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Learning aGaussian graphical model with latent variables is ill posedwhen there is insufficient sample complexity, thus having to be
appropriately regularized. A common choice is convex ℓ1 plus nuclear norm to regularize the searching process. However, the best
estimator performance is not always achieved with these additive convex regularizations, especially when the sample complexity
is low. In this paper, we consider a concave additive regularization which does not require the strong irrepresentable condition.
We use concave regularization to correct the intrinsic estimation biases from Lasso and nuclear penalty as well. We establish the
proximity operators for our concave regularizations, respectively, which induces sparsity and low rankness. In addition, we extend
our method to also allow the decomposition of fused structure-sparsity plus low rankness, providing a powerful tool for models
with temporal information. Specifically, we develop a nontrivial modified alternating direction method of multipliers with at least
local convergence. Finally, we use both synthetic and real data to validate the excellence of our method. In the application of
reconstructing two-stage cancer networks, “the Warburg effect” can be revealed directly.

1. Introduction

Learning a graphical model from high-dimensional but par-
tial observations is ill posed, leading to infinitely numerous
solutions. A possible approach to address this underdeter-
mined problem is to impose a low complexity solution with
a low-dimensional structure (geometry), such as the sparse
vector [1], the low-rank matrix [2], and their combinations
(the sparse and low-rank decomposition) [3].

One feasible way to learn such a graphical model is to
capture any conditional independence between each pair of
the variables with a sparsity prior. Under the assumption of
multivariate normal distribution, this reconstruction can be
simplified as an inverse of the covariance matrix through a
penalized optimization plus a sparsity-induced regularization
(Gaussian graphical model) as [4]Ω̂ = arg min

Ω⪰0

Tr (𝑆Ω) − log detΩ + 𝜆 |Ω|1 , (1)

where 𝑆 is the covariance matrix of the data, Ω = 𝑆−1
represents its inverse, and 𝜆 denotes the tuning parameter for
the sparsity-induced regularization.

Unfortunately, there is the possibility that a few of the
variables are hidden or unobserved, thus requiring a latent
model. Imagine a complex network with a few latent vari-
ables, each densely interacting with multiple observed vari-
ables. Thus, the sparsity assumption will not hold because of
this latent structure (Figure 1). For instance, transcriptional
factors (proteins) which regulate RNA transcriptions are not
directly observed from whole-genome expressions (genechip
or microarray). Therefore, an additive regularization (sparse
plus low-rank recovery) has been developed to decompose
the sparse interactions among the observed variables (spar-
sity) from a few latent variables (low rankness), that is, latent
variables Gaussian graphical model (LVGGM) [5] as[Ω̂𝑋, 𝐿̂] = arg min

Ω𝑋−𝐿≻0, 𝐿⪰0

Tr (𝑆𝑋 (Ω𝑋 − 𝐿))− log det (Ω𝑋 − 𝐿) + 𝜆1 󵄨󵄨󵄨󵄨Ω𝑋󵄨󵄨󵄨󵄨1 + 𝜆2 ‖𝐿‖∗ , (2)

where 𝑆𝑋 is the covariance matrix of the observed data, Ω𝑋
is the inverse of 𝑆, and Ω𝑋 − 𝐿 is the surl component of Ω𝑋,
corresponding to the latent variables 𝐿 with low rank. 𝜆1 and𝜆2 are the tuning parameters for sparsity and low rankness,
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Figure 1: A network with a few latent variables. The edges between
a pair of nodes represent that the two nodes are independent
condition on remaining network.

respectively. The details of (1) and (2) will be depicted in
Section 2.

An ultimate approach for such a sparse and low-rank
recovery would be ℓ0 (base pursuit) plus the selection of exact
ranks and thus a NP-hard problem [6]. A common relaxation
is the use of ℓ1 plus the nuclear norm. An alternative
relaxation is the use of concave penalties (Table 1, such as
MCP, log or exponential type penalty, and SCAD), which
have been verified to be very effective including biomolecular
network reconstruction and image denoising [7, 8]. However,
this concave approach so far has only been applied in sparse
estimation problems.

The overall goal of this paper is therefore to develop a
computational framework for a concave regularization with
additive sparse and low-rank constraints [9] because of our
desire to encode latent variables in a Gaussian graphical
model but with insufficient samples, a very important issue
in gene interaction network with latent regulatory factors.
Below we want to justify why we chose a concave approach.

We chose an additive concave regularization because
it does not require the strong irrepresentable condition,
particularly when sample complexities are not sufficient [10].
This irrepresentable condition is highly relevant for biological
observations (𝑝 ≫ 𝑛 and often with very limited 𝑛). In
contrast, a strong irrepresentable condition is necessary for
Lasso in order for it to be selection consistent (requiringmore
sample complexities).

We chose a concave regularization also because of its
parameter-estimation consistency, able to correct the intrin-
sic estimation biases from Lasso [11]. Here the bias is defined
as the inevitable shrinkage introduced by Lasso, linearly
expanded along with the tuning parameter 𝜆. This bias issue
has been noted during a regression setting [12] and a sparse
precision matrix estimation [7].

Finally, we chose a concave regularization because an
error bound has already been established for sparse least
square problems [10]. C.-H. Zhang and T. Zhang established
a bound by imposing an appropriate ℓ2 regularity condition
such that a family of column-normalized matrices can guar-
antee a desirable estimation under an appropriate sparsity
assumption [10], leading to the error bound that is no worse
than Lasso. This general result holds for the entire concave
regularization family including the bridge penalties (ℓ𝑞, 𝑞 <1). Note that both of our regularizations belong to the family
of bridge penalties.

As aforementioned we have intentionally selected a reg-
ularization scheme from the general concave regulariza-
tion family because of its established theoretical supremacy
(improve the variable selection accuracy and gain the oracle
properties by reducing the bias of Lasso) [12, 13]. Our moti-
vation is to provide the community with at least a compu-
tational alternative when some additive concave penalties
are critically needed for some niches of timely applications
(really demanding the oracle property), particularly when
observations are limited (such as gene expression arrays).

Overall, the first contribution of our effort is having
provided a novel bridge-nuclear penalty to induce a low-
rank structure as well as a bridge-fused penalty to induce
a fused-structural sparsity [14]. Note that we have explicitly
derived the proximity operators [15] for these penalties (con-
cave), respectively, an essential and important step towards a
gradient-based optimization [16].The structural sparsity here
is used to join multiple graphical models to compare their
differences (evolution of network structures, different stages
and types of tumorigenesis, and other network comparison
problems).

Our second contribution is to provide a modified alter-
native direction multiplier method (modified ADMM) [17]
to numerically optimize these concave estimators (via their
proximity operators), leading to at least some local solutions.
We chose ADMM as the optimization method because we
can prove its local convergence. We note the convergence of
ADMMwhen applied to convex LVGGM as has been proved
by [18].

