
Research Article
GLD-Net: Deep Learning to Detect DDoS Attack via
Topological and Traffic Feature Fusion

Wei Guo , Han Qiu , Zimian Liu , Junhu Zhu , and Qingxian Wang

State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou 450002, China

Correspondence should be addressed to Han Qiu; qiuhan_loach@sina.com

Received 28 May 2022; Revised 8 July 2022; Accepted 27 July 2022; Published 16 August 2022

Academic Editor: Konstantinos Demertzis

Copyright © 2022 Wei Guo et al. ,is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Distributed denial of service (DDoS) attacks are the most common means of cyberattacks against infrastructure, and detection is
the first step in combating them. ,e current DDoS detection mainly uses the improvement or fusion of machine learning and
deep learningmethods to improve classification performance. However, most classifiers are trained with statistical flow features as
input, ignoring topological connection changes. ,is one-sidedness affects the detection accuracy and cannot provide a basis for
the distribution of attack sources for defense deployment. In this study, we propose a topological and flow feature-based deep
learning method (GLD-Net), which simultaneously extracts flow and topological features from time-series flow data and exploits
graph attention network (GAT) to mine correlations between non-Euclidean features to fuse flow and topological features. ,e
long short-term memory (LSTM) network connected behind GAT obtains the node neighborhood relationship, and the fully
connected layer is utilized to achieve feature dimension reduction and traffic type mapping. Experiments on the NSL-KDD2009
and CIC-IDS2017 datasets show that the detection accuracy of the GLD-Net method for two classifications (normal and DDoS
flow) and three classifications (normal, fast DDoS flow, and slow DDoS flow) reaches 0.993 and 0.942, respectively. Compared
with the existing DDoS attack detection methods, its average improvement is 0.11 and 0.081, respectively. In addition, the
correlation coefficient between the detection accuracy of attack flow and the four source distribution indicators ranges from 0.7 to
0.83, which lays a foundation for the inference of attack source distribution. Notably, we are the first to fuse topology and flow
features and achieve high-performance DDoS attack intrusion detection through graph-style neural networks. ,is study has
important implications for related research and development of network security systems in other fields.

1. Introduction

Popular industries such as shopping, education, finance,
government affairs disclosure, and communications connect
core services, such as payments, instant messaging, and big
data analysis, to the Internet in real time for user access. Due
to these services’ vulnerability and high value, attacks on
infrastructures that provide these services are favored by
hackers. One of the most common attacks to block these
services is the DDoS attack [1]. How to deal with DDoS
attacks to ensure network smoothness has become a research
hotspot [2].

,e traditional defense strategy assumes that the attack
topology is a static point-to-point model whose topology
remains unchanged during the attack [3, 4]. Under this

premise, DDoS detection is mainly realized through changes
in traffic size, and the corresponding single-point defense is
relatively simple [5]. In 2022, Israel’s network providers were
hit by a large DDoS attack from abroad, paralyzing the
website of the Interior Ministry for hours.,e same year, the
Ukrainian government suffered repeated DDoS attacks from
Russia and Belarus, forcing multiple portals to shut down to
avoid losses. ,e network situation has changed as DDoS
attacks shift from individual behaviors to confrontations
between countries. Except for the increase in the attack
traffic, the range of attack sources continues to expand; the
flow topology evolves during the attack. Conventional
single-point defense cannot cope with these changes, and
multisource protection requires attack source location.
However, previous detections cannot identify the attack

Hindawi
Computational Intelligence and Neuroscience
Volume 2022, Article ID 4611331, 20 pages
https://doi.org/10.1155/2022/4611331

mailto:qiuhan_loach@sina.com
https://orcid.org/0000-0001-8715-7710
https://orcid.org/0000-0003-1465-8009
https://orcid.org/0000-0002-0080-0927
https://orcid.org/0000-0002-6914-2424
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4611331

distribution, thus impossible to precise defense. ,erefore,
we need a detection method that can determine the attack
distribution through topology changes to support further
attack tracing and defense deployment.

