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Abstract: Obtaining accurate global motion is a crucial step for video stabilization. This paper
proposes a robust and simple method to implement global motion estimation. We don’t extend the
framework of 2D video stabilization but add a “plug and play” module to motion estimation based
on feature points. Firstly, simple linear iterative clustering (SLIC) pre-segmentation is used to obtain
superpixels of the video frame, clustering is performed according to the superpixel centroid motion
vector and cluster center with large value is eliminated. Secondly, in order to obtain accurate global
motion estimation, an improved K-means clustering is proposed. We match the feature points of the
remaining superpixels between two adjacent frames, establish a feature points’ motion vector space,
and use improved K-means clustering for clustering. Finally, the richest cluster is being retained,
and the global motion is obtained by homography transformation. Our proposed method has been
verified on different types of videos and has efficient performance than traditional approaches.
The stabilization video has an average improvement of 0.24 in the structural similarity index than
the original video and 0.1 higher than the traditional method.

Keywords: video stabilization; global motion estimation; motion vectors; superpixel; simple linear
iterative clustering; K-means clustering; feature motion space; video enhancement

1. Introduction

Video filmed on portable cameras frequently suffers from annoying jitters owing to
the unsteady motion. Fixed monitoring devices also suffer annoying jitters due to the harsh
environment. Video stabilization is the process of improving video quality by removing
jitters. This goal can be achieved by using sophisticated sensors and gyroscopes, but they
are expensive and inconvenient to deploy. Conversely, digital video stabilization (DVS)
does not require additional hardware. It is a convenient and economical solution for
different vision tasks.

Obtaining an accurate global motion estimation is a critical step in many vision tasks.
In 3D reconstruction, Nachimson et al. [1] used point matching method for global motion
estimation; in fall detection, a combination of time-domain and shape detection was used
to obtain motion estimation [2]; in action recognition, Wu et al. [3] first used the neural
network to obtain the optical flow and used an optimized iterative method to separate it
from coarse to fine to obtain a global motion estimation. We mainly research the motion
estimation methods used in DVS. According to the different motion models, DVS can be
divided into three classes: 2D parameter model methods, 2.5D feature trajectories, and 3D
reconstruction methods. The 2D model methods estimate the affines, homographies
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or bundled homographies between two adjacent frames and smooth the accumulated
parameters to remove jitters. They are robust, fast, and effective, but they cannot handle
videos with large parallax and large depth transforms, and are also sensitive to processing
videos with moving objects and large foreground occlusions. 3D methods reconstruct
the 3D camera motion through the structure from motion, and then smooth the motion.
Although they are an effective method, they require a huge amount of computation and
significantly depend on scene texture. 2.5D methods use feature trajectories to stabilize the
video as a combination of the advantages of 2D and 3D methods. They are non-parametric
methods that detect the frame’s feature points and use optical flow to track the features.
However, the acquired feature points may not fall in the background or disappear, affecting
global motion estimation and cause video stabilization failure.

In the 2D methods, Karimi et al. [4] and Xie et al. [5] used a combination of scale-
invariant feature transform (SIFT) features and Kanade-Lucas-Tomasi (KLT) trackers to
obtain background information, but they were time consuming and could only eliminate
single or small object. Shene et al. [6] used speeded up robust features (SURF) cascade
and random sample consensus (RANSAC) [7,8] to obtain background information. Al-
though the speed has been improved, it can only eliminate the movement of a single object.
Jeon et al. [9] used particles to update the key points, but this method only has good perfor-
mances for fixed cameras. Wu et al. [10] used K-means clustering to filter the background
feature points, but it can only be applied when the background block is larger than the
foreground block. Dong et al. [11] used template matching and KLT methods for motion
estimation, but inaccurate motion estimation will occur when there is foreground occlusion.
In the 2.5D method, Koh et al. [12] used the K-means clustering to filter the feature points’
trajectories, which has a good effect, but it takes a long time and there is a phenomenon of
instability due to the disappearance of the trajectory. Ma et al. [13] set different weights for
the background and foreground feature trajectories to stabilize the video. Although the
method is effective, it also takes a long time and requires lots of memories. Zhao et al. [14]
also set penalty factors with different weights for background and foreground feature
trajectories for video stabilization but his method is only for traffic videos.

