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A growing number of studies have been conducted over the past few years on the positioning of daily massage robots. However,
most methods used for research have low interactivity, and a systematic method should be designed for accurate and intelligent
positioning, thus compromising usability and user experience. In this study, a massage positioning algorithm with online learning
capabilities is presented.-e algorithm has the following main innovations: (1) autonomous massage localization can be achieved
by gaining insights into natural human-machine interaction behavior and (2) online learning of user massage habits can be
achieved by integrating recursive Bayesian ideas. As revealed by the experimental results, combining natural human-computer
interaction and online learning with massage positioning is capable of helping people get rid of positioning aids, reducing their
psychological and cognitive load, and achieving a more desirable positioning effect. Furthermore, the results of the analysis of user
evaluations further verify the effectiveness of the algorithm.

1. Introduction

As health care has aroused the rising attention of people, it
has become a trend to integrate intelligent massage robots
into people’s daily lives to help them achieve massage and
relaxation anytime and anywhere. Massage positioning is
recognized as the first task of an intelligent massage robot,
and numerous existing research results have been achieved
relating to massage positioning.

-ree main types of massage systems have been used on
the market over the past few years. -e first one is the larger
massage chair, which is the most common and requires the
operation of a remote control or control panel to give the
massage positioning instructions. -is positioning mode of
operation, however, is not friendly to the elderly and has a
rigid division of massage areas. -e second type refers to a
small regional massager (e.g., a neck massager). -e above
type of massager is focused and can only be applied in one

area. -e third type refers to the professional type massage
robot arm, which is primarily employed in professional
massage hospitals or massage shops. -e user should lie in a
fixed position after completing the diagnosis, and the
massage position is set by the professional massage prac-
titioner independently. -is massage robot is characterized
by strong professionalism and high precision, whereas the
system requires external support staff for massage posi-
tioning. Accordingly, this positioning model runs counter to
the goal of integrating massage robots into daily lives. In
brief, current massage positioning systems are always de-
pendent on external conditions (e.g., massage manipulation
boards and professional doctors) and are not intelligent.
Accordingly, understanding the natural way in which people
express themselves in the massage area can help the user
disengage from the above external dependencies.

It is generally known that the ability to express intentions
through physical movements is the most basic and common
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ability among people [1]. It has been found that when people
express something or an area, they usually use gestures or
words to direct the attention of others to the target, thus
enabling them to gain insights into their intentions [2]. In
the case of gestures, people usually use pointing actions to
express the target when they are far away from it, that is,
indicating behavior [3], which is commonly achieved by
extending the index finger and flexing the rest of the fingers
[4]. If the target is close, people usually express it in a contact
manner, for example, by holding or touching it directly with
their hand. Likewise, the above results can be applied to
people’s representations of the massage area. People typi-
cally use static pointing expressions for areas of the body that
are distant from the hand. For closer areas, on the other
hand, direct contact with the fingertips of the index finger is
generally used for expression. On that basis, pointing ges-
tures have become one of the most natural ways of
expressing the massage area, and verbal expressions are also
one of the most natural ways. -us, a correct understanding
of the above natural expressions can help people disengage
from the operating board and reduce memory and opera-
tional load. Moreover, people’s negative attitudes toward
robots can be reduced.

Furthermore, unlike professional massage, daily home
massage is characterized by nonspecialist positioning and an
unspecified range of massage. As such, autonomous massage
positioning faces numerous unique challenges: (1) the sys-
tem should track information on key points of the human
skeleton in real-time, such as the shoulders and waist, as well
as hands, to enable massage tracking and (2) the system
should identify massage zones and massage points based on
an understanding of people’s natural expressions.

Accordingly, to solve the above application pain points
of intelligent robots, this study focuses on the vital issue of
massage area positioning and proposes a method based on
natural human-robot interaction with online learning
capability.

2. Related Work

2.1. Positioning of Acupuncture Points. Existing research on
massage localization has focused on the identification of
body acupoints, and localization is primarily achieved using
two methods, including manual-assisted finding and neural
network training.-e first type of manual assistance requires
the marking of the target acupuncture point before the
massage, mainly through the posting of the colored origin or
2D codes, after which the system locates the point by
identifying the location of the marked point [5, 6]. -e
manually assisted methods all require a prior manual setting
of the reference point and are both less intelligent. -e
second method, requiring the use of deep learning, is
progressively becoming the focus of relevant research.
Xiangping and Yudan [7] adopted a neural network model
based on particle swarm optimization to train a predictive
model of the relative coordinates of acupoints. Later, Sun
et al. [8] located two acupuncture points on the human arm
with more accuracy using a deep convolutional neural
network. Chen et al. [9] used migration learning to transfer

the learned facial landmark location network to the acupoint
localization network, so as to further increase the accuracy of
acupoint localization. -e incorporation of location accu-
racy metrics further increased the accuracy of positioning.
-e above methods have all produced satisfactory results,
whereas the positioning of specific acupuncture points re-
quires professional guidance and planning to achieve the
desired results. -ese methods are contrast to the goal of
home-based daily massage, which is primarily aimed at
relaxing certain tired areas and does not exert a therapeutic
effect. -us, it is important for intelligent massage posi-
tioning systems to understand people’s intentions and needs
through their behavior.