DDoS detection aims to distinguish attack traffic from
legitimate traffic. According to the different fields of
mathematics, the current mainstream DDoS detection
methods can be divided into three categories: statistics,
machine learning, and deep learning. ,e statistical method
uses measures such as entropy to evaluate the traffic dis-
tribution’s change. It is simple and requires no additional
hardware support. However, its detection effect depends on
thresholds, which researchers usually give directly [6]. ,is
subjective assignment lacks an objective basis, affecting the
reliability of results. Machine learning classifies network
traffic through classifiers designed based on selected fea-
tures. Due to modeling using features, it exhibits excellent
flexibility. However, reliance on feature engineering makes it
less adaptable in the face of complex real network traffic. In
addition, traditional machine learning belongs to shallow
learning, making it difficult to learn deep relationships.,us,
its accuracy is usually less than 90%. Deep learning utilizes
multilayer neural networks to learn the inherent laws of
network traffic. ,e feature extraction is contained in the
neural network structure without additional processing.
Besides, multilayer neural networks can mine deep infor-
mation, making up for the defects of shallow learning. DDoS
detection based on deep learning has high accuracy and
efficiency. For different requirements and problems, many
related research studies are emerging [7]. ,ese studies
usually improve performance by improving or fusing net-
work architectures. For example, convolutional neural
network (CNN) and recurrent neural network (RNN) are
used to process the relationship between features in time and
space [8], RNN and automatic codec are combined to im-
prove the detection sensitivity on SDN [9], and adaptive
transfer learning is introduced to achieve small sample
detection [10]. ,ese methods achieve good performance by
exploiting the efficient information in the input as much as
possible through elaborate devised architecture and
parameters.

DDoS attacks have two notable characteristics: (1) from a
spatial perspective, heavy traffic in the short term changes
the distribution of adjacent upstream nodes of the victim
host [11]. (2) From a time perspective, the prolonged
blockingmakes the limited attack nodes havemultiple attack
behaviors on the target [12]. ,ese two intrinsic peculiarities
of DDoS attacks make the network topology before and after
the attack significantly different. ,erefore, in addition to
traffic characteristics, DDoS attacks can also be detected
based on the topology changes [13]. ,is difference is im-
plicit in the evolution of the topology structure, which traffic
statistics cannot depict. Introducing topology changes can
improve detection accuracy and help analyze the distribu-
tion of attack sources. ,e data (such as graph) considering
topological connection are non-Euclidean data. Sample
points (nodes) have different numbers of neighbor points,
and edges depict their interdependence. However, tradi-
tional deep learning requires Euclidean data as input to

extract features. For example, CNN needs the sample to be
regular and independent. RNN demands the data to be a
one-dimensional real vector. ,e linear input cannot deal
with topological relationships. Graph attention network
(GAT) is a powerful analysis tool for graph data [14]. It
incorporates the attention mechanism into the graph neural
network and captures associations through neighborhoods.
Further, the attention mechanism assigns different weights
to adjacent nodes, improving feature sensitivity. In this
study, we treat topology as graph data. In particular, edge
attributes denote traffic features, and node attributes indi-
cate topological features.,erefore, GATcan simultaneously
analyze traffic and topological features with the graph as
input. To our knowledge, we are the first to achieve DDoS
attack detection using graph-style deep learning. ,e main
contributions of this study are as follows:

(1) ,e proposed dynamic topology construction al-
gorithm integrates topology and flow features into
node or edge attributes.

(2) GAT is used to mine topology change patterns and
train classifiers.

(3) Compared with other methods, the deep learning
method integrating topology and traffic features
achieves higher accuracy in both two classifications
and three classifications of DDoS traffic.

(4) ,e proposed detection method supports estimating
the distribution of attack traffic sources.

,e rest of this study is organized as follows. In Section 2,
we discuss research related to DDoS detection. Section 3
describes the details of the proposed method in terms of
feature extraction and deep learning architecture. Section 4
designs the experiments and analyzes the results. We
summarize this research in Section 5. Finally, the short-
comings and future research are pointed out in Section 6.