The algorithms of 2D methods are robust and practical but are hard to attack the
unstable video with multi objects and large occlusion. The algorithms of 2.5D methods
are effective but take a long time. Motivated by the limits of the current 2D methods,
we propose a simple and robust algorithm to obtain an accurate global motion estimation.
Our method is inspired by Wu et al. [10] and Koh et al. [12]. We improve motion estimation
based on feature points in the 2D method. Firstly, we adaptively do simple linear iterative
clustering (SLIC) segmentation on the adjacent two frames according to the video size and
eliminate the superpixels, whose cluster centers’ absolute values are large. Then, the feature
point detection is performed on the remaining superpixels. The feature motion vector
space is established according to the matching feature points’ Euclidean distance, and the
improved K-means clustering is adopted to eliminate the local motion again. Finally,
accurate global motion estimation is obtained, and the global motion is retained from
coarse-to-fine. We use thorough experiments to demonstrate that our method outperforms
the work of Wu et al. [10] in most cases. The main contribution of this paper can be
summarized into the following three aspects.

• We first introduce superpixels into the video stabilization, which enables our approach
to share higher efficiency and robustness over existing traditional 2D methods in
the global motion estimation step. Besides, our method has an average structural
similarity of 0.1 higher than that of the traditional 2D stabilization methods among
the different types of videos in the public video stabilization dataset.

• We propose a simple and “plug and play” module that can obtain accurate global
motion estimation. It can be directly used in the motion estimation step based on
feature point stabilization.

• We improve the K-means clustering, which enables the initial point even distribu-
tion and adaptive K. By combining superpixels and improved K-means clustering,
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we perform a coarse-to-fine elimination of local motion, which overcomes the main
challenge of 2D traditional video stabilization—the stabilization of multi-object and
large foreground occlusions videos.

The paper is organized as follows—Section 2 briefly presents the related work of
video stabilization. Section 3 proposes a global motion vector estimation method based
on the combination of improved K-means clustering and SLIC. We evaluate the proposed
approach in Sections 4 and 5 concludes the paper.

2. Related Work

Video stabilization can be roughly divided into 2D, 2.5D, and 3D methods. We will
briefly review it in the following. The result of video stabilization can be illustrated in
Figure 1. The yellow line figure represents the global camera path of the jitter video,
which has high-frequency noise and is not smooth. The global camera path of the figure
with the red line is obtained by stabilizing the image, the path is smoother than before,
but the image’s size is also reduced accordingly.

Figure 1. Motion accumulation of unstabilized video and stabilized video.

The 2D methods use an affine or a homography matrix to represent the global motion
of two adjacent frames. Xu et al. [15] used oriented features from accelerated segment
test (FAST) and rotated binary robust independent elementary features (BRIEF) detection
operator (ORB) and affine matrix to estimate two adjacent frames. Although the speed
of motion estimation is very fast, it can only handle shaky videos with distant and static
backgrounds. Shene et al. [6] used the combination of SURF and RANSAC to accurately
match the feature points, and used the homography matrix to represent the motion of two
adjacent frames. It uses a matrix with more parameters, but perform well on video with a
single object. Cheng et al. [16] used a method of combining feature points and improved
cascade parameters to estimate the motion of two adjacent frames. Although the model
using a matrix is robust and effective to a single plane, it does not solve large parallax and
multi-plane. In order to solve this problem, Liu et al. [17] first proposed a method using
the bundled camera path. They divide each frame into regular small grids and perform
homography calculation and accumulation optimization for each small grid. Following
methods for video stabilization using a bundled camera path are also proposed [18].
Although it is more effective than using a single matrix, it takes longer and cannot process
videos with large moving objects. In order to satisfy real-time and accuracy, Dong et al. [11]
proposed to use three frames of trajectory to predict a homography matrix. Lim et al. [19]
proposed an algorithm to tackle the problem of real-time video stabilization for unmanned
aerial vehicles (UAVs), where they designed an affine model for the global motion of UAV
and employed the combination optical flow and feature point. Hu et al. [20] also proposed a
method to achieve real-time video stabilization. However, it still cannot solve the influence
of multi-object motion and foreground occlusion on global motion estimation. With the
popularity of deep learning, there are also some video stabilization methods based on deep
learning. Input stabilized and jitter video to the network, and output a homography matrix
to the network [21]. The objective function does not consider the effects of multi-object and
parallax, so it is only effective for a single object or background shaky video. Yu et al. [22,23]
used neural networks to estimate optical flow to achieve pixel-level video stabilization.
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But this method is mainly for selfie type videos. We also attribute this method to 2D video
stabilization. Although the deep learning method has a good effect on DVS, its portability
and real-time performance are not as good as traditional 2D methods.