Our third contribution is having provided a vigorous
proof for the local convergence of this ADMM based on
a framework for analyzing linear constrained optimization
algorithms [19]. We use variational inequality to derive the
contraction property in each iteration, which guarantees the
monotonic convergence to a stationary point. Our experi-
ments using both synthetic and real data indicated better
performances compared to the classical convex regulariza-
tions. Overall we have developed an unified computational
approach for additive concave regularization.

2. Latent Gaussian Graphical Model with
Additive Concave Regularization

2.1. Notation. We defined our notations as follows. For 𝑛-
dimensional vector 𝑥 ∈ R𝑛, for 𝑞 > 0, we define the ℓ𝑞
norm ‖𝑥‖𝑞 = (∑𝑛𝑖=1 |𝑥𝑖|𝑞)1/𝑞. Here we note the ℓ𝑞 norm is
a quasinorm for 0 < 𝑞 < 1. 𝐼𝑝 ∈ R𝑝×𝑝 represents the



Computational and Mathematical Methods in Medicine 3

Table 1: Examples of concave penalties 𝑅(𝑡).
Penalty 𝑅(𝑡) 𝑑𝑑𝑡𝑅(𝑡)ℓ0 𝐼 (|𝑡| > 0) None
Bridge (0 < 𝛼 < 1) |𝑡|𝛼 𝛼 |𝑡|𝛼−1 ⋅ sign(𝑡)
Capped-ℓ1 min(𝛾2 , |𝑡|) 𝐼 (|𝑡| ⩽ 𝛾2) ⋅ sign(𝑡)
MCP ∫|𝑡|

0

(1 − 𝑥𝛾)+ 𝑑𝑥 (1 − |𝑡|𝛾 )+ ⋅ sign(𝑡)
SCAD ∫|𝑡|

0

1 ∧ (1 − 𝑥 − 1𝛾 − 1)+ 𝑑𝑥 1 ∧ (1 − |𝑡| − 1𝛾 − 1 )+ ⋅ sign(𝑡)
Log-type penalty 1

log (𝛾 + 1) log (𝛾 |𝑡| + 1) 1
log (𝛾 + 1) 𝛾𝛾 |𝑡| + 1

Exponential-type penalty 11 − exp (−𝛾) (1 − exp (−𝛾 |𝑡|)) 𝛾1 − exp (−𝛾) exp (−𝛾 |𝑡|)
We note 𝐼(⋅) is a {0, 1} value indicator function.

identity matrix. For rectangular matrices 𝑀, 𝑁 in R𝑝×𝑞,
the spectral norm ‖𝑀‖ is the largest singular value, ‖𝑀‖ =
sup𝑥∈R𝑞(‖𝑀𝑥‖/‖𝑥‖), and the nuclear norm ‖𝑀‖∗ is the sum
of the singular values. The Frobenius norm ‖𝑀‖𝐹 is the 𝑙2
norm of the singular values; ‖𝑀‖𝐹 = (Tr(𝑀𝑇𝑀))1/2. The𝑙∞ norm is defined by ‖𝑀‖∞ = max𝑖,𝑗𝑀𝑖𝑗. The Hadamard
product of𝑀 ∘ 𝑁 is defined as [𝑀 ∘ 𝑁]𝑖𝑗 = [𝑀]𝑖𝑗[𝑁]𝑖𝑗. The
function sign(𝑥) extracts the sign of a real number 𝑥.
2.2. Gaussian Graphical Model with Concave Regularization.
In this section, we briefly review the related works on Gaus-
sian graphical model (GGM) and latent variable Gaussian
graphical model (LVGGM).

A GGM also known as a Gaussian-Markov random field-
based method is defined with respect to a graph 𝐺(𝑉, 𝐸). The
set of nodes 𝑉 consists of 𝑝 individual variables (features)
with 𝑛 observations 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑝)󸀠 ∈ R𝑝×𝑛 under
the multivariate normal distributionN(𝜇, Σ). The edges rep-
resent the conditional independencies among the variables,
where the edges 𝑒𝑖𝑗 ∉ 𝐸, if and only if 𝑥𝑖 and 𝑥𝑗 are
independent, conditioned on the remaining variables. With
the Gaussian assumption, this conditional independence
for any pairs of nodes 𝑥𝑖 and 𝑥𝑗 is equivalent to their
partial correlation 𝜌𝑖𝑗 being zero, so that 𝑒𝑖𝑗 ∉ 𝐸 ⇔𝜌𝑖𝑗 = Σ−1𝑖𝑗 /√Σ−1𝑖𝑖 Σ−1𝑗𝑗 = 0. It is important to note that
such an equivalence requires that the random variables 𝑋
be sampled from the families of distributions characterized
with a semigroup property, including multivariate Gaussian,
elliptical, multivariate hypergeometric, multivariate negative
hypergeometric, multinomial, and Dirichlet distributions
[20].

Therefore, the GGM can be learned by estimating its
precision matrix, the inverse of the covariance matrix,
in which each off-diagonal element represents its condi-
tional independence. This estimation can be formulated as
a sparsity-regularized optimization problem (1) with the
sparsity assumption about the network structure. Note that
there are a number of alternatives to formulate this sparsity-
induced regularization. For instances, convex regularizations

with the group 𝑙2 norm have been used to estimate the pre-
cision matrix [4, 21]. These regularization schemes have been
extensively discussed,whose bounds have been estimated and
even analytically proved [22, 23].

A more recent effort to achieve better statistical proper-
ties, including the oracle properties and unbiased estimation,
has been developed by Fan et al., using a folder concave-based
regularization [7] as follows:Ω̂ = arg min

Ω⪰0

Tr (𝑆Ω) − log detΩ
+ 𝜆 𝑝∑

𝑖=1

𝑝∑
𝑗=1

SCAD𝜆,𝑎 (󵄨󵄨󵄨󵄨󵄨𝜔𝑖𝑗󵄨󵄨󵄨󵄨󵄨) . (3)

The SCAD is symmetric and a quadratic spline on [0,∞),
whose first-order derivative is given by SCAD󸀠𝜆,𝑎(𝑥) =𝜆{𝐼(|𝑥| ⩽ 𝜆) + ((𝑎𝜆 − |𝑥|)+/(𝑎 − 1)𝜆)𝐼(|𝑥| > 𝜆)} with a
suggested value of 𝑎 = 3.7. Model (3) has some admirable
performances in practice but still a few limitations. At least
it is difficult to be extended to include possible complex and
additive regularization schemes, such as the combination of
sparsity with low rankness or structural sparsity. Still the
most challenging is nonconvex nature for all concave-based
approaches, possibly leading to many local solutions. Thus,
one of the goals of this paper is to extend Fan et al.’s work to
more complex and even additive regularization schemes.