2.2. Intent Understanding with Natural Interaction.
Natural human-computer interaction aims to eliminate the
boundaries between humans and machines to achieve
smooth and natural communication between humans and
computers. As research progresses, HCI tends to evolve from
the initial passive interaction (e.g., command line interaction
and graphical interface interaction) toward active interac-
tion (e.g., machines actively sensing and predicting people’s
behavior and inferring the user’s mental intent) [10, 11].
Human-computer interaction research is committed to
achieving intelligent applications. To achieve this goal, a
wide variety of sensors are adopted to observe people’s
physical behavior; human expressions, gestures, gazes
[12–14], and other behaviors have also been analyzed in
depth. -e massage positioning of an intelligent daily
massage robot is primarily dependent on the operator’s
intention, which can be expressed in various ways (e.g.,
pointing, speech, and gesture). Accordingly, the above
modalities need to be considered together to analyze human
intentions using contextual information [15–17]. In addi-
tion, Liu et al. [18] proposed a multitask model combining
STGCN-LSTM and YOLO to recognize human intentions.
Batzianoulis et al. [19] proposed the idea of determining
control attribution based on people’s personal preferences.
Kim et al. [20] have proposed a method to identify patterns
in people’s daily lives that combines intention and event
algorithms. Duncan K et al. [21] proposed a Markov model
based on a “goal-action-intention network” through itera-
tive Bayesian updating of the network to give it the ability to
learn people’s habits. Inspired by the above studies, this
study adopts a recursive Bayesian algorithm to equip the
system with the ability to learn.

2.3. Intent Understanding with Natural Interaction. To ac-
curately identify finger-pointing, Smari and Salim Bouhlel
[22] implemented fingertip tracking and recognition by
contour detection on Kinect depth maps. Shukla et al. [23]
proposed an appearance-based probabilistic target detection
framework that enables the recognition of pointing gestures
and the estimation of pointing directions. Barbed et al. [24]
proposed a fine-grained variation of long-range pointing
behavior detection using network training. However, it is
not possible to obtain highly accurate, real-time finger-
pointing information using the above methods. -us, the
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focus of research has gradually shifted to the recognition of
key points on the body and in the hands. Although Kinect
can acquire human skeletal points, it cannot be adopted for
accurate pointing since it can acquire a small amount of key
information. Simon et al. [25] developed a method to obtain
a finger-pointing fine-grained detector through training
with a multicamera system to achieve high accuracy in hand
keypoint detection. Zhang et al. [26] built a multihand
tracking system capable of running on the device in real time
and achieving a high degree of accuracy.

In brief, existing massage systems suffer from the above
key problems: (1) the system requires auxiliary conditions
for manual massage positioning of massage points; (2) the
system is unable to learn the massage habits of the user
autonomously; and (3) the system is unable to achieve
massage at any specific location. In this study, the above key
scientific problems are solved by placing a focus on a
multimodal intent fusion understanding approach. Com-
bining natural pointing and speech representation, the
major elements of intelligent massage systems are investi-
gated (e.g., precise positioning and natural human-machine
interaction).

3. Materials and Methods

-e interaction device of the intelligent massage positioning
system primarily comprises a xArm robotic arm, a Kinect
perception device, a voice input device, and a computing and
processing device, as illustrated in Figure 1. -e difficulty of
the implementation of the massage positioning system lies in
how the system is capable of naturally and accurately sensing
the location of the massage area expressed by people with the
use of natural pointing gestures and speech. -is study
proposes an online learning massage positioning algorithm
to solve the above difficulty. First, the idea of redundancy is
used to extend the intersection of the pointing line and the
body into a pointing intersection line to determine a
massage candidate area. Second, an interrogative interaction
is performed for the massage candidate area using roulette
selection to determine the massage center point and the
massage point generation model. Lastly, according to the
massage area and center point, the selection probability and
the central probability of the respective zone under the part
are updated. After multiple selections of the same part, the
system is capable of learning people’s massage habits on the
part, thus decreasing the number of interrogation interac-
tions for the next center point confirmation.