The 2.5D methods generally store and smooth the feature trajectory. Lee et al. [24]
was the first to apply the feature point trajectory to video stabilization research. First, a set
of trajectories were collected, and using curve fitting to smooth the trajectory. It controls
the cropping rate of the stabilized video, but does not consider multi-object motion and
foreground occlusion. Liu et al. [25] model the trajectory matrix of the collected features,
perform low-rank decomposition of the matrix and then perform smoothing operations
such as curve fitting in the low-dimensional space. Although it can handle parallax and has
a good stabilization effect, it is mainly dependent on feature points and long-term tracking.
Once the feature points disappear or the trajectory is too short, the video stabilization will
fail. In order to solve the problem of trajectory length, Koh et al. [12] used a low-rank
matrix method to improve and enhance the trajectory and eliminated the object feature
points through a clustering method. Liu et al. [26] used a dense optical flow method to
estimate pixels’ motion, solve the problem of dependence on feature points, and filter out
the moving object pixels through the histogram iteration of the amount of pixel motion.
Ma et al. [13] introduced the idea of grids into the trajectory of feature points, performed
adaptive weight calculation on the collected trajectories to obtain the background trajectory
and smoothed to obtain a stable video. Although the 2.5D method has a better video
stabilization effect and the ability to filter out motion feature points than the 2D method,
it is more time-consuming and dependent on video quality than the 2D method.

The 3D methods need to reconstruct the real motion of the camera and then smooth
it. The earliest Buehler et al. [27] used image rendering for non-metric reconstruction.
Because of the proposal of structure-from-motion (sfm), Zhao et al. [28] introduced sfm
into 3D video stabilization and performed 3D reconstruction of the collected characteristic
motion. However, this method is very slow and sensitive to parallax changes. The video
stabilization effect depends heavily on video quality. In order to reduce the influence
of distortion on the original information of the video, Liu et al. [29] introduced content-
persevering into the video stabilization and adopted the “as-rigid-as-possible” [30] idea to
transform the video stabilization. Zhou et al. [31] added plane constraints to this system to
reduce video distortion. Liu et al. [32] also used a depth camera to study video stabilization.
Besides, Liu et al. [33] also conducted comprehensive research on the subspace method and
applying it to stereoscopic video stabilization. Although the 3D video stabilization method
can produce the most satisfactory visual results, the method relies heavily on robust feature
trajectories. In practical applications, long feature trajectories are complicated to obtain.
Also, this method takes longer and requires more memory.

Some researches presented novel global motion estimation methods; however, most of
them are based on the 2.5D model, and it is time-consuming. Liu et al [34] proposed a
novel DVS method based on MeshFlow, using two median filters from coarse-to-fine to
obtain the global motion optical flow. Although the speed has been improved, it cannot
handle the effects of large foreground occlusion and multiple objects on the global optical
flow. Dong et al. [10] proposed combining block and three-frame trajectory to perform
global motion estimation, but multi-object motion video stabilization is still not robust.
Wu et al. [11] used K-means clustering in motion estiomation step but they can only process
well on videos with background blocks larger than the object blocks. We designed a coarse-
to-fine global motion estimation method to achieve video stabilization of multi-object
motion and large foreground occlusion videos.

3. Robust Global Motion Estimation

Our proposed video stabilization is the first to introduce superpixels into the video
frame and combine SLIC and K-means clustering to obtain accurate global motion estima-
tion. Figure 2 shows the proposed method’s pipeline, shows the rough steps of motion
estimation. In the following, first, we will introduce how to roughly remove local motion
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blocks, then how to remove local motion feature points accurately, and finally, we show
how to combine the proposed method with the existing traditional 2D method based on
feature point.

Figure 2. Our proposed method pipeline: the video input (a) is partitioned into the simple linear
iterative clustering (SLIC) segment (b). The superpixel’s centroid motion is clustered, and feature
points match between adjacent frames (d). The adaptive K-means clustering is applied to remove
local feature points.

3.1. Local Motion Block Removal

In the video, the background and the object are usually in motion, and the combination
of block and frame difference is not effective in filtering local motion blocks. Therefore,
we use superpixel to replace the block, and cluster the centroid motion of the superpixels
to eliminate local motion blocks.

Superpixel is an image segmentation technology proposed and developed by Ren et al. [35].
It refers to an irregular pixel block with specific visual significance composed of adjacent
pixels with similar texture, color, brightness and other characteristics. It uses the similarity
of features between pixels to group pixels and replaces a large number of pixels with a small
number of superpixels to express image features, which significantly reduces the complex-
ity of image post-processing. Therefore, the background can be clustered into one category,
and the object can be clustered into one category more accurately, which is convenient for
subsequent processing. Figure 3 shows the result of superpixel segmentation.