2.3. Latent Gaussian Graphical Model with Additive Concave
Regularization. AGaussian graphical model can be incorpo-
rated with a few hidden variables (such as the latent Gaussian
Graphical Model). Let𝑋 ∈R𝑝 be the observed variables and𝑍 ∈ R𝑟 (𝑟 ≪ 𝑝) the latent ones. Here typically we assume
the number for those latent variables is small (low rankness).
Thus, (𝑋, 𝑍) can be jointly sampled from a multivariate
normal distribution. Suppose its covariancematrix isΣ(𝑋,𝑍) =( Σ𝑋 Σ𝑋𝑍
Σ𝑍𝑋 Σ𝑍

) and its corresponding precision matrix is Ω(𝑋,𝑍) =( Ω𝑋 Ω𝑋𝑍
Ω𝑍𝑋 Ω𝑍

). Hence Σ−1𝑋 = Ω𝑋 − Ω𝑋𝑍Ω−1𝑍 Ω𝑍𝑋 is called
the Surl component of Ω𝑋, where Ω𝑋 is a sparse matrix
and Ω𝑋𝑍Ω−1𝑍 Ω𝑍𝑋 is denoted as 𝐿, being a low-rank matrix
due to 𝑟 ≪ 𝑝. Chandrasekaran introduced a regularized
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optimization with multiple additive terms, named as the
latent variable graphical model (2) [5], and the error bound
of LVGGM is proofed by Meng et al. [24]. Here 𝜆1 and 𝜆2 are
two tuning parameters, which are often hard to choose. An
empirical way is to use certain information criteria or conduct𝐾-fold cross-validations.

We propose a novel bridge-nuclear penalty to induce a
low-rank structure as follows.

Definition 1. For a matrix 𝑀 ∈ R𝑛×𝑛, suppose its singular
value decomposition is 𝑀 = 𝑈Σ𝑉󸀠, with 𝑈, Σ, 𝑉 ∈ R𝑛×𝑛

the 1/2 quasinuclear norm of 𝑀 being defined as ‖𝑀‖♣ =(∑𝑛𝑖=1(𝜎𝑖)1/2)2.
By employing the 1/2 quasinorm (bridge penalty) plus

the 1/2 quasinuclear norm (bridge-nuclear penalty), we
formulate our latent Gaussian graphical model with additive
concave penalties as[Ω̂𝑋, 𝐿̂] = arg min

Ω𝑋−𝐿≻0, 𝐿⪰0

Tr (𝑆 (Ω𝑋 − 𝐿))− log det (Ω𝑋 − 𝐿) + 𝜆1 󵄩󵄩󵄩󵄩Ω𝑋󵄩󵄩󵄩󵄩1/21/2+ 𝜆2 ‖𝐿‖1/2♣ . (4)

Note again, our concave LVGGM does not need strong
irrepresentable condition and thus can be applied to low
sample complexity.

2.4. Joint Multiple Latent Gaussian Graphical Model with
Additive Concave Regularization. To demonstrate the appli-
cability of our additive approach, we purposely include
a fused-structural sparsity, being used together with the
aforementioned sparsity and low rankness. Here a total of
three penalties are additively combined, potentially useful to
model a network comparison problem with latent variables
(joint latent variable Gaussian Graphical Model, JLVGGM).
The evolution of biological and some other networks (such
as social network) often has some invariant portion over
the progression, which can thus be captured by our fused
regularization over 𝑘 individual snapshots. We consider this
a potentially very useful approach to model a regulatory
network in biology, since many gene interactions will remain
invariantly imposed by their functional constraints (house-
keeping, etc.).

The most commonly used constraint so far assumes that
network evolution is gradual and local, representing mainly
sporadic and minor structural changes, with most of the

systems remaining intact. For instance, Guo et al. developed
a joint Gaussian graphical model to learn multiple snap-
shots, assuming their biological networks being only partially
changed [25]. Recently, Danaher et al. [26] used a fused-lasso
scheme to model multiple stages of tumorigenesis.

As an extension to Danaher’s fused graphical model
with latent variables, also as an example to demonstrate our
additive strategy with a structural sparsity, we formulate a
joint model with latent variables. Suppose 𝑋1 ∈ R𝑝×𝑛1 , 𝑋2 ∈
R𝑝×𝑛2 , . . . , 𝑋𝑘 ∈ R𝑝×𝑛𝑘 are independent and identically
distributed from N(𝜇𝑘, Σ𝑘). We formulate our joint model
with latent variables as[Ω̂𝑋𝑖 , 𝐿̂𝑖] = arg min

Ω𝑋𝑖−𝐿 𝑖≻0, 𝐿 𝑖⪰0

𝑘∑
𝑖=1

{Tr (𝑆𝑖 (Ω𝑋𝑖 − 𝐿 𝑖))
− log det (Ω𝑋𝑖 − 𝐿 𝑖)} + 𝑘∑

𝑖=1

{𝜆1𝑖 󵄩󵄩󵄩󵄩󵄩Ω𝑋𝑖󵄩󵄩󵄩󵄩󵄩1/21/2
+ 𝜆2𝑖 󵄩󵄩󵄩󵄩𝐿 𝑖󵄩󵄩󵄩󵄩1/2♣ } + 𝑘−1∑

𝑖<𝑗󸀠

𝜆3𝑖 󵄩󵄩󵄩󵄩󵄩󵄩Ω𝑋𝑖 − Ω𝑋𝑗󵄩󵄩󵄩󵄩󵄩󵄩1/21/2 ,
(5)

where 𝜆3𝑖, 𝑖 = 1, 2, . . . , 𝑘 − 1 represent the similarity
measure among the temporal networks according to the
tuning parameters.

3. Modified Alternating Direction
Method of Multipliers

In this section, we want to establish the algorithm and its
convergence of the modified alternating direction method of
multipliers (ADMM). We applied this numerical method to
our graphical model with latent variables. First we derived
the proximity operators individually for ℓ1/2, the 1/2 quasin-
uclear norm ‖⋅‖♣ (bridge-nuclear penalty), and the fused ℓ1/2.
With these proximity operators, we design a gradient-based
but nonsmooth optimization based on alternating direction
method of multipliers.

