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Abstract: A novel Zn(II) metal-organic framework [Zn4O(C30H12F4O4S8)3]n, namely ZnBPD-4F4TS,
has been constructed from a fluoro- and thiophenethio-functionalized ligand 2,2′,5,5′-tetrafluoro-
3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl dicarboxylic acid (H2BPD-4F4TS). ZnBPD-4F4TS
shows a broad green emission around 520 nm in solid state luminescence, with a Commission
International De L’Eclairage (CIE) coordinate at x = 0.264, y = 0.403. Since d10-configured Zn(II)
is electrochemically inert, its photoluminescence is likely ascribed to ligand-based luminescence
which originates from the well-conjugated system of phenyl and thiophenethio moieties. Its lu-
minescent intensities diminish to different extents when exposed to various metal ions, indicating
its potential as an optical sensor for detecting metal ion species. Furthermore, ZnBPD-4F4TS and
its NH4Br-loaded composite, NH4Br@ZnBPD-4F4TS, were used for proton conduction measure-
ments in different relative humidity (RH) levels and temperatures. Original ZnBPD-4F4TS shows a
low proton conductivity of 9.47 × 10−10 S cm−1 while NH4Br@ZnBPD-4F4TS shows a more than
25,000-fold enhanced value of 2.38 × 10−5 S cm−1 at 40 ◦C and 90% RH. Both of the proton transport
processes in ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS belong to the Grotthuss mechanism with
Ea = 0.40 and 0.32 eV, respectively.

Keywords: proton conduction; metal ion sensing; luminescence; metal-organic framework

1. Introduction

The luminescent metal-organic framework (LMOF) is a fascinating class of functional
materials that has been extensively researched for its inspiring application in plentiful
areas, especially chemical sensing of molecules and cation and anion species [1–4]. The
luminescent and sensing property of LMOFs is related to original metal ions, functional
ligands and self-assembly processes. To date, LMOF-based sensors have mainly focused
on lanthanide-based (e.g., Eu3+, Tb3+) metal-organic frameworks largely because of their
strong photoluminescence derived from the ligand-to-lanthanide antenna effect [5–8]. The
high cost and almost unalterable emission wavelength of lanthanide LMOFs motivate
researchers to develop LMOFs using transition metal ions (e.g., Zn2+, Cd2+, etc.) as metal
nodes [9–11]. As some d10 metal ions (e.g., Zn2+) are proposed to exert less influence on the
emission of LMOFs, ligand design is important for designing Zn-LMOF phosphors [12–14].
The introduction of an aromatic π-conjugated system into a ligand helps promote the red
shift of the emission wavelength to the visible light region and improves the emission
intensity. Further, aromatic groups are proposed to boost the interaction between the host
framework and substrate [15,16]. Metal ion detection has been focused on extensively
because excess use and emission of metal species have caused many issues, such as environ-
mental pollution, health hazards, etc. [17,18]. Nevertheless, it is still a challenge to achieve
LMOF-based sensors with high selectivity, sensitivity and recyclability. In particular, only
a few examples of LMOF-based sensors of Mn2+ ions have been reported [19,20].
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In recent years, MOF-based proton-conducting materials have received much atten-
tion due to their potential application in proton exchange membrane fuel cells [21–24].
Traditional Nafion materials have the shortcomings of high cost and intolerance of high
temperature, which also accelerates the development of candidate materials [25]. MOFs
can be constructed by commonly available metal ions and well-designed ligands, and many
of them exhibit rather high solvent (i.e., H2O) and thermal (over 400 ◦C) stability [26–28].
This feature makes them an advantage in water-assisted proton conducting materials.
Hydrated proton conduction is mainly determined by a hydrogen bond network created
by appropriate porosity, functional groups on the ligand and proton carriers in the voids.
This leads to two kinds of strategies for achieving high proton conductivity: (1) introducing
acidic and hydrophilic groups including F, N, O and S atoms to the ligand [29–33]; (2)
encapsulating guest molecules (e.g., water, imidazole, histamine, ammonium bromide, etc.)
into the voids [34–38].