2. Related Work

In recent years, DDoS detection research mainly acquires
traffic features containing attack-specific information
through feature acquisition [15]. ,en, characteristics are
analyzed based on different theories or tools to discover
traffic classification patterns [16]. Section 2 describes current
DDoS feature acquisition methods and summarizes three
mainstream DDoS detection methods: statistics, machine
learning, and deep learning.

2.1. Feature Acquisition. Valid feature input is critical to
traffic classification performance since it determines the
valuable information contained in samples. ,ere are two
main methods for feature acquisition: output features using
generator tools (such as CICFlowMeter) [17, 18] and custom
features based on subjective experience [19, 20]. ,e former
applies public datasets or traffic extraction tools to obtain
features, while the latter designs corresponding features
according to application requirements. In 2017, Yuan et al.
[17] extracted 20 network traffic fields from the ISCX2012
dataset for DeepDefense detection model training. ,is

2 Computational Intelligence and Neuroscience

method is simple and avoids complex statistical feature
calculations. In 2018, Idhammad et al. [18] reduced the
feature dimension of datasets such as UNSW-NB15 based on
collaborative clustering. ,en, simplified datasets were used
to test machine learning methods’ classification perfor-
mance. ,e results show that this method effectively reduces
the false-positive rate. In 2018, Doshi et al. [19] extracted
three stateless and two stateful features through network
packet behavior, which showed high accuracy in IoT traffic
detection. In 2019, De Lima Filho et al. [20] utilized 25 IPv4
variables to design 33 signature features suitable for IP,
UDP, and TCP, which improved the sensitivity of online
DDoS detection. In 2022, Chouhan et al. [21] defined the
seven most relevant features for real-time traffic detection.
,ey extracted these features from switch statistics based on
the Ryu controller module, reducing the identification delay
of the classifier.

,e above methods propose efficient feature acquisition
strategies. Nevertheless, these flow feature extraction ways
lack the characterization of the topology. ,erefore, it is
needed to define topological features and give corresponding
acquisition methods.

2.2. Statistical Method. Statistical methods use numerical
distribution to differentiate traffic. In 2017, Hoque et al. [22]
proposed a new correlation indicator NaHiD based on
standard deviation and mean. Experimental results show
that this measure is more robust and sensitive to state
changes than traditional metrics. In 2022, Tsobdjou et al.
[23] raised a dynamic entropy threshold algorithm based on
Chebyshev inequality. Comparative experiments indicate
that this method can better adapt to varied online envi-
ronments than static thresholds. ,e same year, Ahalawat
et al. [24] proposed a Renyi entropy DDoS attack detection
technique based on the packet drop strategy. It can evaluate
the probability distribution of flow fluctuations and achieve
better results than the Shannon entropy.

,ese methods analyze the numerical fluctuation of flow
from a macro-view. However, their application scope is
narrow due to the lack of fine-grained characterization.
,us, statistical methods are usually not used alone for
comprehensive evaluation.

2.3. Machine Learning. Machine learning can automatically
learn feature patterns and create classifiers. In 2019, Gu et al.
[25] proposed the DDoS detection algorithm SKM-HFS.
Weighted K-means analysis balances the number of samples
and accuracy, and the density clustering center algorithm
optimizes the extreme values. ,e results show that this
method performs best when choosing TOPSIS as the
evaluation factor. In 2020, Pande et al. [26] utilized the
random forest algorithm to distinguish between normal and
attack samples and used the WEKA tool to detect DDoS
attack ping of death. Experiments on NSL-KDD indicate
that random forest achieves the highest accuracy of 99.76%
on specific attacks. In 2021, Cvitic et al. [27] understand
DDoS detection as a multi-device classification problem and
distinguish traffic generated by different IoTdevices through

a logical model tree. A comparison of four typical devices
shows that the logical model tree can better identify DDoS
traffic from IoTdevices. In 2022, Kumar et al. [28] designed
the recursive feature elimination method RFE. It is also
combined with the random forest algorithm to train the
classifier. Experiments show that this method can cope with
fast detection under large network traffic.