3.1. Proximity Operator

Theorem 2. The proximity operator of ‖𝑥‖1/2
1/2

is the global
solution for the following problem:

Prox
𝜆‖𝑥‖1/2
1/2

(𝑦) = arg min
𝑥

{12 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩22 + 𝜆 ‖𝑥‖1/21/2} . (6)

One has

Prox
𝜆‖𝑥‖1/2
1/2

(𝑦) = {{{{{{{{{{{{{{{{{{{
23𝑦(1 + cos(2𝜋3 − 23 arccos(𝜆4 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨3 )−3/2))) , 𝑦 > 32 3√𝜆20, 󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨 ⩽ 32 3√𝜆223𝑦(1 + cos(2𝜋3 − 23 arccos(𝜆4 (󵄨󵄨󵄨󵄨𝑦󵄨󵄨󵄨󵄨3 )−3/2))) , 𝑦 < −32 3√𝜆2.

(7)
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Proof. Since the subdifferential of a nonconvex function is
not well defined, we resolve the optimization problem (6) as
follows.

If Prox𝜆‖𝑥‖1/2
1/2
(𝑦) = 0 and 𝑥 > 0, it implies that (1/2)𝑥2 −𝑥𝑦 + 𝜆√𝑥 ⩾ 0, which yields 𝑦 ⩽ 𝑥/2 + 𝜆/√𝑥 ⩽(3/2) 3√𝜆2. By symmetry, we have 𝑦 ⩾ −(3/2) 3√𝜆2 in the case

Prox𝜆‖𝑥‖1/2
1/2
(𝑦) = 0 and 𝑥 < 0.

Otherwise, when Prox𝜆‖𝑥‖1/2
1/2
(𝑦) ̸= 0, the global solution

of (6) is one of the three roots for the following algebraic
equation: (1/√|𝑥|)(√|𝑥|3 −𝑦√|𝑥| + 𝜆(sign(𝑥)/2)) = 0, which
is derived by taking the derivative on both sides of (6). With
similar calculations like [27], the equation√|𝑥|3 − 𝑦√|𝑥| + 𝜆 sign (𝑥)2 = 0 (8)

has three roots in a compact trigonometric form as

√|𝑥| = 2√𝑦3 cos
𝜋 + 2𝑘𝜋 − arccos ((𝜆/4) (𝑦/3)−3/2)3 ,𝑘 = 0, 1, 2, (9)

under the conditions 𝑥 > 0 and 𝑦 > (3/2) 3√𝜆2/2. It is
validated that (6) will reach a global minimum, when 𝑘 = 0.
Since 𝑥 and 𝑦 are either positive or negative simultaneously,
we have

√|𝑥| = 2√−𝑦3 cos
𝜋 − arccos ((𝜆/4) (−𝑦/3)−3/2)3 ,

𝑦 > 32 3√𝜆22 . (10)

Similarly we have

√|𝑥| = 2√−𝑦3 cos
𝜋 − arccos ((𝜆/4) (−𝑦/3)−3/2)3 ,

𝑦 < −32 3√𝜆22 . (11)

By taking a square root on both sides of (10) and (11) within
the domain [(−∞, −(3/2) 3√𝜆2) ∩ (−∞, −(3/2) 3√𝜆2/2)] ∪[((3/2) 3√𝜆2, +∞) ∩ ((3/2) 3√𝜆2/2, +∞)], the statement in
Theorem 2 is proven.

Theorem 3. Assuming𝑋,𝑌 ∈R𝑛×𝑛, the proximity operator of
the 1/2 quasinuclear norm is given as the global minimum of

Prox
𝜆‖𝑋‖1/2♣ (𝑌) = arg min

𝑋

{12 ‖𝑋 − 𝑌‖2𝐹 + 𝜆 ‖𝑋‖1/2♣ } , (12)

where 𝑑(𝑋), 𝑑(𝑌) ∈ R𝑛×1 represent the single value of 𝑋
and 𝑌, respectively, in nonincreasing order. 𝑈𝑌 and 𝑉𝑌 are
the left and right orthogonal matrices with the singular value
decomposition of 𝑌 = 𝑈𝑌Diag(𝑑(𝑌))𝑉󸀠𝑌. We have

Prox
𝜆‖𝑋‖1/2♣ (𝑌) = 𝑈𝑌Diag ([𝑡1, 𝑡2, . . . , 𝑡𝑛]) 𝑉󸀠𝑌, (13)

with 𝑡𝑖 = (2/3)𝜎𝑖(1 + cos(2𝜋/3 − (2/3) arccos((𝜆/4)(|𝜎𝑖|/3)−3/2))), if 𝜎𝑖 > (3/2) 3√𝜆2 and 𝑡𝑖 = 0, for 𝜎𝑖 ⩽ (3/2) 3√𝜆2 else.
Proof. Through vonNeumann’s trace inequality [28], we have

‖𝑋 − 𝑌‖2𝐹 = Tr (𝑋 − 𝑌) (𝑋 − 𝑌)󸀠= Tr (𝑋𝑋󸀠) − 2Tr (𝑋𝑌󸀠) + Tr (𝑌𝑌󸀠)= 𝑛∑
𝑖=1

𝑑2𝑖 (𝑋) − 2Tr (𝑋𝑌󸀠) + 𝑛∑
𝑖=1

𝑑2𝑖 (𝑌)
⩾ 𝑛∑
𝑖=1

(𝑑2𝑖 (𝑋) − 2𝑑𝑖 (𝑋) 𝑑𝑖 (𝑌) + 𝑑2𝑖 (𝑌)) .
(14)

The equality holds if and only if 𝑌 = 𝑈𝑌Diag(𝑑(𝑋))𝑉𝑇𝑌 . Then
the optimization is reduced to

arg min
𝑑𝑖(𝑋)>0

12𝑑𝑖 (𝑋)2 − 𝑑𝑖 (𝑋) 𝑑𝑖 (𝑌) + 12𝑑𝑖 (𝑌)2+ 𝜆√𝑑𝑖 (𝑋). (15)

We note here (15) is just a special case of (6). This completes
the proof of Theorem 3. We note this regularization would
induce a low-rank approximation of 𝑌 due to the threshold
of 𝑡𝑖.
Theorem 4. The proximity operator of fused ℓ1/2 regulariza-
tion is given as the global minimum of

Prox
𝜆‖𝑋(2)𝑖𝑗 −𝑋

(1)
𝑖𝑗 ‖
1/2
1/2

(𝐴(1)𝑖𝑗 , 𝐴(2)𝑖𝑗 )
= arg min

𝑋(1)𝑖𝑗 ,𝑋
(2)
𝑖𝑗

12 ∑
𝑘=1,2

󵄩󵄩󵄩󵄩󵄩𝑋(𝑘)𝑖𝑗 − 𝐴(𝑘)𝑖𝑗 󵄩󵄩󵄩󵄩󵄩2𝐹
+ 𝜆 󵄩󵄩󵄩󵄩󵄩𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 󵄩󵄩󵄩󵄩󵄩1/21/2 .