To gain insights into the user’s intention expressed
through speech, a speech intention database, KWLib, should
be first created, which describes the correlation between
speech and possible intentions. -e system uses real-time
keyword detection for speech recognition and intent
matching. In addition, to understand the user’s pointing
information, this system detects key points on the body and
hands in real-time to achieve pointing recognition. For the
intelligent massage positioning system in this study, the two
modalities of speech and pointing can be either parallel
inputs or single inputs. -e input is assigned to three cases:
the first is two modalities for parallel input, when it is

necessary to determine whether there is a contradiction
between the information transmitted by both; if there is, the
system will actively remind the user and ask him to re-
express it. -e second is when two modalities are inputted in
parallel, and there is no contradiction identified between
them, or only pointing serves as a single modal input. As a
result, the system will turn on the OLMP algorithm to
massage the localization function. -ird, with voice only as
the single input, the system will perform a full-area massage
on the body part expressed by voice.

Pointing expressions can fall into two types, including
contact and noncontact. For the first type of contact ex-
pression, the system directly employs the contact point as the
center point of the massage. -e understanding of the
second type of noncontact expression is the difficulty and
focus of this study’s research. -eoretically, the intersection
of the pointing line and the body can be used as the center
point of the massage area. However, inaccurate detection of
the skeletal points of the body and the user’s own reasons
(e.g., inability to raise the arm) can cause greater disturbance
to the position of the intersection point. Hence, there is an
error in using the intersection point as the center point of the
massage. It is noteworthy that if the hand is far from the
target area, a small deviation in pointing may cause the
intersection point to be far from the target point. Fur-
thermore, intelligent massage positioning requires the
identification of a massage area rather than just a massage
center point. -e intelligent massage positioning system
proposed is capable of solving the above problems of
noncontact expression, and its structure is illustrated in the
following diagram:

-e system structure consists of three main parts (Fig-
ure 2). -e first part is the area of number. 1: -rough the
user’s basic input data to understand the intention, to de-
termine the range of the massage candidate area, its main
goal is to select a general massage area and reduce posi-
tioning errors; the second part is the area of number. 2:
-rough the roulette selection method to determine the
interrogation point within the massage candidate area, its
main goal is to determine the location of the massage center
point, massage point two-dimensional (2D) distribution
model, and massage -e third part is the area of number. 3:
Based on the user’s selection results, the selection probability
and central probability of the relevant body parts are con-
stantly updated, and its main aim is to reduce the number of
human-computer interactions when positioning the mas-
sage center point. -e main three sections are elucidated
below.

3.1. Voice Detection to Determine the Massage Part. We first
build a voice intent database KWLib, which stores the set
pairs of voice keywords and body part numbers. In addition
to body part keywords, the system also focuses on directional
words as well as negative words. Finally, all the obtained
keyword information is used as the input of the intent
database.

Among them, for speech recognition, we use the speech
recognition technology of Baidu API to perform real-time
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speech detection. After the system performs the massage
positioning scenario, the system detects the user’s voice
expression in real time. When the body part keyword is
detected, the final body part number is obtained by com-
bining the before and after information. -e identification
process is shown in Figure 3.

3.2. Natural Pointing to Identify Candidate Area for Massage.
After considering accuracy, stability, and real time, this
study uses the research results of Zhang F et al. and
Bazarevsky et al. [27] on hand and body key points as the
method of acquiring the base data. -e underlying data are
processed to identify the candidate area.

First, it is considered that there may be irregularities in
user pointing gestures. To increase accuracy, pointing is
assigned to two cases. -e first case is when the index finger
is bent during the pointing process; the second case is when
the index finger is not bent during the pointing process. -e
system sets different pointing lines in accordance with the
different cases.

Second, once the pointing line, Line1, has been deter-
mined, we assume that there exists a surface α. -e straight

line, Line1, lies within α and that α is perpendicular to the
ground (the xoz face in 3D space). -is study translates the
above explicit conditions into mathematical form: the
normal n of the ground is known to be 0 1 0( 􏼁 and let the
direction vector l1 of the line, Line1, be a b c( 􏼁. With
geometric knowledge, the normal vector nα of the surface α
is expressed as follows:

nα � n × l1 �

i j k

0 1 0

a b c

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

. (1)

-e equation of surface α is obtained by combining the
normal vector nα and the coordinates of the fingertip point.
Afterward, the body plane αbody is obtained from the in-
formation on the coordinates of the key points pointing to
the body part where the intersection point pintersection is
located.