(a) (b)

Figure 3. The result of superpixel in two different types of videos: (a) large foreground occlusions,
(b) multi-object.

To eliminate local motion blocks faster and more accurately, we first use SLIC [36] to
segment the image and calculate the amount of motion based on the obtained superpixel
centroid coordinates of two adjacent frames with the same label, and establish a motion
vector space. Assume the image only contains the object, and the background motion is
usually less than object motion. We set cluster K = 2, and superpixels with a large cluster
center value are eliminated to obtain the coarse background image.

Before performing SLIC segmentation on the image, the color image needs to be
converted into a 5-dimensional feature vector in the Lab color space and XY coordinates,
where L∗ represents the brightness, a∗ represents the range from magenta to green, and b∗

represents the range from yellow to blue range. First, the number of superpixels needs to
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be set. Through our experiments, the adaptive selection of the number of superpixels is
shown in Equation (1).

Ks =
100 ∗ w ∗ h
640 ∗ 360

. (1)

Assuming that the image has a total of N pixels, pre-segmented into Ks pixels of the
same size, then the size of each superpixel is N/Ks, and the distance between adjacent
cluster centers is S =

√
N/Ks. Then reselect the cluster center in the 3 ∗ 3 area of the seed

point, assign a class label to each pixel, and measure the distance of the pixel that meets the
search range of 2S ∗ 2S. The calculation Equation is shown in (2). Where i represents the
ith pixel, j represents the cluster center of the jth category, dc represents the color distance,
ds represents the spatial distance, Ns is the maximum spatial distance within the class,
and Nc is the maximum color distance. Because Nc cannot be determined, it is used m
represents the relative importance of space and pixel color. We sets m = 30. The distance
metric can be written as shown in Equation (3). According to the above steps, iterate
continuously until the cluster center no longer changes. Generally, the number of iterations
is 10.

dc =


√(

lj − li
)2

+
(
aj − ai

)2
+
(
bj − bi

)2 (color)√(
lj − li

)2 (gray)

ds =
√(

xj − xi
)2

+
(
yj − yi

)
D′ =

√(
dc

Nc

)2
+

(
ds

Ns

)2

(2)

D′ =

√(
dc

m

)2
+

(
ds

S

)2
. (3)

When the superpixels of adjacent frames are obtained, we compute the Euclidean dis-
tance between the centroid coordinates of the superpixels with the same label to obtain the
motion of the superpixel and establish a coordinate space based on the motion. Then take
the cluster with K = 2, and remove the superpixel block with a large cluster center. The su-
perpixel motion vector of adjacent frames can be expressed as Equations (4)–(6), Where
Ks represents the number of superpixels, and lx′

i and lx
i represent the centroid’s horizontal

coordinates of the superpixels with the same label in adjacent frames. Similarly, ly
i and

ly′

i represent the centroid’s vertical coordinates of the corresponding superpixels. Mci

represents the coordinate of the corresponding superpixel in the 2D motion vector space.

Mci

(
mcx

i
, mcy

i

)
, where i = 1, 2, . . . Ks (4)

mcx
i
=

√(
lx
i − lx′

i

)2
(5)

mcy
i
=

√(
ly
i − ly′

i

)2
. (6)

Figure 4 shows the result of using SLIC to segment and remove the local motion blocks
for the t-th frame of the shaky video. Figure 4a shows the original image of the t-th frame,
and Figure 4b shows the labeled superpixel image after SLIC segmentation, and Figure 4c
shows the image after the motion block is removed by the proposed method, and Figure 4d
is the centroid motion vector cluster map, with red dots represents the cluster center.
Because there is the movement of the background and the object and the sudden shaking
in the video, black blocks will appear in both the background and the object.
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(a) (b)

(c) (d)

Figure 4. Experimental results of using superpixels to eliminate local motion blocks: (a) original
image, (b) superpixel image, (c) the proposed method of local motion block removal, (d) motion
vectors cluster.

3.2. Local Motion Feature Removal

Although the potential local motion blocks are eliminated, two types of mismatches
will inevitably occur when matching feature points. The first is the mismatch of feature
points in two adjacent frames, and the second is that the matching points fall on the object
instead of the background due to the existence of local motion. RANSAC can solve the
first mismatch, and the second mismatch has no effective solution. K-means clustering is
a practical and simple method, which is often used in image processing. Khan et al. [37]
proposed adaptive K-means clustering initialization parameters based on the distribution
of gray histograms. The difference between Khan’s method is that we improve the K-means
clustering based on the motion vector’s difference and the background and foreground’s
motion characteristics. Improved K-means clustering is used to eliminate the second type
of mismatched points, and then homography transformation is computed from the retained
global feature points. This method was inspired by Koh [12]. They processed the motion
trajectory to obtain the trajectory velocity, clustered it, and obtained the global motion
feature trajectory.