(16)

One has
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Prox
𝜆‖𝑋(2)𝑖𝑗 −𝑋

(1)
𝑖𝑗 ‖
1/2
1/2

(𝐴(1)𝑖𝑗 , 𝐴(2)𝑖𝑗 ) =
{{{{{{{{{{{{{{{{{{{{{{{
(𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 − 𝐾𝑖𝑗2 , 𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 + 𝐾𝑖𝑗2 ) , 𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 > 32 3√𝜆2,(𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗2 , 𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗2 ) , 󵄨󵄨󵄨󵄨󵄨𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 ⩽ 32 3√𝜆2,(𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 + 𝐾𝑖𝑗2 , 𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 − 𝐾𝑖𝑗2 ) , 𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 < −32 3√𝜆2,

(17)

with𝐾𝑖𝑗 = (2/3)(𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 )(1 + cos(2𝜋/3 − (2/3) arccos((𝜆/4)(|𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 |/3)−3/2))).
Proof. If𝑋(1)𝑖𝑗 = 𝑋(2)𝑖𝑗 , this yields𝑋(1)𝑖𝑗 = 𝑋(2)𝑖𝑗 = (𝐴(1)𝑖𝑗 +𝐴(2)𝑖𝑗 )/2.
If𝑋(1)𝑖𝑗 < 𝑋(2)𝑖𝑗 ; by taking derivation, we have

𝑋(1)𝑖𝑗 − 𝐴(1)𝑖𝑗 − 𝜆 sign (𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 )2√󵄨󵄨󵄨󵄨󵄨𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 = 0,
𝑋(2)𝑖𝑗 − 𝐴(2)𝑖𝑗 + 𝜆 sign (𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 )2√󵄨󵄨󵄨󵄨󵄨𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 󵄨󵄨󵄨󵄨󵄨 = 0. (18)

Denoting𝑋(2)𝑖𝑗 − 𝑋(1)𝑖𝑗 = 𝐾𝑖𝑗 > 0, we have
𝐾𝑖𝑗 + (𝐴(1)𝑖𝑗 − 𝐴(2)𝑖𝑗 ) + 𝜆 sign (𝐾𝑖𝑗)√󵄨󵄨󵄨󵄨󵄨𝐾𝑖𝑗󵄨󵄨󵄨󵄨󵄨 = 0. (19)

We note here that (19) is just the same form as (8).
Therefore, we have 𝑋(2)𝑖𝑗 = (𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 )/2 + 𝐾𝑖𝑗/2 and𝑋(1)𝑖𝑗 = (𝐴(1)𝑖𝑗 + 𝐴(2)𝑖𝑗 )/2 − 𝐾𝑖𝑗/2. By taking a similar calculate

when𝑋(1)𝑖𝑗 > 𝑋(2)𝑖𝑗 , we obtain our proposition.

4. Modified Alternating Direction
Method of Multipliers

In this section, we provide an algorithm to approach the local
solution of additive concave regularization problem (2). The
Lagrangian of (2) is

L = Tr (𝑆𝑋) − log det𝑋 − ⟨𝑌, (Ω𝑋 − 𝐿 − 𝑋)⟩+ 𝜆1 󵄩󵄩󵄩󵄩Ω𝑋󵄩󵄩󵄩󵄩1/21/2 + 𝜆2 ‖𝐿‖1/2♣ + 𝜌2 󵄩󵄩󵄩󵄩Ω𝑋 − 𝐿 − 𝑋󵄩󵄩󵄩󵄩2𝐹 , (20)

where 𝑌 ∈ R𝑝×𝑝 represents the corresponding dual variable.
We propose amodifiedADMMdiscretization to optimize the
Lagrange as Algorithm 5 with at least local convergence.

Before we prove the convergence result, we need to prove
the following contraction property which is the key for the
proof of the convergence of general ADMM [29].

Algorithm 5 (modified ADMM).

(1) Initialize𝑋,Ω𝑋, 𝐿, 𝑌 parameters 𝜌, 𝜆1, 𝜆2, 𝛼1 = 1
for 𝑖 = 1, 2, . . . , 𝑘 until convergence
(2) 𝜔(𝑘) = (𝑋(𝑘), Ω(𝑘)𝑋 , 𝐿(𝑘), 𝑌(𝑘))𝑇
(3)

(a) 𝑋̂(𝑘+1) = arg min𝑋≻0Tr(𝑆𝑋) − log det𝑋 −⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿(𝑘) −𝑋⟩ + (𝜌/2)‖Ω(𝑘)𝑋 − 𝐿(𝑘) −𝑋‖2𝐹;
(b) Ω̂(𝑘+1)𝑋 = arg minΩ𝑋𝜆1‖Ω𝑋‖1/21/2 − ⟨𝑌(𝑘), Ω𝑋 −𝐿(𝑘) − 𝑋(𝑘)⟩ + (𝜌/2)‖Ω𝑋 − 𝐿(𝑘) − 𝑋(𝑘)‖2𝐹;
(c) 𝐿̂(𝑘+1) = arg min𝐿≻0𝜆2‖𝐿‖1/2♣ − ⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿 −𝑋(𝑘)⟩ + (𝜌/2)‖Ω(𝑘)𝑋 − 𝐿 − 𝑋(𝑘)‖2𝐹;

(4) 𝑌̂(𝑘+1) = 𝑌(𝑘) − 𝜌(Ω̂(𝑘+1)𝑋 − 𝐿̂(𝑘+1) − 𝑋̂(𝑘+1)), 𝜔̂ =(𝑋̂(𝑘+1), Ω̂(𝑘+1)𝑋 , 𝐿̂(𝑘+1), 𝑌̂(𝑘+1))𝑇
(5) 𝛼𝑘+1 = (1 + √1 + 4𝛼2𝑘)/2 and 𝛾 = (𝛼𝑘 − 1)/𝛼𝑘+1.
(6) 𝜔(𝑘+1) = 𝜔(𝑘) − 𝛾(𝜔(𝑘) − 𝜔̂).
end

Theorem 6. Assume that 𝜔∗ = (𝑋∗, Ω∗𝑋, 𝐿∗, 𝑌∗)𝑇 is a global
optimal solution of (2) and 𝜔(𝑘) = (𝑋(𝑘), Ω(𝑘)𝑋 , 𝐿(𝑘), 𝑌(𝑘))𝑇
is optimized by Algorithm 5. Thus the contradicted property
holds; that is,󵄩󵄩󵄩󵄩󵄩𝜔(𝑘+1) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹 ⩽ 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹− (𝛾 − 2 + √3)𝛾 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔(𝑘+1)󵄩󵄩󵄩󵄩󵄩2𝐹 . (21)
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Proof. For any𝑋,Ω𝑋, 𝐿, 𝑌 ∈R𝑝×𝑝, the optimality conditions
(20) are

