRC) (Figure 3A). CTLA4, PDCD1, and LAG3 were significantly up-regulated in 4–5 can-
cers, while all of them were not dysregulated in PRAD. Based on the total samples across
different cancers, the six genes were relatively abundantly expressed compared to other
genes (Figure 3B), whereas they showed lower expression levels in PRAD. The potential
expression divergence among cancers implied two expression patterns in diverse cancers,
which might contribute to relevant function.
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Figure 1. Identifying immune-based molecular subtypes in prostate cancer. (A). Distributions of
ssGSEA scores are presented across different gene sets from 28 immune cells, and the total median
value is highlighted (0.6579). The p value is estimated using a trend test. (B). The consensus score
matrix for PRAD samples (k = 2) indicates that the two clusters can be divided. (C). The item-
consensus analysis shows that k = 2 is an optimal selection. (D). Cumulative distribution function
(CDF) curve of the consistency score shows that k = 2 is an optimal selection based on different
subtype numbers (k = 2–6). Delta area plot of the relative change in area under CDF curve is
also presented. (E). The two clusters can be distinguished based on ssGSEA scores using principal
component analysis (PCA) of all samples. Each point indicates a patient, and different colors indicate
the relevant subtypes. (F). A heatmap of immune characteristics based on ssGSEA scores shows the
whole distributions in the two identified subtypes.
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Figure 2. The distributions of immune-related features and genes between the two subtypes. (A). The
distributions of immune-related features between the two subtypes. The fold change and p values are
also presented for each feature. (B). Differential expression patterns of several immune checkpoint
genes between the two subtypes. (C). The whole expression distributions of immune checkpoint
genes between the two subtypes, and the fold change and p value are also presented. (D). The whole
expression distributions of immune checkpoint genes between tumor and normal samples, and the
fold change and p value are also presented. The distribution on the right indicates the expression
distribution of other genes in PRAD, and the median value is 2.99 EUR. (E). The detailed expression
patterns of immune checkpoint genes in PRAD, and the fold change and p value are also presented.
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Figure 3. Pan-cancer expression analysis of the immune-related genes. (A). A pan-cancer expression
analysis of immune checkpoint genes indicates diverse expression patterns across cancers. (B). The
expression distributions of six immune checkpoint genes and other genes demonstrate the similar
expression levels. The red word “PRAD” in Figure 3B is the main cancer type in this study. (C). A
heatmap shows expression distributions of the 28 immune gene sets between the two subtypes. (D). A
pan-cancer expression analysis of related immune genes in (C) shows diverse expression patterns
across cancers.
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Further, to understand the potential differences between immune checkpoint, chemokine,
and major histocompatibility complex (MHC) in the characterized subtypes in PRAD, a
series of relevant genes were collected. Significant differences could be detected between
the two subtypes (Figure 3C), although it was similar in some clinical features. Similar to
the six core checkpoint genes, these genes also showed various expression patterns across
cancers, while they were specifically stably expressed in PRAD (Figure 3D). Interestingly,
most genes in KIRC and glioblastoma multiforme (GBM) were significantly up-regulated,
and the phenomenon of over-expression was prominent in cancers. However, these genes
did not show dysregulation expression in PRAD, and it was the only type of cancer that
did not exhibit abnormally expressed immune-relevant genes. The specific expression
pattern of stable expression implied the potential importance of immune-related roles,
or immune-related genes would not have been affected by the pathological processes in
prostate cancer.

3.3. Differences in Drug Sensitivity between the Two Subtypes

The two subtypes showed a significant difference in drug sensitivity based on all drugs
(Figure 4A,B, p < 2.20 × 10−16), and the C1 subtype showed a higher IC50 value than that
of the C2 subtype. For example, some drugs (such as Bortezomib, Paclitaxel, Epirubicin,
Vincristine, Gemcitabine, and Vorinostat, as well as the six drugs which were potentially
effective for PRAD patients) were found to have significant differences in IC50 between
the two subtypes (Figure 4C), implying that the two identified subtypes had diverse drug
sensitivity. The potential difference indicated that patients with different subtypes could be
treated with corresponding drugs.