Lastly, the length and width of surface α and surface
αbody are defined by the position of the pointing hand, the
direction of pointing, and the body posture. Afterward, the
intersection line I between the two surfaces can be found

(a) (b)

Figure 1: Interactive device diagram for intelligent massage positioning systems: (a) Kinect 2.0 devices; (b) xArm robotic arm devices.
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Figure 2: Illustration of the structure of the massage positioning system.
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setting the height of the massage candidate area T to the
length H of the projection of I on the y-axis.

When the user’s pointing action is not standard, the
system uses the second finger node and the tip of the index
finger as the key points of the pointing line, as shown in
Figure 4(a). However, when the user’s pointing action is
standard, the system uses the heel and tip of the index finger
as the key points of the pointing line, as presented in
Figure 4(b).-e red dotted line in the diagram represents the
intersection line I of the two faces.

-e width of the area T is obtained by d that changes
with the distance dj between the fingertip and pintersection. If
the fingertip is farther away from pintersection, the intersection
point determined by pointing may deviate significantly from
the actual target point. -us, the width of the candidate area
T should be widened to maximally include the target point
within it. -rough extensive experimental testing, this study
sets the value of d for three cases: first is 2 cm< dj < 8 cm;
that is, the distance between the fingertip and pintersection is
relatively close, and d is set to one quarter of the maximum
value L1 of the width of the part where pintersection is located;
second is 8 cm< dj < 20 cm, where d is set to (1/3)L1; third is
dj >20 cm; that is, the distance between the fingertip and
pintersection is relatively far, and d is set to (2/3)L1. Afterward,
the length of the projection of d and I on the x-axis is
compared, and the maximum value is selected as the width L

of T. -e area framed by the dashed line in Figure 5(a) is the
candidate area T, and the black line within this area is the
intersection line I.

3.3. Determination of Massage Center Point and Massage
Point Generation Model in Candidate Area. -e results and
discussion may be presented separately, or in one combined
section, and may optionally be divided into headed
subsections.

Before the system was run, this thesis first divided the
body into parts, such as the left and right arms, and the back.
Second, the respective part was then divided into more
refined zones. -e respective small zone has a selection
probability value and a central probability value, and both
two probabilities of the respective small zone under the same
part sum to 1. -e following is an example of area T falling
on the back, assuming that the back contains a total of 9
small zones. -en, the determination of the massage point
centroid and the massage point generation model is shown
below.

Suppose the area T contains a total of m sections with
area values of S1, S2... Sm, thus forming the set of areas S. -e
selection and central probabilities are obtained for the re-
spective part, resulting in a probability set θ and a probability
set μ, as shown in Figure 5(b). Taking into account the

existence of user pointing bias and to avoid the smaller
combined probability sections being simply ignored, this
study used the roulette selection method to determine the
preferred interrogation points within area T.

First, the system determines the combined probability
for the respective section in area T according to (2) and
calculates the cumulative probability value Q(Pi) for the
respective section in order. -e cumulative probability for
the respective section is the sum of its own probability and
the probabilities of all sections that lie before it. -e
cumulative probability uses line segments of different
lengths to represent the probability of the respective
section. All sections are integrated to form a long line of
length 1.

P PTi( 􏼁 �
Si × θi × μi

􏽐
m
j�0 Sj × θj × μj

. (2)

Next, the system generates a random number in the
interval [0, 1]. -e number is judged to fall within which line
segment, so the preferred section of the area T is determined.
Notably, the probability of a random number falling in a
longer line segment is relatively high. However, there is also
the possibility of shorter line segments being selected. -us,
the phenomenon of a fixed range of massage center points is
avoided.

-e above steps lead to the preferred interrogation
section and the position of its center (x′, y′) within the area
T. Afterward, the massage arm moves to this center point
and asks the user “whether the point currently touched is
included in the massage area.” If the system gets a negative
answer, the preferred interrogation part will be removed
from the candidate areaT, and the remaining sections will be
used as a new candidate area T′. -e system will then
recalculate the combined probability value for the respective
section of the area T′ and use the above steps to reselect the
next section. If a positive answer is obtained from the user,
the point (x′, y′) is moved on the x-axis to the intersection
line I to get a new point (x0, y0), and the point serves as the
massage center point, as presented in Figure 5(c). In ad-
dition, the system sets a minimum area value β for the
candidate area. When the candidate area is being narrowed
down, if the area of the T′ is smaller than β, the system will
ask the user to re-express it.