Tr 𝑆𝑋 − Tr 𝑆𝑋̂(𝑘+1) − log det𝑋 + log det 𝑋̂(𝑘+1)− ⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿(𝑘) − 𝑋⟩+ ⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿(𝑘) − 𝑋̂(𝑘+1)⟩− 𝜌⟨𝑋 − 𝑋̂(𝑘+1), (Ω(𝑘) − 𝐿(𝑘) − 𝑋̂(𝑘+1))⟩ ⩾ 0,𝜆1 󵄩󵄩󵄩󵄩Ω𝑋󵄩󵄩󵄩󵄩1/21/2 − 𝜆1 󵄩󵄩󵄩󵄩󵄩󵄩Ω̂(𝑘+1)𝑋

󵄩󵄩󵄩󵄩󵄩󵄩1/21/2− ⟨𝑌(𝑘), Ω𝑋 − 𝐿(𝑘) − 𝑋(𝑘)⟩+ ⟨𝑌(𝑘), Ω̂(𝑘+1)𝑋 − 𝐿(𝑘) − 𝑋(𝑘)⟩+ 𝜌⟨Ω𝑋 − Ω̂(𝑘+1)𝑋 , (Ω̂(𝑘+1)𝑋 − 𝐿(𝑘) − 𝑋(𝑘))⟩ ⩾ 0,𝜆1 ‖𝐿‖1/21/2 − 𝜆1 󵄩󵄩󵄩󵄩󵄩󵄩𝐿̂(𝑘+1)󵄩󵄩󵄩󵄩󵄩󵄩1/21/2 − ⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿 − 𝑋(𝑘)⟩+ ⟨𝑌(𝑘), Ω(𝑘)𝑋 − 𝐿̂(𝑘+1) − 𝑋(𝑘)⟩− 𝜌⟨𝐿 − 𝐿̂(𝑘+1), (Ω(𝑘) − 𝐿̂(𝑘+1) − 𝑋(𝑘))⟩ ⩾ 0.

(22)

By denoting 𝑇 = 𝜌(Ω̂(𝑘+1) − Ω(𝑘)) − 𝜌(𝐿̂(𝑘+1) − 𝐿(𝑘)) −𝜌(𝑋̂(𝑘+1) − 𝑋(𝑘)),
𝐹 (𝜔̂) =((

(
𝑌̂(𝑘+1)−𝑌̂(𝑘+1)𝑌̂(𝑘+1)𝜌2 (Ω̂(𝑘+1)𝑋 − 𝑋̂(𝑘+1) − 𝐿̂(𝑘+1))

))
)

,

O1 =((
(

𝜌(𝑋̂(𝑘+1) − 𝑋(𝑘))𝜌 (Ω̂(𝑘+1)𝑋 − Ω(𝑘))𝜌 (𝐿̂(𝑘+1) − 𝐿(𝑘))𝜌 (𝑌̂(𝑘+1) − 𝑌(𝑘))
))
)

+(−𝑇𝑇−𝑇0 ),
(23)

we have

Tr (𝑆𝑋) − Tr (𝑆𝑋̂(𝑘+1)) + 𝜆1 |Ω|1/21/2 − 𝜆1 󵄨󵄨󵄨󵄨󵄨󵄨Ω̂(𝑘+1)𝑋

󵄨󵄨󵄨󵄨󵄨󵄨1/21/2+ 𝜆2 |𝐿|1/21/2 − 𝜆2 󵄨󵄨󵄨󵄨󵄨󵄨𝐿̂(𝑘+1)󵄨󵄨󵄨󵄨󵄨󵄨1/21/2+ ⟨𝜔 − 𝜔̂, 𝐹 (𝜔̂) + O1⟩ ⩾ 0.
(24)

Without loss of generality, we let 𝜔 = (𝑋,Ω𝑋, 𝐿, 𝑌)𝑇 = 𝜔∗,
which yields 𝜌⟨𝜔̂ − 𝜔∗, 𝜔(𝑘) − 𝜔̂⟩ ⩾ ⟨𝜔∗ − 𝜔̂, 𝐹(𝜔̂) + O1⟩.

Using the optimal conditional (variational inequalities) [30],
it follows that ⟨𝜔∗ − 𝜔̂, 𝐹 (𝜔∗)⟩ ⩾ 0. (25)

Since 𝐹(𝜔) is monotone, we have ⟨𝜔∗ − 𝜔̂, 𝐹(𝜔̂)⟩ ⩾ ⟨𝜔∗ −𝜔̂, 𝐹(𝜔∗)⟩.Therefore, we have 𝜌⟨𝜔(𝑘) − 𝜔∗, 𝜔(𝑘) − 𝜔̂⟩ ⩾ 𝜌‖𝜔̂ −𝜔(𝑘)‖2𝐹 + 𝛿, with 𝛿 = ⟨𝑌(𝑘) − 𝑌̂(𝑘+1), 𝜌(𝑋(𝑘) − 𝑋̂(𝑘+1)) + 𝜌(𝐿(𝑘) −𝐿̂(𝑘+1)) − 𝜌(Ω(𝑘)𝑋 − Ω̂(𝑘+1)𝑋 )⟩. We denote

𝐻 =((((
(

𝐼𝑝 0 0 12𝐼𝑝0 −𝐼𝑝 0 12𝐼𝑝0 0 𝐼𝑝 12𝐼𝑝12𝐼𝑝 12𝐼𝑝 12𝐼𝑝 12𝐼𝑝
))))
)

; (26)

thus the smallest eigenvalue is (2 − √3)/2. We obtain

𝜌 󵄩󵄩󵄩󵄩󵄩𝜔̂ − 𝜔(𝑘)󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝛿 = 𝜌⟨(𝑋(𝑘) − 𝑋(𝑘+1)Ω(𝑘)𝑋 − Ω(𝑘+1)𝑋𝐿(𝑘) − 𝐿(𝑘+1)𝑌(𝑘) − 𝑌(𝑘+1)),
𝐻(𝑋(𝑘) − 𝑋(𝑘+1)Ω(𝑘)𝑋 − Ω(𝑘+1)𝑋𝐿(𝑘) − 𝐿(𝑘+1)𝑌(𝑘) − 𝑌(𝑘+1))⟩= Tr((𝜔(𝑘) − 𝜔̂)𝑇
⋅ 𝐻 (𝜔(𝑘) − 𝜔̂)) ⩾ 2 − √32 𝜌 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔̂󵄩󵄩󵄩󵄩󵄩2𝐹 .