3.4. Difference of Cancer Prognosis between the Two Subtypes

A significantly increased chance of survival in the C2 subtype could be found com-
pared to the C1 subtype (p = 0.0290) (Figure 4D), indicating that patients with the C2
subtype may have a better prognosis. In order to further understand the potential biologi-
cal roles of immune-related genes in the C2 subtype, differentially expressed genes were
obtained based on the C1 subtype. Abnormally expressed genes in the C2 subtype con-
tributed to multiple biological processes, mainly including the calcium signaling pathway,
chemokine signaling pathway, JAK−STAT signaling pathway, MAPK signaling pathway,
etc. (Figure 4E). These potential contributions might lead to better prognosis and survival
rate in the C2 subtype.

Further, the two subtypes also showed various mutation landscapes (Figure 5). Based
on the top 20 genes with the highest mutation frequency, 67.19% of mutation frequency
was found in the C1 subtype, but only 61.13% was detected in the C2 subtype. TP53
was identified with the highest mutation frequency in the two subtypes, and the most
common type of mutation was missense mutation. Indeed, TP53 mutations are correlated
with clinical outcomes in cancer, and it has clinical value in the diagnosis, prognosis, and
treatment of cancer [30]. TP53 was detected concurrently with mutation with RYR1 in the
C2 subtype, and was found to be mutually exclusive with mutation with SPOP in the C1
subtype (Figure 5B). Based on the top 20 genes in each subtype, the concurrency was more
frequent than the mutually exclusive mutations. The correlations of mutations in genes
might imply the potential functional correlations. Only 13 common genes were detected
between the two subtypes, and they contributed to the hallmark of cancer with similar
distributions (Figure 5C). The tumor mutational burden was diverged between the two
subtypes (p = 0.0141) (Figure 5D), despite the total distributions being similar. Moreover,
to understand the potential effects of clinical characteristics between the two subtypes,
statistical analysis was performed on some clinical features. No significant differences
in clinical characteristics were found between the two subtypes in TCGA PRAD cohort
(FDR > 0.05, Table S1).
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Figure 4. Drug response analysis between the two screened subtypes in PRAD. (A). The distribu-
tions of the IC50 values between the two subtypes, and the median values are also presented. (B). 
The detailed distributions of the IC50 values between the two subtypes (p < 2.2 × 10−16 is estimated 
using the trend test). (C). Several drugs show significant differences of IC50 values between the two 
subtypes. (D). Survival analysis shows distinct survival outcomes between the two subtypes. (E). 

Figure 4. Drug response analysis between the two screened subtypes in PRAD. (A). The distributions
of the IC50 values between the two subtypes, and the median values are also presented. (B). The
detailed distributions of the IC50 values between the two subtypes (p < 2.2 × 10−16 is estimated
using the trend test). (C). Several drugs show significant differences of IC50 values between the
two subtypes. (D). Survival analysis shows distinct survival outcomes between the two subtypes.
(E). Gene set enrichment analysis (GSEA) of the dysregulated genes in the C2 compared with those in
the C1 subtype indicates significantly enriched several biological pathways.
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Figure 5. Somatic mutation landscapes of the two subtypes. (A). Somatic mutation landscapes
of the two subtypes based on the top 20 genes with higher mutation frequencies, indicating the
differences between the two subtypes. (B). Heatmaps show somatic interactions between the top 20
genes. (C). The gene distributions of the top 20 genes between the two subtypes and their potential
contributions in hallmark of cancer. (D). The significant difference of the tumor mutational burden
can be found between the two subtypes.
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3.5. Construction of Immune-Related Prognostic Model