In the step of detecting and matching feature points, we use SURF features [38] to
perform corresponding experiments. Among the matching feature points in two adjacent
frames, the motion vector of the matching point is calculated to establish a 2D motion vector
space, as shown in Equations (7)–(9), where n represents the number of matching feature
points, f xi and f x′i represent the horizontal coordinates of the matching feature points in
two adjacent frames, f xi and f y′i represent the vertical coordinates of the matching feature
points in two adjacent frames, and Mp represents the feature motion space established
based on the motion vectors of the matching feature points.

Mpi

(
mpx

i
, mpy

i

)
, where i = 1, 2, . . . n (7)

mpx
i
=

√(
f x
i − f x′

i

)2
(8)

mpy
i
=

√(
f y
i − f y′

i

)2
. (9)
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To get as accurate a motion estimation as possible, we make two improvements
to K-means. The first is to make the initial cluster centers as evenly distributed as
possible, and the second is to adjust the value of K adaptively. There are a total of{

Mp1 , Mp2 , . . . Mpn

}
points in the motion vector space we have established, which need to

be clustered into K categories. The initial cluster centers {C1, C2, . . . , CK} are calculated in
Equations (10)–(12),

dx = max
i,j=1,...,n

(
mpx

i
−mpx

j

)
, dy = max

i,j=1,...,n

(
mpy

i
−mpy

j

)
(10)

g = arg min
i

(
mpx

i
, mpy

i

)
(11)

C1 =
(

mpx
g +

dx
K , mpy

g
+ dy

K

)
C2 =

(
mpx

g +
2dx
K , mpy

g
+ 2dy

K

)
. . .

CK =
(

mpx
g + dx, mpy

g
+ dy

)
,

(12)

where dx and dy represent the maximum horizontal distance and the maximum vertical
distance in the feature motion space, g represents the index of the matching point closest to
the origin of the feature motion space.

In order to find the optimal cluster K, we need to define a judgment factor a, using the
intra cost within each cluster and the inter cost between cluster. We define a dissimilarity
distance between C1 and CK, as shown in Equation (13).

d(CK, Cl) =
∑i∈CK

∥∥Mpi − Cl
∥∥2

|CK|
, (13)

where |CK| is the number of cluster points, Cl represents the cluster center point, Mpi

represents the coordinate point belonging to cluster K, and d is the average of the differences
from the point included in cluster K to the cluster center of cluster l. We then define the
intra cost and the inter cost as shown in Equation (14). Intra(C1, C2, . . . , CK) =

∑K
i=1 d(Ci ,Ci)

K

Inter(C1, C2, . . . , CK) =
∑K

i=1 ∑K
l=1,l 6=i d(Ci ,Cl)

K(K−1) .
(14)

Intra represents the average similarity between the same class and the cluster cen-
ters, and Inter represents the average dissimilarity between the cluster centers of differ-
ent classes.

For efficient clustering, we can select the optimal number K∗ with the minimum ratio
of the intra cost to the inter cost, as shown in Equation (15). a = Intra(C1,C2,...,CK)

lnter(C1,C2,...,CK)

K∗ = argmin
K∈{2,...,5}

a. (15)

Figure 5 shows the result of removing local feature points using our proposed method.
Figure 5a shows using RANSAC to eliminate mismatches in large foreground occlusions
frame. Figure 5b shows using our proposed method to eliminate mismatches in large object
occlusion frame. Figure 5c shows using RANSAC to eliminate mismatches in multiple
objects frame. Figure 5d shows using our proposed method to eliminate mismatches
in multiple objects frame. Both the yellow and red lines indicate the connection of the
matching points.
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(a) (b)

(c) (d)

Figure 5. Feature point matching: (a) using RANSAC in large object occlusion shaky video,
(b) proposed method in large object occlusion shaky video, (c) using RANSAC in multiply objects
shaky video, (d) proposed method in multiply objects shaky video.

From the analysis above and the overall framework in Figure 2, the proposed algo-
rithm’s flowchart is shown in Figure 6.

Figure 6. The flowchart of our proposed method.

The traditional 2D method of using feature points for motion estimation generally
consists of three steps: feature point extraction, RANSAC to eliminate mismatches, and cal-
culation of the transformation matrix. We only need to change the eliminate mismatches
step to our proposed method to get accurate motion estimation.