(27)

In summary, we have󵄩󵄩󵄩󵄩󵄩𝜔̂(𝑘+1) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹 = 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝛾 (𝜔(𝑘) − 𝜔̂) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹= 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹 + 𝛾2 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔̂󵄩󵄩󵄩󵄩󵄩2𝐹− 2𝛾 ⟨(𝜔(𝑘) − 𝜔∗) , (𝜔(𝑘) − 𝜔̂)⟩⩽ 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹− 𝛾 (𝛾 − 2 + √3) 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔̂󵄩󵄩󵄩󵄩󵄩2𝐹⩽ 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔∗󵄩󵄩󵄩󵄩󵄩2𝐹− (𝛾 − 2 + √3)𝛾 󵄩󵄩󵄩󵄩󵄩𝜔(𝑘) − 𝜔(𝑘+1)󵄩󵄩󵄩󵄩󵄩2𝐹 .
(28)

Theorem 7. The sequence 𝜔(𝑘+1) produced by Algorithm 5
from a given initial value converges monotonically to an
optimal solution to problem.
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Proof. FromTheorem 6, we can easily get the following:

(1) ‖𝜔(𝑘) − 𝜔(𝑘+1)‖𝐹 → 0.
(2) {𝜔(𝑘)} lies in a compact region.

(3) ‖𝜔(𝑘)−𝜔∗‖𝐹 is monotonically nonincreasing and thus
converging.

It follows that𝜔(𝑘+1) is a Cauchy sequence and thus has a limit
point 𝜔. Therefore we have 𝜔(𝑘+1) converging monotonically
to 𝜔.
5. Numerical Evaluation

In this paper, we focus on the effective local convergence of
ill-posed graphical model problems with additive concave
regularization. The specific aim is to develop an additive
regularization combining both sparsity and low rankness,
essential for our latent graphical model. Again we chose a
concave approach (instead of the popular convex methods)
because of its presumptive advantage (the oracle property)
especially when the data complexity is not sufficient (𝑝 ≫𝑛). It is thus important to first develop a robust numerical
method to at least obtain a consistent local solution. We
believe our methods are highly applicable to situations where
the number of variables far exceeds their observations (large𝑝 small 𝑛 problem, typical for most biological observations).

Below we use both artificial and real data to establish
the effectiveness of our methods. We demonstrate that our
nonconvex regularization can reduce the biases, as illustrated
in its applications to the selected biological and financial
problems. In addition, we assess the performance of our
concave models comparing with the corresponding convex
ones.

5.1. Artificial Data. Our concave graphicalmodel is supposed
to performbetter as an asymptotically unbiased estimator.We
generate our artificial data according to the following steps.

We generate 5%nonzero entries uniformly from a 50×50
matrix Ω̂. Each nonzero element in this Ω̂𝑖𝑗 is sampled from a
Gaussian distribution ofN(0, 𝜎2). We construct a symmetric
precision matrix as Ω = Ω̂ + Ω̂𝑇. To guarantee the positive
definiteness of this Ω, we update the matrix Ω = Ω + 1.1𝐼50
iteratively, such that all of its eigenvalues be greater than zero.
We randomly choose 45 columns and their corresponding
rows as a subblock matrix Ω𝑂 form Ω; thus the remaining
10% variables are latent. Finally, we take the inverse of the
precision matrix Σ𝑂 = Ω−1𝑂 as its original covariance matrix
to sample a Gaussian distribution.

We divide our experiments into two groups with the
increasing sample complexity: 𝑝 = (1/2)𝑁,𝑁 random sam-
ples from the multivariate Gaussian distribution N(0, 𝜎2),
with 𝜎2 = 3. Important to note is that in order to test the
effectiveness of ourmethod for an ill-posed problem (𝑝 ≫ 𝑛),
we purposely only increase the number of observations while
keeping their variances a constant.

We perform the following comparisons:

(1) convex Gaussian graphical model with latent vari-
ables (LVGGM) [5];

(2) concave Gaussian graphical model with latent vari-
ables (concave LVGGM).

We use this example to validate that our method has
better performance than the classic LVGGM. Firstly, for
parameters estimation consistence as Figure 2 shows, our
concave LVGGM estimate parameters more accurately than
the classic model in [5], even with a local solution. We want
to note that our method performs better with the larger
observed data in Figure 2(c) but is significantly superior to the
classical method with inadequate data in Figure 2(a). This is
very important with biological application usually with very
insufficient observation.

Finally, to assess the consistence of model selection for
our methods, we use the Matthews correlation coefficient
(MCC ∈ [−1, 1]) to quantify recovery merits, where

MCC= TP × TN − FP × FN√(TP + FP) (TP + FN) (TN + FP) (TN + FN) (29)

with TP, TN, FP, and FN being the numbers of true positives,
true negatives, false positives, and false negatives. The larger
the MCC is, the better the reconstruction model performs.
Figures 2(b) and 2(d), depicting LVGGM and concave
LVGGM, respectively, are both model selection consistent.

5.2. The Biomolecular Network of Medulloblastoma. To
demonstrate that our method performs consistent in both
artificial data and real application, we apply our method
to human medulloblastoma. Medulloblastoma is the most
common form of childhood brain tumors. This cancer has
at least four subgroups, including the WNT subgroups and
the sonic hedgehog (SHH), plus the subgroups 3 and 4, with
the molecular etiology remaining elusive for the latter two.
In China, patients with medulloblastomas are still largely
treated with universal and aggressive procedures, combining
radical surgery, radiation, and chemotherapy, which might
in fact fail the subgroups 3 and 4 (poor prognosis with
unknown reasons), or probably have overtreated the WNT
subgroup (more differentiated). Thus, it is important to
develop amethodology to clearly distinguish and identify the
key molecular markers and their interactions at system level,
representing each of the subgroups decisively. We hope our
results will yield a set of genes in some given structures which
can be used as the signatures (biomarkers) to guide diagnosis,
treatment, and prognosis in future.

The gene expression data are publicly available from
the National Center for Biotechnology Information (NCBI),
consisting of 73 individual cancer samples (8, 10, 16, and 39
samples for WNT, SHH, subgroup 3, and subgroup 4, resp.),
each labeled with a specific subgroup (accession number:
GDS4296) [31]. Firstly, We select 1146 genes out of 54676,
whose expressions show significantly larger variance across
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Figure 2: Simulation chains for the graphical model with latent variables.The estimation error ‖𝑆(𝑋−𝐿)−𝐼‖2 versus the rescaled sample size𝑛/(𝑠 log(𝑝) + 𝑟 log(𝑝)) ((a) and (c)), where 𝑠 is the number of nonzero entries of 𝑋 and 𝑟 is the rank of 𝐿. The MCC rate versus the rescaled
sample size ((b) and (d)). We note the sample complexity is 𝑛 = (1/2)𝑝 for (a) and (b) and 𝑛 = 𝑝 for (c) and (d).

both of the cancer samples. In order to tune our parameters
we use Bayesian information criterion (BIC):

BIC = −2 (− log det (𝑋 − 𝐿) + Tr (𝑆 (𝑋 − 𝐿)))+ 𝛾𝑘 log 𝑛 (30)

to select the tuning parameters 𝜆1, 𝜆2 with a constant
parameter 𝛾. Here 𝑘 presents the nonzeros numbers of
matrix 𝑋, while 𝑛 denotes the total sample numbers. We use
BIC because it is intrinsically incline to identify the “true”

model while being asymptotically consistent in selecting such
a model. We did consider another criterion such as Akaike
information criterion (AIC) as it tends to explain the data,
thus suffering the risk of overfitting. Since the BIC does not
have a closed form with respect to 𝜆1 and 𝜆2, we carry out a
grid-based screening (Figure 3).