Herein, thiophenethio- and fluorine-functionalized linker molecule 2,2′,5,5′-tetrafluoro-
3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl dicarboxylic acid (H2BPD-4F4TS) was syn-
thesized and used to react with Zn(NO3)2 through a solvothermal strategy, affording a metal-
organic framework, ZnBPD-4F4TS. Photoluminescent measurement and metal ion sensing
experiments for ZnBPD-4F4TS have been performed, showing metal ion-dependent quench-
ing with luminescence intensity. The existence of pendant F- and S-included groups provide a
platform for adjusting proton conduction. The NH4Br-loaded composite, NH4Br@ZnBPD-
4F4TS, exhibits a highly improved conductivity (2.38 × 10−5 S cm−1) compared to that of
original ZnBPD-4F4TS (9.47 × 10−10 S cm−1). It highlights encapsulating proton carriers
into the framework as an effective strategy to enhance proton transport.

2. Results and Discussion
2.1. Synthesis and Structure Characterization

Ligand H2BPD-4F4TS, 2,2′,5,5′-tetrafluoro-3,3′,6,6′-tetrakis(2-thiophenethio)-4,4′-biphenyl
dicarboxylic acid, was synthesized according to our previous work [39]. Further self-
assembly with zinc nitrate hexahydrate afforded light yellow square crystals (Figure S1),
namely ZnBPD-4F4TS. The rigid framework of ZnBPD-4F4TS was well determined by
single crystal X-ray diffraction (SCXRD) analysis (Figure 1). Unfortunately, the thiophene
substituents were highly disordered and difficult to resolve. Therefore, ZnBPD-4F4TS was
digested (in DCl/NaF/DMSO-d6) for 1H and 19F NMR tests to verify the intact thiophene
units of linker BPD-4F4TS2− (Figures S2 and S3).

SCXRD results reveals that ZnBPD-4F4TS crystallizes in the cubic I23 space group
with a = 17.232 Å and α = 90◦ (Table S1). The asymmetric unit is built from one crystallo-
graphically independent Zn2+ ion, one oxygen and 1/4 BPD-4F4TS2− anion. The metal
node consists of a Zn-O cluster-based secondary building unit (SBU) with a formula of
Zn4O(COO)6 (Figure 1a). Each of these four Zn2+ ions is located at a tetrahedron center
(cyan tetrahedron represents the ZnO4 polyhedron) and bridged by one µ4-O. Each Zn2+ ion
bonds to four oxygen atoms in which one comes from a µ4-O and the other three are from
three carboxylate groups of BPD-4F4TS2−. Each linear BPD-4F4TS2− (Figure 1b) acts as a
two-connected bridge to link the SBUs, forming a 3D framework (Figure 1c). Interconnected
1D channels partly filled by thiophene groups run along the a, b and c crystallographic axes
(Figure 1d). The coordination environment of the Zn2+ ion and coordination mode of BPD-
4F4TS2− in ZnBPD-4F4TS are the same as previously reported IRMOF-type MOFs [40],
but they show a two-fold interpenetrated aggregation (Figure 1d). The construction of
SBUs and linkers can be simply reticulated into a pcu topology (Figure 1e).

Pure phase of as-synthesized ZnBPD-4F4TS was obtained with the solvothermal method
according to a consistent powder X-ray diffraction (SCXRD) pattern with the simulated one,
which was also verified by FT-IR spectra (Figure 2 and Figure S4). NH4Br@ZnBPD-4F4TS
was prepared by immersing ZnBPD-4F4TS in a saturated NH4Br solution of ethanol at
room temperature for 2 days. The loading amount of NH4Br in the voids was further
determined to be 2.21 wt% by elemental analysis (EA) measurement.
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ZnBPD-4F4TS. EA data indicated a formula of [Zn4O(C30H12F4O4S8)3·(H2O)1.5(CH3CN)0.6]n 
for activated ZnBPD-4F4TS. Consistent diffraction peaks with as-synthesized ZnBPD-
4F4TS suggested an intact coordination framework (Figure 2d). The thermogravimetric 
(TG) curve of activated ZnBPD-4F4TS showed slight weight loss (3.15%) in the initial pe-
riod, which could be attributed to the loss of a few water molecules from the air and re-
maining crystallized guest molecules in the pores. This result suggested the coordination 
framework was thermally stable below 380 °C (Figure S5). The subsequent large weight 
loss could be ascribed to decomposition of organic ligands and destruction of coordina-
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Figure 1. (a) Zn4O(COO)6 cluster of ZnBPD-4F4TS. (b) Ligand H2BPD-4F4TS used in this work.
(c) Coordination mode diagram of linker BPD-4F4TS2−. (d) A three-dimensional network diagram of
ZnBPD-4F4TS. The ball is present to display the inner void filled with disordered pendent thiophene
groups. (e) Two-fold interpenetrated framework of ZnBPD-4F4TS. (f) A simplified topology of
ZnBPD-4F4TS. Hydrogen atoms are omitted for clarity and thiophene groups are absent because
of their high disorder. Atom color: red, oxygen; gray, carbon; green, fluorine; yellow, sulfur; cyan,
Zn4O polyhedron.
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and thermal treatment at 100 ◦C and vacuum, (e) after soaking in boiling water for 30 h.
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2.2. Stability of ZnBPD-4F4TS