4. Experimental Results and Discussion

In this section, first, we will compare the proposed method with typical methods
that use feature points and a single matrix for video stabilization. The proposed method
improves the video quality by computing accurate global motion using SLIC segment
and K-means clustering. To verify the effectiveness of our method, we present a set of
comparative experiments. Next, we will show the proposed method’s performances on
shaky videos with large object occlusion and multi-object motion. Similarly, we prove the
effectiveness of our method through analysis with the traditional 2D methods.
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4.1. Comparison of Different Video Stabilization Methods Based Feature Points

In order to prove that our proposed method is more effective than the previous video
stabilization method based feature points, we used four groups of 19 videos in total [39].
Moreover, our proposed method is a “plug and play” module, so we add it to the existing
method for verification its effectiveness. We use the average structural similarity as the
criterion. The closer the value is to 1, the better effective method. The average SSIM [40] of
each group of videos is shown in Tables 1–4. The first frames of these unstabilized image
sequences are shown in Figure 7. The average SSIM of different methods for different
groups is shown in Figure 8 and Table 5.

(a) (b)

(c) (d)

Figure 7. The tested image sequence: (a) shaky videos with single object, (b) only background
shaking videos, (c) shaky videos with zooming, (d) shaky videos with crowds.

Table 1. SSIM Comparison of different methods for shaky videos with single object.

Video 1 Video 2 Video 3 Video 4

Original 0.3565 0.4536 0.6734 0.4944
Xu [17] 0.3333 0.4637 0.6831 0.5054

Our method + Xu [17] 0.462 0.5107 0.6961 0.5661
Dong [11] 0.6144 0.6028 0.7065 0.6113
Wu [10] 0.7367 0.7292 0.7511 0.6985

Our method 0.8406 0.7997 0.8102 0.7657

Table 2. SSIM Comparison of different methods for only background shaking videos.

Video 1 Video 2 Video 3 Video 4 Video 5

Original 0.4910 0.5329 0.8051 0.8069 0.5639
Xu [17] 0.4540 0.5353 0.7777 0.7987 0.5677

Our method + Xu [17] 0.6009 0.6555 0.8248 0.8185 0.6704
Dong [11] 0.7285 0.7549 0.8962 0.8543 0.7449
Wu [10] 0.8355 0.8407 0.9462 0.8896 0.8304

Our method 0.9218 0.9297 0.9686 0.8781 0.8922

Table 3. SSIM Comparison of different methods for shaky videos with zooming.

Video 1 Video 2 Video 3 Video 4 Video 5

Original 0.6696 0.4870 0.7239 0.4699 0.7313
Xu [17] 0.6937 0.5066 0.7407 0.4908 0.7123

Our method + Xu [17] 0.7484 0.5672 0.7698 0.52 0.7154
Dong [11] 0.7842 0.6237 0.7478 0.5651 0.7594
Wu [10] 0.8551 0.7191 0.8100 0.6776 0.7638

Our method 0.8689 0.7383 0.8152 0.6897 0.7711
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Table 4. SSIM Comparison of different methods for shaky videos with crowds.

Video 1 Video 2 Video 3 Video 4 Video 5

Original 0.6964 0.5654 0.6892 0.6716 0.6211
Xu [17] 0.6947 0.5488 0.6775 0.6860 0.6249

Our method + Xu [17] 0.7036 0.5532 0.6858 0.6877 0.6362
Dong [11] 0.7239 0.6316 0.7395 0.7277 0.6918
Wu [10] 0.7652 0.7140 0.7940 0.7731 0.7838

Our method 0.8689 0.7383 0.8152 0.6897 0.7711

Figure 8. Average SSIM of different methods in four groups shaky videos.

Table 5. Average SSIM Comparison of different methods in four groups shaky videos.

Single Object Only Background Zooming Crowds

Original 0.4944 0.6399 0.6163 0.6487
Xu [17] 0.4964 0.6266 0.6289 0.6464

Our method + Xu [17] 0.5587 0.714 0.6642 0.6534
Dong [11] 0.6338 0.7958 0.696 0.7029
Wu [10] 0.7288 0.8685 0.7651 0.766

Our method 0.8041 0.9181 0.8152 0.7896

As shown in Tables 1–4, we compare our method with two existing 2D approaches
in four different group videos. They are Xu [17], Dong [11], and Wu [10]. Besides, we
add our method to Xu [17] to verify its effect “plug and play”. Before calculating the
transformation matrix, add our proposed method. We implement the methods of Xu [17]
based on our module and Wu [10] by ourselves. The code of initial Xu [17] is found at
https://github.com/francocurotto/Video-Stabilization (accessed on 2 April 2021). Thanks
to the authors of Dong [11], they provide the binary implementation of their approaches at
http://Real-timeDVS.blogspot.com/ (accessed on 2 April 2021).