As demonstrated in Figure 4(a), the famous WNT/beta-
catenin pathway is recovered, including WNT16 and XIST.
The WNT pathway is required for basic developmental
processes, such as cell-fate specification, progenitor-cell
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Figure 3: BIC scores. The BIC score for our concave LVGGM over
the rescaled sample size 𝑛/(𝑠 log(𝑝) + 𝑟 log(𝑝)). We use a grid-
based search for the local minimums for (𝜆1, 𝜆2); the parameters are(𝜆1, 𝜆2) = (0.0005, 0.001), (0.00038966, 0.001), (0.0002931, 0.001),(0.00047241, 0.001) for subgroupsWNT, SHH, 3, and 4, respectively.

proliferation, and the control of asymmetric cell division.
Identified here is the canonical pathway, which inhibits the
beta-catenin degradation complex. Our results thus strongly
support the etiological role of the canonical WNT signaling
in the pathogenesis of this subgroup of tumors [32]. As
illustrated in Figure 4(b), part of the SHH signaling pathway
is identified, including oncogene MAGEA, which is associ-
ated with shorter survival of tumor cells [33]. Since SHH
subgroup medulloblastomas develops from cerebellar gran-
ule neuron progenitors, which are supposed to guide axon
growth into muscles, it is our speculation that cells of this
subgroup of tumors might interact with muscle cells some-
time during early development. Interestingly, many modules
identified here including TAC1 and TTR,are implicated in
some sensory-related activities during early development for
subgroup 3 (Figure 4(c)). Consistent with our observations,
those sensory genes are overexpressed for this subgroup
of tumors according to the independent studies [32]. It
is clearly distinguishable from the other three, particularly
when combined with the sensory basis (see above). However,
note that the genes of subgroup 4 are more randomly
distributed than the other three, without the apparent mod-
ular structures. Interestingly, a number of important onco-
genes and tumor suppressor genes are found such as FOXG1
(Figure 4(d)).

5.3. The Structural Changes on Gene Regulatory Networks
Occurring during the Progression of Human Lung Cancers. To
indicate our concave additive regularizations can be used to
model a structured sparsity (fused sparsity). We perform the
following experiment to identify the structural changes on

gene regulatory networks occurring during the progression
of human lung cancers. The lung cancer dataset contains
22283 microarray-derived gene expression measurements
from large airway epithelial cells sampled from 97 patients
with lung cancer and 90 controls [34]. The data are publicly
available from the Gene Expression Omnibus [35]; its acces-
sion number is GDS2771.

We first selected the 36 most important biological mod-
ules (CDK4, CDK6, CDK2AP2, BCL2, XIAP, BAX, CASP3,
CASP8, CASP9, FOXA2,HNF4A, EBP,HGF,NFKB2, STAT3,
IL6, IL10, HIF1AN,MYC, GSK3B, TP53, PTEN, RB1, MDM2,
PDGFRA, SOX2, PIK3CA, FGFR1, IGF1R, EPHA2, MET,
EGFR, DDR2, KEAP1, KRAS, and AKT1) out of the whole
genome for lung cancer according to [36]. The goal of this
experiment is to find out if our method can consistently
detect key structural changes on the level of gene regulatory
networks associated with lung cancer. It is well established
that many protein-factors are directly or indirectly engaged
in the control of transcripts. Also important to note is the
availability of gene annotation information, which is still
limited mainly for some of the key and frequently expressed
genes. We take the notion that the network structure will
largely determine the key aspects of biological functionality
[37].

We want to know if there are any key differences between
normal and cancer cells.Weuse the 36 key biologicalmodules
to reconstruct a two-stage gene regulatory network by our
Concave JLVGGM. To approach statistical significance, we
do a random permutation to the tuning parameter 𝜆11 for1000 times. According to the second law of thermodynamics,
it implies that the cancer network becomes unstable during
the progress of tumorigenesis, consistent with the notion
that instability is a common phenotype of cancer cells. The
tuning parameters are taken as 𝜆12 = 0.8𝜆11. An interesting
phenomenon we observed during our modeling effort is as
follows: we found that the abnormal metabolism and apop-
tosis may be closely related to the progression of lung cancers
according to Figure 5. As “theWarburg effect” suggests, most
proliferation of cancer cells relies on aerobic glycolysis. Thus,
the abnormal metabolism we detected in the cancer cells
here is intriguing and significant. It is widely known that
apoptosis plays a critical role in cancer and particularly lung
cancer. However, based on our structural results (undirected
graph), we do not know how these changes would be causally
related.

6. Conclusion

We have developed a concave regularization approach for
LVGGM for low sample complexity as well as for reduc-
ing the biases. Computational method based on proximity
operators is provided with at least local convergence. Our
methodology establishes its practical value as demonstrated
by the numerical results (see Figure 2). Finally, as a future
direction, we plan to assess a fully Bayesian interpretation of
concave LVGGM.This may be helpful for an advisable choice
of the tuning parameter as displayed in the framework of
[38].
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(a) (b)

(c) (d)

Figure 4: Topological for the biomolecular network of medulloblastomas. The sizes of nodes correspond to the degrees of their interactions.
The colors represent similar classes according to the pairwise Pearson correlations of gene expressions. Demonstrated here is the absolute
essentiality of using conditional independence to interpret the apparent correlations between gene expressions. (a) represents the WNT
subgroup; (b) the SHH subgroup; (c) the subgroup 3; and (d) the subgroup 4. The regularization parameters are chosen to optimize BIC
score.
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Figure 5: Gene regulatory networks occurring during the progression of human lung cancers.The network reconstructed in 75% confidence
(the edges emerge at least 750 times) under 1000 times random permutations. The normal stage (a) and the cancer stage (b). Changes about
edges between normal stage and cancer stage (c). The parameters are 𝜆11 = 0.003, 𝜆21 = 0.006, 𝜆31 = 0.001, 𝜆12 = 0.8𝜆11, and 𝜆21 = 𝜆22. The
regularization parameters are manually chosen to induce high sparsity for better visualization and highlighting the dominating edges.
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