The stability of metal-organic frameworks is vital to their practical applications; there-
fore, the atmospheric, thermal and solvent stabilities have been investigated. ZnBPD-
4F4TS was highly air and water stable judging from the unchanged PXRD patterns after
exposure to the atmosphere for 21 days and soaking in boiling water for 30 h, respectively
(Figure 2(c,e)). This excellent stability of ZnBPD-4F4TS to water is rare in reported Zn(II)-
carboxylate frameworks [26,41]. As-synthesized crystalline ZnBPD-4F4TS was further
Soxhlet-extracted by acetone and heated at 100 ◦C to prepare activated ZnBPD-4F4TS. EA
data indicated a formula of [Zn4O(C30H12F4O4S8)3·(H2O)1.5(CH3CN)0.6]n for activated
ZnBPD-4F4TS. Consistent diffraction peaks with as-synthesized ZnBPD-4F4TS suggested
an intact coordination framework (Figure 2(d)). The thermogravimetric (TG) curve of
activated ZnBPD-4F4TS showed slight weight loss (3.15%) in the initial period, which
could be attributed to the loss of a few water molecules from the air and remaining crys-
tallized guest molecules in the pores. This result suggested the coordination framework
was thermally stable below 380 ◦C (Figure S5). The subsequent large weight loss could be
ascribed to decomposition of organic ligands and destruction of coordination bonds, which
was supported by the endothermic effect in the differential thermal analysis (DTA) curve
(Figure S5). The consistent PXRD pattern of NH4Br@ZnBPD-4F4TS with ZnBPD-4F4TS
indicated that the host framework remained stable after immersion in NH4Br solution
(Figure S6b).

2.3. Luminescent Properties

With the conjugated thiophene and phenyl units, ZnBPD-4F4TS was expected to
possess decent luminescent property. Both excitation and emission spectra of ligand
H2BPD-4F4TS and ZnBPD-4F4TS were recorded in the solid state (Figure 3a,b). In the
case of ligand H2BPD-4F4TS, it displays one fluorescent emission band centered at 535 nm
when excited at 370 nm, which is probably assigned to π or n to π* orbital transitions [42,43].
After coordination to form ZnBPD-4F4TS, it shows a similar but blue-shifted emission
peak at 518 nm when excited at 370 nm, showing a green emission of crystals (Figure 3c).
This blue shift of ZnBPD-4F4TS in comparison to free ligand is probably attributed to
the metal-ligand coordination interaction and deprotonated effect of the dicarboxylic
acid [44,45]. Accordingly, Commission International De L’Éclairage (CIE) coordinates
change from (0.297, 0.396) for the ligand to (0.264, 0.403) for ZnBPD-4F4TS (Figure 3d). In
addition, the emission spectrum of NH4Br@ZnBPD-4F4TS was also obtained and found
to be quite similar to that of as-synthesized ZnBPD-4F4TS (Figure S7).

2.4. Metal Sensing and Mechanism

Excellent water stability, free-standing thiophenethio-functions in the pores and po-
tential accessible pores inspired us to investigate the chemical sensing performance of
ZnBPD-4F4TS in aqueous media. As-synthesized crystals of ZnBPD-4F4TS were first
immersed in 500 ppm (based on metal species) metal chloride or nitrate solutions (Pb2+,
Pd2+, Co2+, Fe3+, Ni2+, Hg2+, Cu2+, Cd2+, Pt2+, Mn2+ and Ag+) for 2 h at 80 ◦C and then
selected for photography (Figure 4a). All of these crystals show no obvious color change,
though some exhibit a semi-transparent appearance. When irradiated under 365 nm UV
light, these crystals exhibit similar emission colors but with variously decreased brightness
in comparison to as-synthesized ZnBPD-4F4TS. Emission spectra of bulk samples were
also measured in the wavelength range of 380 to 720 nm, and they show different extents of
reduction in luminescence intensity (monitored at 518 nm) after immersion in various metal
ion solutions (Figure 4b). In particular, the case of Mn2+ exhibits the strongest luminescence
quenching (Figure 4c). PXRD patterns of ZnBPD-4F4TS were found to be unchanged
after exposure to various metal ion solutions, suggesting an intact framework structure
(Figure S8).
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Figure 4. (a) Photographs of ZnBPD-4F4TS crystals under natural light and 365 nm UV light
irradiation after immersion in water and aqueous solution of different metal ions (500 ppm). (b) Room
temperature emission spectra (λex = 370 nm) of ZnBPD-4F4TS after immersion in water and aqueous
solution of different metal ions (500 ppm). (c) Emission intensity data at 518 nm according to the
spectra from (b).
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2.5. Proton Conduction