Lastly, the position coordinates of the massage points are
set to be consistent with a normal distribution on the X and
Y axes, and the parameters x and y are independent of each
other. x0 and y0 are the means of the two normal distri-
butions, respectively, and the variances are determined by L

and H, respectively. In accordance with the 3σ principle, the
variance of X and Y can be found as σx � (L/6) and
σy � (H/6), respectively. Accordingly, the equation for the

User’s
voice

keyword
extraction

Keywords
input

KWLib database
�e

number of
body part

Figure 3: Schematic diagram of the speech recognition process.
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2D normal distribution that the massage point coordinates
obey is expressed as follows:

f(x, y) �
1

2πσxσy

exp −
x − x

2
0

σ2x
−

y − y
2
0

σ2y
⎛⎝ ⎞⎠. (3)

-e system is capable of generating the coordinates of
the massage points randomly according to equation (3). In
addition, the area enclosed by the four points x0 − 2σx,

x0 + 2σx, y0 − 2σy, and y0 + 2σy is set as the target area Tt

for this massage positioning, as shown in the area framed by
the dashed line in Figure 6.

3.4. Updating the Central and Selection Probabilities Using
Recursive Bayes. To make the results of intention under-
standing more accurate, the system should be able to learn
continuously. In the case of massage positioning,

(a) (b)

Figure 4: Intersection line finding diagram with different pointing lines: (a) irregular pointing; (b) regular pointing.

H

L

(a)

θ1

μ1

θ3

μ3

θ5

μ5

θ2
S2S1

S4S3

S6S5

μ2

θ4

μ4

θ6

μ6

(b)

(c)

Figure 5: Schematic diagram of the massage center point determination process: (a) the area framed by the dotted line represents T; (b) the
area, central probability, and selection probability corresponding to each small section contained in the area T is indicated; (c) the massage
center point is found by moving the interrogation point.
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intelligence means that after a number of positions, the
system should learn the operator’s preferences to achieve
more accurate and rapid positioning. To achieve this, this
study requires that the system learn the user’s historical
massage area and massage frequency and be able to auto-
matically update the selection probability values and the
central probability values for each small zone under the
relevant part. -e above goal can be achieved using a re-
cursive Bayesian approach. Suppose that the Rth part of the
body is selected N times and that the part covers a total of K

small zones. -e result xi
R of the ith selected massage po-

sitioning is expressed as
xi

R � (QR1 � 0, QR2 � 0, . . . , QRi � 1, . . . , QRK � 0), with QRi

representing the ith small zone under the Rth part. A value of
0 for QRi means that the central point of massage does not
fall in the ith small zone; a value of 1 for QRi means that the
central point of massage falls in the ith small zone. In ad-
dition, each of the K small zones has a central probability
value and a selection probability value, which can form the
probability set θR � PR1−center, PR2−center, . . . , PRK−center􏼈 􏼉 and
μR � PR1−selection, . . . , PRK−selection􏼈 􏼉.

Online learning aims to update the central and selection
probabilities of the respective small zone under the relevant
part using the results of the user’s massage positioning
selection, that is, to update the probability set θR and μR.

Using Bayes’ formula, the posterior probability of the
central probability can be written as follows:

P θR|x
i

􏼐 􏼑∝P x
i
|θR􏼐 􏼑 · P θR|x

i− 1
􏼐 􏼑. (4)

According to (4), the system is capable of understanding
user preferences based on continuous learning. -e prior
function P(θR|xi− 1) can be obtained by iterating step by step
through P(θR|xi− 2),..., P(θR|x0), that is, P(θR). P(θR) is the
initial probability distribution for the small zone. We set it to
obey the Dirichlet distribution, and hence, the posterior
probabilities also obey the Dirichlet distribution. -e like-
lihood function P(xi|θR) can be obtained by the following
equation:

P x
i
|θR􏼐 􏼑 � 􏽙

K

j�1
P x

i
j|θR􏼐 􏼑∝􏽙

K

j

θQRj

Rj . (5)

Hence, the maximum a posterior estimate of θR is given
by the statistically large amount of positioning data, as
shown in the following equation:

􏽣θRj �
QRj + αRj − 1

􏽐
K
i�1 QRi + 􏽐

K
i�1 αRj − 1􏼐 􏼑

, (6)

where αRj is a Dirichlet parameter that records the prior
counts of the observed massage centroids falling in the jth
zone.

Finally, the selection probabilities are progressively
updated according to the way the central probabilities are
updated, as shown in the following equation.

􏽣μRj �
CRj + HSRj + sRj

􏽐
K
i�1 CRi + 􏽐

K
i�1 HSRi + 􏽐

K
i�1 sRi

, (7)

where HSRj denotes the sum of the areas of the jth small
zone contained within the target area of the historical
massage; CRj represents the area of the jth small zone
contained within the current target massage area; and sRj is
the area of the jth small zone. -us, the selection probability
value μRj for the respective small zone on the Rth part will be
progressively updated as an increasing amount of interac-
tion information is added.