In order to construct an immune-related prognostic model, analysis was performed
on all immune-related genes to obtain abnormally expressed genes in PRAD. A total of
253 genes, including 138 up-regulated genes and 115 down-regulated genes, were firstly
subjected to Cox analysis to screen 16 candidate immune genes associated with PRAD
based on the Wald test p < 0.10; all of these genes showed potential prognostic value.
Then, they were incorporated into a multivariate Cox proportional hazards regression
model to further screen crucial genes associated with PRAD. We finally screened four
crucial immune-related genes (Figure 6A,B), including three down-regulated genes (PRLR,
HR = p = 0.007; NOX1, p = 0.010; PGF, p = 0.039) and one up-regulated gene (AMH,
p < 0.001). Of these, three down-regulated genes showed abundant expressions than
that in AMH, and NOX1 and PGF presented relative concentrated expression patterns
(Figure 6B). All of them contributed to multiple Kyoto encyclopedia of genes and genomes
(KEGG) pathways, for example, pathways in cancer, TGF-β signaling pathway, JAK/STAT
signaling pathway, etc., indicating these screened genes had important biological roles in
multiple biological processes. Further, three up-regulated genes, PRLR, NOX1, and PGF,
also contributed to several hallmarks of cancer, mainly including insensitivity to antigrowth
signals, self-sufficiency in growth signals, and evading apoptosis, indicating their potential
roles in tumorigenesis.

According to the potential contributions in multiple biological processes and tumori-
genesis, the four screened genes were used to construct a survival model according to:
IRS = 1.096 × AMH + 1.312 × PRLR + (−5.780) × NOX1 + (−2.267) × PGF. Thus, each
patient’s immune risk score was calculated, and then each was identified as part of the
high-risk or low-risk group according to the median value (Figure 6C). As expected, several
dead patients were clustered in the high-risk group, and all of them showed higher risk
scores that implied poor prognosis. In order to estimate the prognostic effect of the model,
survival analysis was performed. Significant differences could be found between the
high-risk and low-risk groups (p = 0.0009, Figure 6D), and the low-risk group had a better
chance of survival than those in the high-risk group. The AUC was 0.968 at 9 years (0.955
at 3 years and 0.934 at 5 years) (Figure 6D), implying that the developed model had high
accuracy and potential diagnostic value. Simultaneously, some factors were also performed
using multivariate Cox regression analysis as well as IRS, including tumor stages and age
(Figure 6E). IRS was the factor that had the greatest impact on prognosis compared to others
(p < 0.001), which indicated that IRS could be an independent prognostic factor. These
findings could provide additional data for prognostic risk assessment in prostate cancer.

3.6. The Two Immune-Based Subtypes Show Potential Application in Other Cancers

In order to understand the potential application of the two characterized immune-
based subtypes, a pan-cancer analysis was further performed. In 31 cancer types, many
cancers could be divided into the two relatively independent C1 and C2 subtypes, implying
the identified two subtypes also had common features in diverse cancer types (Figure 7).
The significant survival differences were detected in 11 cancer types (35.48%), especially in
skin cutaneous melanoma (SKCM), uveal melanoma (UVM) and brain lower grade glioma
(LGG) (p < 0.0011), implying the potential prognostic values of the immune-based subtypes
in other cancers.
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Figure 6. Four immune-related dysregulated genes are finally screened. (A). A graph presents
distributions of hazard ratios, and corresponding coefficients for four selected genes are also pre-
sented. (B). AMH is significantly up-regulated, while other genes are significantly down-regulated
in tumor samples. The detailed log2FC and p values are also presented. (C). Distributions of risk
scores and survival times in patients show that all dead patients are clustered together. (D). Distinct
survival difference can be found between high risk and low risk groups, and the ROC curve shows
better performance at each cutoff point. (E). A graph presents distributions of hazard ratios, and
corresponding coefficients for IRS and other factors are also presented. (F). A pan-cancer expression
analysis of four screened key genes shows dynamic expression across diverse tissues. The relative
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expression distributions based on baseMean value estimated by DESeq2 algorithm are presented,
and expression distributions of other genes are also presented. The expression median values are
highlighted using a red dotted line. The expression distributions imply a higher expression trend of
the four crucial genes compared to other genes.
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Figure 7. A pan-cancer analysis shows the two relatively independent clusters and potential prog-
nostic values in 11 cancer types. The p values of survival analysis are also presented, and 11 cancers
are highlighted.
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4. Discussion