The proton carrier is one of the vital factors for improving proton conductivity. This
motivated us to optimize the as-synthesized framework by encapsulating protonic guests
(i.e., NH4Br) into framework voids through a post-synthetic strategy. After ZnBPD-
4F4TS was immersed in NH4Br/EtOH solution for 2 days, NH4Br@ZnBPD-4F4TS was
separated, washed and dried. The ac impedance measurements were carried out with
compacted pellets of ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS, respectively. The corre-
sponding Nyquist plots are shown at different temperatures at 90% relative humidity (RH)
(Figure 5a,c). In a typical measurement, the proton conductivity of a sample is determined
by the high frequency region with the following equation:

σ = l/RS (1)

where l is the thickness (mm) and S is the cross-sectional area (mm2) of the pellet, while
R (Ω) can be calculated from the Nyquist impedance plots [46,47]. Accordingly, the
corresponding proton conductivity was obtained and is listed in Table S2. It is exciting
that NH4Br@ZnBPD-4F4TS (2.38 × 10−5 S·cm−1) exhibits a 25,000-fold increased proton
conductivity compared to the original ZnBPD-4F4TS (9.47 × 10−10 S·cm−1) at 40 ◦C
and 90% RH. This high and sharply increased proton conductivity of NH4Br@ZnBPD-
4F4TS highlights that manipulation of protonic guests serves as an effective strategy
to promote proton transport in the framework. Further research reveals that ZnBPD-
4F4TS possesses increasing proton conductivity varying from 9.47 × 10−10 (40 ◦C) to
4.19 × 10−9 (80 ◦C) S·cm−1 when the temperature increases under 90% RH (Figure S9).
Similarly, the conductivity of NH4Br@ZnBPD-4F4TS increases from to 2.38 × 10−5 (40 ◦C)
to 7.87 × 10−5 (80 ◦C) S·cm−1 (Figure S9). Both of the metal-organic frameworks remain
stable after proton conduction measurements according to the unchanged PXRD patterns
(Figures S6 and S10).
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2.6. Proton Conduction Mechanism

The obtained conductivities of ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS at various
temperatures are plotted against temperature in the form of ln(σT) against 1000/T (Figure 5b,d),
and the activation energy (Ea) of proton transport can be estimated using the
Arrhenius equation:

σT = σ0 exp(−Ea/kT) (2)

The Ea value is calculated to be 0.40 and 0.32 eV for ZnBPD-4F4TS and NH4Br@ZnBPD-
4F4TS, respectively. Generally, the proton transport process is classified into Grotthuss [48]
(Ea < 0.4 eV) and vehicle [49] (Ea > 0.4 eV) mechanisms according to the Ea value. Therefore,
both of these materials can be attributed to the Grotthuss mechanism. It indicates that
proton transport is achievable through the hydrogen bond network of proton carriers.
Both of the H2O molecules and electronegative S atoms in the framework help form the
hydrogen bonds to promote proton transport. NH4Br@ZnBPD-4F4TS shows a 25,000-fold
improvement in conductivity compared to ZnBPD-4F4TS that might originate from the
more favorable hydrogen bond channels among H2O, thiophene and NH4Br species.

3. Materials and Methods
3.1. General Procedure

Starting materials, reagents and solvents were purchased from commercial sources
(J&K, Aldrich and Acros) and used without further purification. Elemental analysis (EA)
was performed with a Vario Micro CUBE CHN elemental analyzer (Elementar, Germany).
FT-IR spectra were obtained using a Avatar 360 spectrophotometer (Thermo Nicolet, The
United States). Nuclear magnetic resonance (NMR) spectra were recorded at 298 K on a
400 MHz superconducting magnet high-field NMR spectrometer (Bruker, The Swiss), with
working frequencies of 400 MHz for 1H, 376 MHz for 19F. Chemical shifts are reported in
ppm relative to the signals corresponding to the residual non-deuterated solvents, with
tetramethylsilane (TMS) as the internal standard. Thermogravimetric (TG) analyses were
carried out in a nitrogen stream using Thermal analysis equipment (STA 6000) (PerkinElmer,
The United States) with a heating rate of 10 ◦C/min. Powder X-ray diffraction (PXRD)
data were collected in reflection mode at room temperature on a Smart Lab diffractometer
(Rigaku, Japan) with a mixture of Cu-Kα1 (λ = 1.54056 Å) and Cu-Kα2 (λ = 1.5418 Å)
radiation. Fluorescence spectra were measured on a FluoroMax-4 fluorescence spectrometer
(HORIBA Jobin Yvon, France) at room temperature.