Xu [17] uses RANSAC and Dong [11] uses the combination of three frames feature
point trajectory and RANSAC to eliminate local motion. Tables 1–4 show different method’s
average SSIM in four group shaky videos. Our proposed method can obtain more stable
video and accurate global motion under the same feature extraction method and filter by
comparing the first, fifth, and sixth rows of each table. By comparing the second and third
rows of each table, we can find that adding our proposed method to the existing methods
can improve video stabilization quality. In Figure 8, we use bar graph to illustrate the data
in Tables 1–4. The height of each bar is the different method’s average SSIM in a group.
It can be seen that our method is effective than other methods that use a single matrix for
motion estimation. Compared with the average SSIM of the original video, our method has

https://github.com/francocurotto/Video-Stabilization
https://github.com/francocurotto/Video-Stabilization
http://Real-timeDVS.blogspot.com/
http://Real-timeDVS.blogspot.com/
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an average improvement of 0.24. On the other hand, it also shows that use a combination
of SLIC and improved K-means clustering for motion estimation, which can get a more
accurate global motion vector and eliminate redundant local motion.

4.2. The Results of Large Foreground Occlusion’s and Multi-Object Motion’s Stabilized Video

These data come from different public data sets, which can be obtained publicly on the
website [39,41]. We show our proposed method’s effectiveness by comparing the average
SSIM of the original video, and other based feature point method video. The first frames of
these unstabilized video sequences are shown in Figure 9. The average SSIM of each group
of videos is shown in Tables 6 and 7:

(a) (b)

Figure 9. The tested image group: (a) shaky videos with large foreground, (b) shaky videos
with multi-object.

Table 6. SSIM for shaky videos with large foreground.

Original Dong [11] Wu [10] Our Method

Video 1 0.4288 0.5090 0.5443 0.5566
Video 2 0.2920 0.3703 0.4148 0.4351
Video 3 0.3593 0.4664 0.4998 0.5207
Video 4 0.2403 0.3125 0.3854 0.3978
Video 5 0.4419 0.5705 0.6063 0.6229
Video 6 0.5843 0.6959 0.7164 0.7456
Video 7 0.5867 0.6293 0.6681 0.6702

Table 7. SSIM for shaky videos with multi-object.

Original Dong [11] Wu [10] Our Method

Video 1 0.5349 0.6227 0.6430 0.7588
Video 2 0.4494 0.5835 0.6859 0.8811
Video 3 0.7637 0.8040 0.8486 0.8680
Video 4 0.6441 0.6949 0.7542 0.7972
Video 5 0.5498 0.6494 0.6728 0.7381
Video 6 0.4736 0.5230 0.5432 0.5540

In Table 6, the average SSIM of video 4 before and after video stabilization does not
improve much because the video has a certain parallax. Our proposed method uses a
single matrix for motion estimation, which has certain limitations in this type of video.
In Table 7, the average SSIM of video 6 before and after video stabilization is not improved
much, because the video has motion blur, which leads to inaccurate positioning of feature
points, which also leads to the failure of motion estimation. In addition to these two
videos, we can know by comparing other video results in Tables 6 and 7, when we use our
proposed method to process jittery videos with large foreground occlusion and multi-target
motion, the average SSIM can be increased and the viewing experience can be improved.
Compared with the other two methods based on feature points, our method has a greater
improvement in average SSIM.

We use the same filter to filter the obtained motion vector and obtain a stable video
through motion compensation. Figure 10a shows the three original frames, and Figure 10b
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shows the stabilized results using the combination of K-means clustering and RANSAC [10].
As shown in Figure 10c, the proposed method successfully obtains stabilized video with
the less black region. It shows that our method can better reduce the influence of local
motion on global motion estimation.

(a)

(b)

(c)

Figure 10. Experiment results of different video stabilization methods: (a) shaky video frames
with large foreground occlusion (66th, 67th, and 68th frames), (b) the stabilized video of [10],
(c) our method.

Figure 11a shows the difference map of three pairs of original frames (66,67), (67,68),
(68,69), and Figure 11c shows the difference map of three pairs of stabilized frames (66,67),
(67,68), (68,69). Through the comparison, we can know that our method removes the jitter
on the background very well and retains the subjective motion of the moving object.

(a)

(b)

(c)

Figure 11. Experiment results: (a) differences of original video (66th, 67th, and 68th frames), (b) the
stablized video of [10] (66th, 67th, 68th frames), (c) our stabilized video (66th, 67th, and 68th frames).