,e above methods extract relevant information from the
traffic details. However, they rely heavily on feature engineering
and have low performance in the face of large samples. Hence,
we need to find a more efficient detection model.

2.4. Deep Learning. Deep learning applies a multilayer neural
network to obtain the correlation between input and output.
In 2019, Liang and Znati [29] employed LSTM in a DDoS
detection framework. LSTM captures the implicit sequence
representation in the input vector through three gating units.
,is method can learn flow-level modes, avoiding expensive
and error-prone feature engineering. In 2020, Doriguzzi-
Corin et al. [30] proposed LUCID, a lightweight DDoS de-
tection system that utilizes one-dimensional CNN to reduce
computational load. Experiments on ISCX2021, CIC-
IDS2017, and CSE-CIC2018 datasets show that LUCID has a
40x reduction in processing time compared with other deep
learning methods, so it is suitable for detection under limited
resources. In 2021, Cil et al. [31] built a traffic classification
model based on the deep neural network. Its structure
contains feature extraction, and training can be completed
with only three fully connected layers. Experiments on CIC-
DDoS2019 show that the model has an accuracy of 95%. In
2022, Boonchai et al. [32] implemented two DDoS detection
models using the DNN architecture and autoencoder, re-
spectively, and verified the attack recognition ability of the
models through the CIC-DDoS2019 dataset with an accuracy
rate of 87% and 91.9%, respectively.

A single method is challenging to meet diverse DDoS
detection needs. ,erefore, many scholars extend the ap-
plicability through method mixing. In 2019, Pektaş and
Acarman [8] extracted five statistical features: duration,
bytes, packets, periodicity, and states through network traffic
summary and mined semantic information in the feature
sequence through CNN and RNN. ,e accuracy of this
method reaches 99.1%, significantly higher than a single
network. In 2020, Wang and Liu [33] employed information
entropy and deep learning to detect DDoS attacks in SDN.
First, IP entropy identifies malicious traffic routers, and
then, CNN classifies packet-level traffic. ,is method ach-
ieves 98.98% accuracy and also reduces training time. In
2020, Elsayed et al. [9] proposed DDoSNet, an intrusion
detection system for SDN. ,is system combines RNN and
autoencoder. RNNs capture sequence relationships, and
autoencoders detect small perturbations. Compared with
baseline methods such as decision tree, random forest, and
support vector machine, DDoSNet is more stable and
achieves an accuracy of 99%. In 2021, Shieh et al. [34] built a
DDoS unknown traffic discovery model BI-LSTM-GMM. It
consists of bidirectional LSTM (BI-LSTM) and Gaussian
mixture model (GMM). GMM labels the unknown traffic

Computational Intelligence and Neuroscience 3

and adds it to the new input of BI-LSTM. Experiments show
that this method can identify unknown attacks through
reinforcement learning. In 2022, Almaraz-Rivera et al. [35]
designed a new intrusion detection system based onmachine
learning and deep learning models to solve the unbalanced
detection of DDoS attack categories. It combines decision
trees and multilayer perceptrons to test binary classification
performance on different datasets, avoiding data and frag-
mentation effects.

Besides binary classification, multi-classification studies
that ease defense deployment are also emerging. In 2019,
Toupas et al. [36] utilized stacked fully connected layers for
intrusion detection. Experiments show that this method can
better learn the difference between fast and slow DDoS flows
with an accuracy of 95.62%. In 2020, Alzahrani et al. [37]
proposed FastGRNN, a DDoS multi-classification method for
IoT, which reduces training complexity by adding residual to
hidden states. It achieves 1:5 optimization of detection time
and training time to adapt to real-time detection. In 2020,
Hussain et al. [38] used ResNet for complex traffic detection.
,ey convert traffic into a three-channel format and analyze it
through ResNet. ,is method achieves an accuracy of 87% in
distinguishing normal flow, fast DDoS flow, and slow DDoS
flow and an increase of 9% compared with other methods. In
2022, Rusyaidi et al. [39] designed a high-precision DDoS
attack detection system based onDNN and LSTM. It achieved
an accuracy of 97.37% on the NSL-KDD dataset and excellent
performance in identifying 22 traffic types.