3.2. Synthesis of [Zn4O(H2BPD-4F4TS)3]n (ZnBPD-4F4TS)

The ligand H2BPD-4F4TS (5 mg, 0.0065 mmol) and zinc nitrate hexahydrate (5 mg,
0.017 mmol) were weighed into a glass tube 8 mm in diameter, and then a mixed solvent
of water and acetonitrile (0.8 mL, v/v = 1:1) was added. The mixture was sonicated for
5 min to form a clear solution. Then, the glass tube nozzle was melted and sealed at high
temperature, and the glass tube was heated at 140 ◦C for 36 h, followed by natural cooling
to room temperature, during which light yellow truncated cube-like crystals (2.4 mg, 14%
based on H2BPD-4F4TS) were formed.

3.3. Activation of ZnBPD-4F4TS

To exchange and remove the solvent molecules from the pores of ZnBPD-4F4TS, a
thimble (e.g., made from folding filter paper) containing as-synthesized ZnBPD-4F4TS
crystals (50 mg) was loaded into the main chamber of a Soxhlet extractor. The Soxhlet
extractor was connected to a 250 mL round-bottomed flask including acetone (150 mL)
and a magnetic stirring bar, and then equipped with a water condenser. The flask was
heated to 100 ◦C with an oil bath for 3 days. The filter paper was then taken out and
the solid was heated at 90 ◦C under vacuum to give the activated ZnBPD-4F4TS sample.
Elemental analysis found [C (41.35%), H (1.57%), S (29.81%), N (0.33%)], a fitting formula
can be determined to be Zn4O(C30H12F4O4S8)3(H2O)1.5(CH3CN)0.6 (m.w. 2635.86), which
gives a calculated profile as [C (41.56%), H (1.56%), S (29.19%), N (0.32%)]. FT-IR (KBr
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pellet, ν/cm−1): 3444 (w), 1622 (s), 1434 (s), 1398 (s), 1385 (s), 1363 (s), 1218 (m), 1143 (w),
1103 (w), 986 (m), 907 (m), 850 (m), 803 (m), 767 (w), 741 (m), 698 (s), 623 (w), 584 (w),
517 (w), 477 (w), 447 (w).

3.4. Synthesis of NH4Br@ZnBPD-4F4TS

The solid sample of as-synthesized ZnBPD-4F4TS (30 mg) was added to a small glass
bottle containing 4 mL of saturated ammonium bromide in ethanol solution, and soaked
at room temperature for 2 days. Afterwards, the resultant solid NH4Br@ZnBPD-4F4TS
was isolated by centrifugation and then washed with ethanol and acetone three times, and
dried under vacuum for 1 h. Elemental analysis found [C (40.99%), H (1.52%), S (28.66%), N
(0.37%)], a fitting formula can be determined to be Zn4O(C30H12F4O4S8)3(H2O)0.5(NH4Br)0.6
(CH3CN)0.1 (m.w. 2656.08), which gives a calculated profile as [C (40.79%), H (1.51%), S
(28.97%), N (0.37%)].

3.5. Single Crystal X-ray Crystallography

Single crystal data for ZnBPD-4F4TS were collected using a Bruker APEX-II CCD
diffractometer (Bruker, Germany) with an I-mu-S micro-focus X-ray source using Cu Kα

radiation (λ = 1.54178). Data were collected at 230.0 K. Reflections were indexed and
processed, and the files scaled and corrected for absorption using APEX3 v2018. The space
group was assigned and the structure was solved by direct methods using XPREP-2014/2
program and refined by full matrix least squares against F2 with all reflections using
Shelxl2018 using the graphical interface Olex2 [50]. All non-hydrogen atoms were refined
with anisotropic thermal parameters, and all hydrogen atoms were included in calculated
positions and refined with isotropic thermal parameters riding on those of the parent atoms.
The hanging thiophene groups are highly disordered and difficult to resolve. Therefore,
their electron peaks were squeezed in the refinement process. The crystallographic data
for incomplete ZnBPD-4F4TS, in CIF format, have been deposited with the Cambridge
Crystallographic Data Centre as CCDC 2098157. These data can be obtained free of charge
from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(accessed on 22 July 2021).