Figure 12 shows the video stabilization effect of the different methods in a multi-object
motion video. Figure 12a is the original frame, Figure 12b is the result of video stabilization
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using the combination of K-means clustering and RANSAC [10], and Figure 12c is the
result of our proposed method. By comparison, our method has fewer black region.

(a)

(b)

(c)

Figure 12. Experiment results of different video stabilization methods: (a) shaky video frames with
multi-object motion (129th, 130th, and 131th frames), (b) the stabilized video of [10], (c) our method.

Figure 13 shows the difference results. Figure 13a shows the difference of the original
shaky frame (129,130), (130,131), (131,132), Figure 13b shows the difference of the stabilized
video frame (129,130) ), (130,131), (131,132) by [10], and Figure 13c shows the difference
of the stabilized video frame (129,130) ), (130,131), (131,132) by our method. Through the
comparison of the images of each frame, it can be found that the differential image by our
proposed method is smoother than the result by [10].

(a)

(b)

(c)

Figure 13. Experiment results: (a) differences of original video (129th, 130th, and 131st frames),
(b) the stabilized video of [10] (129th, 130th, and 131st frames), (c) our stabilized video (129th, 130th,
and 131st frames).

Through the display in Figures 10–13, we can know that when performing motion
estimation on shaky videos with large foreground occlusion and multi-object motion,
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the combination of SLIC and improved K-means clustering can obtain a more accurate
global motion estimation than Wu [10]. The stabilized results using the proposed method
can be found in the supplementary video, and the supplementary video also shows the
different video stabilization’s results based on 2D feature detection.

4.3. Discussion

Among the methods that use feature points for motion estimation, most of them use
RANSAC to eliminate mismatches [11,17] and some use K-means clustering to cluster
feature points [10]. The K-means clustering method has accurate motion estimation for
shaky videos when the background larger than the foreground. Methods such as RANSAC
can only eliminate mismatched points, and cannot solve the impact of local motion on
global motion estimation. Our method based a combination of SLIC segment and improved
K-means clustering can not only obtain global motion estimation in common shaky videos,
but also perform global motion estimation on shaky videos with large foreground occlusion
and multi-target motion. Of course, our method also has some shortcoming: (1) as shown
in Table 6, we can find the average SSIM of video 4 has little improvement because the
video has large parallax, which means our method can only process planar video; (2) as
shown in Table 7, video 6 average SSIM also has little improvement because our method is
difficult to process shaky videos with motion blur.

To our knowledge, we are the first to use superpixels for video stabilization. Al-
though it is more effective than the existing method of using 2D feature detection for
motion estimation, it also faces parallax and motion blur. This is also a problem faced by
many video stabilization methods.

5. Conclusions and Future Work

This paper proposes a robust and simple method to address the problem of obtaining
accurate global motion estimation in video stabilization. We show how to combine SLIC
segment and improved K-means clustering to remove local motion from coarse to fine
through the analysis of the motion vector. We show how to add this module to existing
2D motion estimation based feature matching, which is usually ignored in the previous
2D approach.

Our study shows that our proposed method can obtain stabilized videos that are better
than previous 2D approaches in a measurement that considers average SSIM. In addition,
our method also has a useful video stabilization effect on shaking videos with large
foreground occlusion and multi-object motion. By stabilizing different types of shaking
videos, we find that the proposed method can be used for various video applications,
including portable shooting equipment, video surveillance systems, and many vehicle
imaging systems.

In our implementation, the number of superpixels is set adaptively under the video
frame size, the centroid motion of the superpixels is calculated, and the motion space
is established. Then setting K to 2 is used for coarse clustering, and blocks with a large
amount of motion are eliminated. Feature points detect on the remaining superpixels,
calculate the matching feature points’ movement, establish the feature movement space,
use the improved K-means clustering method to cluster the feature movement, and save
the points with a large number of clusters to obtain accurate background features point
and perform motion estimation. Our proposed method’s two drawbacks are that we use a
single matrix to estimate global motion, which is not suited for processing shaky videos
with parallax. And our method is based on feature detection. There will be feature point
positioning errors when the video contains motion blur. For strict real-time application,
this may imply adaptive frame’s SLIC segment, not each frame’s segment. So in future
works, we will focus on those challenging situations. In addition, a better way to apply
superpixels to the field of video stabilization is also future work.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
s21072505/s1. Video S1: Video stabilization results of different methods.

https://www.mdpi.com/article/10.3390/s21072505/s1
https://www.mdpi.com/article/10.3390/s21072505/s1
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