3.5. Online Learning Massage Positioning Algorithm.
Based on the above discussion, the basic idea of the online
learning massage positioning algorithm (OLMP) is eluci-
dated below. (1) When the system detects the noncontact
pointing gesture, it exploits the redundancy idea to extend
the pointing intersection as the intersection line to deter-
mine the massage candidate area T. (2) -e system deter-
mines the massage center point using the roulette selection
method and then determines the 2D normal distribution
model of the massage point in accordance with the height
and width of the area T. (3) In accordance with the massage
target area, the selection and central probabilities of relevant
body parts are updated to progressively realize the function
of learning the user’s massage habit. -e algorithm in this
study is defined as Algorithm 1.

3.6. Algorithm Analysis. -e main features exhibited by the
OLMP algorithm are elucidated below. (1) -e OLMP al-
gorithm can understand the user’s representation of any
body’s position under natural pointing. -e system deter-
mines the user’s pointing direction in accordance with the
key point of the finger. If the pointing line does not intersect
with the body (e.g., the pointing line points to the outside of
the body), the system will actively remind the user and ask
him/her to re-express it. If there is an intersection between
the pointing line and the body, the system will be consistent
with the steps in Section 3.1 to find the candidate area Tand
determine the center point of the massage within the area T
according to Section 3.2. During the above process, the
system records the position of the massage point in relation
to the body’s key points. All the above settings ensure that
the massage point is always found when the pointing

2H/3

2L/3

Figure 6: Schematic diagram of the massage area determination.

Computational Intelligence and Neuroscience 7



information is correct. (2) -e selection and central prob-
abilities of the respective zone under the body part can be
constantly updated online to learn the user’s massage habits.

-e main differences between the OLMP algorithm and
existing methods are elucidated below. (1) -e algorithm is
capable of achieving massage localization without the need
for other auxiliary conditions by analyzing the user’s non-
contact pointing expression of the massage area under
natural conditions. -e above function reduces the user’s
memory and operational load. (2) -e algorithm can update
the probability value of the respective small zone under the
relevant part based on the target area obtained from the
localization. -is function allows the system to find the
massage center point from the massage candidate area T
more rapidly in the next positioning, reducing the number of
times the system asks the user. (3) In the positioning process,
the user can move his body as he pleases without being
restricted to a single posture. -e above system will achieve
real-time tracking of the massage points based on the
recorded location of the massage area points in relation to
the key points of the body.

4. Experimental Results and Analysis

-e proposed OLMP algorithm is integrated with the xArm
robotic arm for intelligent massage positioning. In this
section, the effectiveness and reliability of this proto-type
system are further verified, and the intention understanding
rate and cognitive load of the algorithm are evaluated.

4.1. Experimental Settings. -e intelligent positioning sys-
tem in this study comprises a Kinect device, a computer with
an I7-10875HCPU, an RTX2060 GPU, 16G of RAM, and the
xArm 7-axis robotic arm. To be specific, the arm was fixed to
the table, and the Kinect camera was fixed to the right of the
arm, which was approximately 1.2m away from the user. 20
volunteers between the ages of 35 and 65 were invited to the
experiment at a male to female ratio of 1 :1.

Since the massage arm has a limited range of movement,
to achieve effective massage positioning, the area in which
the user intends to express himself should be limited, and the
user should choose the posture in which the massage can be
performed. Moreover, due to the difficulty of expressing the
back area by pointing, a special condition was set; that is, the
experimenter could point to the front chest, instead of
pointing to the back area, and the system would automat-
ically map the front area to the back. However, the exper-
imenter should first verbalize the part of the body that he or
she wants to massage. Indeed, the experimenter can also
express his or her intention directly to an area of the back.

Furthermore, the types of user responses are classified
into positive and negative responses. -e keywords of
positive responses consist of “yes,” “right,” “correct,” and
others, while the keywords of negative responses comprise
“no,” “not in,” “negative,” “none,” etc.

4.2. Experimental Procedure. -e respective experimenter
should perform 20 repetitive massage area selections with
natural pointing. When the experimenter enters the

Input: -e user’s voice: voice; the key points of fingers; the key points of body; the collections of two types of probability for
the respective part of the body.

Output: -e collection P of massage points.
(1) Computer nα using the formula (1);

α←nα and Line1; αbody←pintersection and the key points of body;
I←α and αbody./∗ calculate the intersection of the surface α and αbody.∗/

(2) H � height(I); L �max(Length(I), d).
(3) T←(H, L, I) /∗determine the massage candidate area T.∗/
(4) Num1← KWLib(voice);/∗match the user’s voice to the speech intent library to find the number of the target body part
∗/
Num2←T./∗ determine the number of the body part where the candidate area T is located. ∗/

(5) IF Num1 � ∅ and Num2≠∅
num � Num2
IF Num1≠∅ andNum1∩Num2≠∅
num � Num1∩Num2.
/∗ determine the number of the target part. ∗/

(6) -e sets of initial probabilities for the respective part within T:
θ←θnum ∩T; μ←μnum ∩T.