3.6. Metal Ion Sensing Experiment

ZnBPD-4F4TS crystals (2 mg) were first introduced into different metal ion aqueous
solutions (3 mL, 500 ppm based on metal ion) of MClx (Mx+ = Hg2+, Cd2+, Ni2+, Co2+,
Mn2+, Cu2+, Pt2+, Pd2+, Fe3+, Pb2+), AgNO3 and then heated at 80 ◦C for 2h. After cooling
to room temperature, the bulk samples were centrifuged and washed three times with
water. Additionally, they were washed three times with acetone and dried under vacuum.
The dried samples were then used for luminescence measurements and the luminescence
data were collected. The blank sample was obtained from ZnBPD-4F4TS crystals being
immersed in pure water instead of metal ion solution.

3.7. Electrochemical Impedance Spectroscopy

The Nyquist plots (Z′′ vs. Z′) of proton-conducting MOF often show a single semicircle
at high frequency, representing proton resistivity contributions of the bulk sample. The
proton conductivity was deduced from the semicircle by fitting an equivalent circuit which
consists of Rs, R1 and W1 in the frequency range from 10 MHz to 1 Hz. Rs corresponds to
wire and electrode resistance, R1 is proton resistance and W1 is the resistivity of the grain
boundary. Sometimes W1 is not necessary, because the impedance plot of the capacitive
tail may not appear in the measured range due to the high magnitude of the resistivity.
The water-assisted conductivities of synthesized materials were measured under different
relative humidity and temperature conditions and were further fitted with different fitting
circuits using the ZView software [51].

www.ccdc.cam.ac.uk/data_request/cif


Molecules 2021, 26, 5044 9 of 11

4. Conclusions

In summary, a green emitter (x = 0.264, y = 0.403), ZnBPD-4F4TS, has been con-
structed from a fluorine- and thiophenethio-functionalized ligand. Exposed to various
metal ions, it exhibits different reductions in luminescent intensity. In particular, the lumi-
nescence is almost fully quenched when exposed to Mn2+ ions. Moreover, NH4Br-loaded
NH4Br@ZnBPD-4F4TS shows a more than 25,000-fold enhanced proton conductivity com-
pared to the original ZnBPD-4F4TS at 40 ◦C and 90% RH, serving as an example of the
enhancement of proton conducting material by post-synthetic modification.

Supplementary Materials: The following are available online. Figure S1: A photograph of as-
synthesized ZnBPD-4F4TS single crystals. Figure S2: Solution 1H NMR spectra of the activated sample
of ZnBPD-4F4TS dissolved in DCl (38 % in D2O)/DMSO-d6 (v:v = 1:4) solution. Figure S3: Solution
19F NMR spectra of the activated sample of ZnBPD-4F4TS dissolved in DCl (38 % in D2O)/DMSO-
d6 (v:v = 1:4) solution. Figure S4: FT-IR spectra of (a) the ligand H2BPD-4F4TS and (b) as-made
ZnBPD-4F4TS; (c) ZnBPD-4F4TS after exposed to air for 21 days; (d) ZnBPD-4F4TS after soak-
ing in boiling water for 30 h. Figure S5: Thermogravimetric plots of activated ZnBPD-4F4TS.
Figure S6: PXRD patterns of (a) simulation from single crystal of ZnBPD-4F4TS; (b) as-synthesized
NH4Br@ZnBPD-4F4TS; (c) NH4Br@ZnBPD-4F4TS after proton conduction test. Figure S7: Room
temperature emission spectra of crystals NH4Br@Zn-4F4TS in the solid state (λex=370 nm).
Figure S8: PXRD patterns of ZnBPD-4F4TS after immersion in various metal ion solutiona.
Figure S9: Proton conductivities of ZnBPD-4F4TS and NH4Br@ZnBPD-4F4TS at different tem-
peratures (from 40 ◦C to 80 ◦C) and 90% RH. Figure S10: PXRD patterns of (a) simulation from
single crystal of ZnBPD-4F4TS; (b) as-synthesized ZnBPD-4F4TS; (c) ZnBPD-4F4TS after proton
conduction test. Table S1: Crystallographic refinement parameters and results of ZnBPD-4F4TS.
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