Identification of molecular subtypes in cancers contributes to more accurate prognostic
assessment due to substantial phenotypic and molecular heterogeneity among patients, and
simultaneously is an important basis for individualized therapy and precision medicine.
Studies about molecular subtypes have been widely concerned with diverse cancer types,
such as breast cancer [31,32], colon cancer [33,34] and gastric cancer [35], which provide
potentially crucial data for diagnosis and treatment. In prostate cancer, via a comprehen-
sive molecular analysis, seven major molecular subtypes are characterized by the Cancer
Genome Atlas Research Network, TCGA-PRAD project [36], and relevant studies are also
carried out to provide more data in cancer treatment [37–39]. Based on the area of cancer
immunotherapy in prostate cancer [40,41], immune-based molecular subtypes are necessary
in that they can provide important references for further immune therapy. Herein, we aim
to identify immune-based molecular subtypes that may provide more detailed information
for cancer therapy, and simultaneously we also develop an immune-related prognostic
model to assess cancer prognosis.

The two immune-based molecular subtypes are characterized based on integrating
immune-related genes, and the two subtypes show significant differences in immune
characteristics (Figure 2). The C1 subtype is identified as an immune “desert” type, while
the C2 subtype is an immune-infiltrating type. Compared to the C1 subtype, the C2
subtype demonstrated a higher level of immune infiltration and lower tumor purity. Genes
associated with the immune checkpoint show diverged expression patterns between the
two subtypes, and genes in the C2 subtype are prone to have higher expression levels
than those in the C1 subtype. However, these genes may be more stably expressed in
tumor samples compared with expression in normal samples, and the total expressions are
relatively low. Similarly, the two subtypes also show the potential difference of chemokine
and MHC, and all of the involved relevant genes are stably expressed in prostate cancer
despite the fact that some of them are dysregulated in other cancers (Figure 3). Furthermore,
the two subtypes also show a significant difference in drug sensitivity and survival rate
(Figure 4). Specifically, the C2 subtype presents a better survival rate than that in the
C1 subtype, showing the potential contribution in cancer treatment. Based on the C1
subtype, the dysregulated genes in the C2 subtype are enriched multiple pathways, and
dysregulation of these pathways greatly contributes to the occurrence and development
of cancers, and they are important in cancer therapy [42–45]. Moreover, diverse mutation
landscapes are found between the two subtypes (Figure 5), and some of the top genes
are involved in the hallmarks of cancer that imply the potential roles in tumorigenesis.
Furthermore, the identified immune-based subtypes also show certain prognostic values
in other cancers, indicating the potential application in other cancers (Figure 7). All of
these results indicate that the two identified immune-based molecular types have different
characteristics, which further verifies the potential clinical application in immune therapy.

Moreover, to enrich the prognostic model in prostate cancer treatment, we also con-
struct an immune-related prognostic model based on dysregulated immune-related genes.
A total of four genes, including AMH, PRLR, NOX1, and PGF, are screened as predicators
of the prognostic model (Figure 6). Of these, PRLR has been implicated in the pathology of
breast and prostate cancer [46,47], NOX1 expression may be increased in prostate cancer
with an important role in angiogenesis, cell growth, and tumor pathogenesis [48,49], and
both AMH and PGF are reported as crucial genes in tumorigenesis [50–52]. Based on
their potential biological roles and contributions in cancer, the developed immune-related
prognostic model is sensitive and effective (AUC = 0.968, and the survival model is an in-
dependent prognostic factor), which would provide additional immune-based information
for early risk appraisal and treatment management in prostate cancer.

Taken together, the two immune-based molecular subtypes are identified with different
characteristics, which clearly describe the heterogeneity of diverse immune microenvi-
ronments in patients with prostate cancer. Simultaneously, a prognostic model based
on four immune-related dysregulated genes is developed, which may provide a robust
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and useful model from immune level for the individualized treatment plan and health
resource utilization.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes13061087/s1, Figure S1. The consensus score matrixes for
PRAD samples based on different selection of k value (k = 3–6). Figure S2. The item-consensus
based on different selection of k value (k = 3–6). Table S1. Comparison analysis of some clinical
characteristics in TCGA PRAD cohort.
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Abbreviation Lists of Involved Cancers in TCGA

BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CHOL, cholangiocarcinoma;
COAD, colon adenocarcinoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC,
head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC, Kidney renal clear cell
carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma; LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarcinoma; READ,
rectum adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma; UCEC, uterine
corpus endometrial carcinoma.
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