(7) Compute F(PTi) using formula (2).
(8) Center point (x0, y0)←PTchosed← roulette selection (F(PTi))./∗ finding the section PTchosed through the roulette

selection method. Determining the center point (x0, y0) of target massage area by PTchosed. ∗/
(9) Compute f(x, y) using the formula (3).
(10) P, Tt←f(x, y)./∗ determine the set of massage points P and the target area for massage Tt. ∗/
(11) Update θnum using the formula (6).
(12) Update μnum using the formula (7).
Output P
END

ALGORITHM 1: Online learning massage positioning (OLMP).
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designated area to express their intention using pointing, if
there is a problem with their pointing (e.g., pointing in a
direction unrelated to their body), or if there is a contra-
diction in the parallel input of speech and pointing, the
experimenter is asked to repeat the expression, and no count
is made in either case. -e experimenter can point in a
variety of postures (e.g., standing and sitting), as illustrated
in Figure 7. If the experimenter is in an area that is out of
reach of the robotic arm, the system will alert the user to
make position adjustments.

Figure 8 illustrates the whole process of massage lo-
calization. Once the pointing gesture is detected and the
body posture is stable, the system will determine the can-
didate area T, which has a height of 200 pixels and a width of
110 pixels, as shown in Figure 8(a). To prevent the body from
moving, the system records the position relationship be-
tween the massage candidate area points and the rest of the
body’s key points. Afterward, the OLMP algorithm is used to
detect which parts of the area T contain small zones and to
determine the preferred interrogation point, as shown in
Figure 8(b).-e robotic armmoves to this point and initiates
the interrogation: does this contact location fall within the
target area, as shown in Figure 8(c). When an affirmative
answer from the user is detected, the point is moved to the
intersection line to obtain the massage center point, and a
2D distribution model of the massage point coordinates is
obtained according to equation (3) as follows:

(x, y) �
9

11000π
exp −

9(x − 574)
2

3025
−
9(y − 394)

2

10000
􏼠 􏼡. (8)

-e system determines the massage target area and the
set of massage points based on the 2D distribution model
above, as shown in Figure 8(d), and records the location of
the massage points in relation to key points on the body.
Ultimately, the probability values for the selection and the
central of the respective small zone under the relevant part
are updated during the positioning process, the experi-
menter can move or change posture, and the system can
achieve real-time tracking of the massage.

4.3. Experimental Results. In this study, the proposed OLMP
algorithm was validated and evaluated in terms of three
metrics, including accuracy, number of interactions, and
user cognitive load.

4.4. Accuracy. -e accuracy of massage positioning can be
derived by the following equation:

Accuracy Rate �
Count
20

, (9)

where Count denotes the number of correct massage points
in the set p of massage points. -e counting method is that
the robot arm moves to the position of the massage point in
p, respectively, and asks: “Is the current contact point lo-
cated in the area you want to massage.” If the answer is
positive, the count of Count increases by 1. Otherwise, the
count of does not increase.

-e results were recorded for 20 experimenters’ 20 lo-
calization massages, that is, 400 times of intention under-
standing. -e accuracy rate under 400 selections was
counted, and the results are presented in Figure 9.

As depicted in the figure, 291 out of 400 intention
comprehension tasks achieved a correct rate of 70% or more,
for a total of 72.5%. In addition, the cases where the correct
rate was below were counted and analyzed, and it was found
that the case mainly occurred when the user points directly
at the back area with their finger. Due to the limitations of
people’s limb range of movement, the experimenter’s
pointing direction and the target area can deviate signifi-
cantly. -e above phenomenon decreases the correct rate of
intention understanding.

4.5. Number of Interactions. -e main innovation of the
OLMP algorithm is that the system is capable of learning the
user’s massage preferences online and decreasing the
number of queries for the next massage positioning.

To verify the effectiveness of this innovation, two vol-
unteers were randomly selected and asked to make ten
repeatable choices for their back and waist distributions, and
the choices should meet their massage needs. To avoid in-
terfering between choices, the experimenter was asked to
rest for 10min after the respective selection wasmade.When
the experimenter is changed, the system resets the initial
probability values for the respective area to learn the user’s
massage habits more rapidly. Furthermore, the system is set
to contain 16 small zones on the back of the body and 9 small
zones on the waist.

Figure 7: Collection of massage positioning charts.
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-enumber of interactions in Figure 10(a)–10(c) implies
the number of times the system controlled the robot arm to
move to the target point to initiate a query to the user when
the center point of the massage within T is being determined.
As revealed by the graphs, both experimenters performed a
relatively high number of interrogation interactions during
the first positioning process. With the increase in the
number of times the experimenter positioned the same part,
the number of interrogations required decreased. -e av-
erage number of interactions (c) suggested that after six
selections, only one interrogation interaction was generally
required to locate the center of the massage. For the random
selection model, the number of interrogation interactions
does not decrease with the increase in the number of ex-
perimenter orientations. -us, the OLMP algorithm can
decrease the number of human-machine interactions during
the positioning process by learning the user’s massage habits
online.

4.6. NASA-TLX User Reviews. All 20 experimenters were
invited to complete a NASA Task Load Index questionnaire
after the experiment was performed. -e questionnaire
consisted of six evaluation indicators below, including time

demand (TD): the efficiency with which time is man-aged
during the experiment; physical demand (PD): the level of
physical effort demanded by the experiment; personal
performance (OP): the level of self-satisfaction in com-
pleting the experiment; energy (E): the amount of effort
required to achieve the self-assessed level; and frustration
(F): how you feel throughout the experiment.

-e NASA-TLX generally comprises two steps. Step 1: a
two-by-two comparison of the six indicators in 15 sets. -e
experimenters were allowed to weigh in and select one
indicator at a time to calculate the relevance of the indicators
to the task. -e results are illustrated in Figure 6 as data
widths. Step 2: the respective indicator was scored, where the
respective indicator was divided into 5 equal intervals, the
respective in increments of 1, with 5 as the maximum. -e
mean values of the correlations between the factors in the 20
questionnaires were derived, as well as the mean value of the
respective factor score. -e mean variance was obtained as
0.9 for the mental factor, 0.592 for the physical factor, 0.943
for the time factor, 0.843 for the satisfaction factor, 1.122 for
the energy factor, and 0.81 for the frustration factor, as il-
lustrated in Figure 11.

As revealed by the statistical results, the OP factor has the
highest effect. On the basis of the above factor, the OLMP

(a) (b) (c) (d)

Figure 8: -e massage area determination process: (a) the candidate area T is determined by pointing lines; (b) the area, selection
probability, and central probability of the small area contained in area T are found; (c) the robot arm moves to the preferred point
determined by Equation (2) and initiates a query to the user; (d) a positive response is obtained from the user, which leads to the de-
termination of the massage area and the massage point.
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algorithm is slightly better than the positioning mode of the
massager. -is finding can be explained below. Since
massage chairs have a relatively fixed massage area, they are
not sufficiently flexible to target a small area in accordance
with the user’s wishes. However, the positioning of the
massage under natural pointing can be more consistent with
the psychological needs of the user, so the OLMP algorithm
can bring a higher level of satisfaction to the user. Moreover,
as depicted in the graph, the natural pointing and voice
expressions carry less load than the operating panel or the

remote control. Lastly, a weighted calculation of the six
factors gives a total load value of 1.92 for the OLMP al-
gorithm positioning and 2.00 for the massage chair posi-
tioning. In brief, the OLMP algorithm positioning has better
application prospects than the operator board positioning
and also illustrates the effectiveness of the OLMP algorithm.
Furthermore, in this study, the age-segmented statistics of
the questionnaire was analyzed, and it was found that the
OLMP algorithm positioning was much more favorably
received by the elderly than the massage chair positioning in
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Figure 10: Collection of experimental results plots for the online learning function: (a) statistical plots of the number of interactions for #1
experimenter for 10 back and lumbar massage orientations, respectively; (b) statistical plots of the number of interactions for #2 ex-
perimenter for 10 back and lumbar massage orientations, respectively; (c) change of the number of interrogative interactions required
during online learning.

Computational Intelligence and Neuroscience 11



terms of the mental factor and the self-satisfaction factor,
while the young people’s evaluation of the two methods was
mixed. As revealed by the above analysis, the OLMP algo-
rithm’s core concept can be integrated into elderly assistance
and escort robots for intelligent applications.

5. Conclusions

In this study, existing massage positioning methods are
analyzed, and the OLMP algorithm is proposed by com-
bining the concepts of natural interaction and precise po-
sitioning. -e OLMP algorithm is to essentially integrate
iterative Bayesian online learning of people’s daily massage
habits for accurate positioning of the massage area with a
small amount of interaction. As revealed by the results of the
experiments, massage positioning based on the OLMP al-
gorithm can be achieved naturally and in real time without
the need for any auxiliary tools and can reduce the memory
and operational load on people.
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