With the in-depth development of deep learning, many
researchers also apply new architectures to optimize DDoS
detection performance. In 2020, He et al. [10] employed
transfer learning for small-sample DDoS detection. ,ey
also define the transfer ability to evaluate different networks
and select the best network structure and parameters. ,is
method improves the detection accuracy on small samples
by 20.8%, which can effectively cope with training degra-
dation. In 2021, Novase et al. [40] utilized generative
adversarial network (GAN) to detect DDoS adversarial at-
tacks. It improves system robustness through adversarial
training and uses IP entropy to analyze continuous traffic for
real-time monitoring. ,is method shows strong adapt-
ability in detecting adversarial attacks. In 2022, Doriguzzi-
Corin and Siracusa [41] proposed an adaptive mechanism
for DDoS attack detection based on federated learning,
FLAD. It updated federated learning to solve the integration
problem in dynamic security confrontation, monitoring the
status locally without interaction. ,e experimental results
verified the efficiency and performance of the method.

Deep learning has shown advantages in different detection
requirements. However, it can only process traffic character-
istics and not extract topology information. ,us, we need to
find a new way to consider both features to improve detection
accuracy and lay a basis for attack source localization.

3. Methodology

,is section details the procedure and implementation of
deep learning detection based on topological and flow
features. As shown in Figure 1, our proposed DDoS

detection system has three main parts. ,e first part is the
extraction module. It is responsible for extracting features
from public datasets or actual scenes and transforming
samples into graph data consisting of nodes and edges. ,e
second part is the training module, which builds a classi-
fication model that can mine deep-level information from
samples. ,e input is sample data, the output is label type,
and parameters are optimized during training.,e third part
is the evaluation module, which compares detection effects
under different hyperparameters to select the optimal
configuration.

When the above stages are completed, the pattern
analysis for feature extraction is saved as an extractor, and
the trained neural network is preserved as a classifier. ,en,
real traffic can be quickly classified by running through these
processing parts only once without retraining.

3.1. Feature Extraction. Building a topology diagram is the
core of topology feature extraction. It maps from raw traffic
data to dynamic topology plots that evolve; an example is
shown in Figure 2. In particular, fi denotes the flow’s dis-
tribution originating from the corresponding ipn, Gm de-
notes the subgraph under time slice tm, and the indicators in
the feature table denote extracted samples. Besides, F, Tab,G,
and T represent the set of flow distribution f1, f2, · · · , fs􏼈 􏼉,
feature table [tab1, tab2, · · · , tabm], topology map
G1 ∪G2 ∪ · · · ∪Gm, and time slice T1 + T2 + · · · + Tm, re-
spectively. In Figure 2, there are two major stages. ,e first
stage realizes the transformation from traffic data to node or
edge features. ,e traffic records of different source IPs are
divided according to the time unit. ,en, the time slice
proportions of features are formed into [IP-Feature] pairs
and saved in the feature table. ,e second stage builds the
connection graph, adds attributes to nodes or edges
according to the feature table, and decides whether to add
based on the flow that exists or not in the topology. ,e final
topological feature map G � G1 ∪G2 ∪ · · · ∪Gm on m sub-
time segments is obtained when the addition is finished.

In Figure 2, the feature table determines the attributes of
edges and nodes. Besides statistical features, we also add
connection state, packet marker, and centrality features. ,e
attack pattern implied in the connection state sequence can
distinguish attack phases [8]. For example, the target
maintains many half-open connections in a SYN flood at-
tack, making the state list of long LISTENs. ,e normal
communication state is composed of LISTEN, ESTAB-
LISHED, and CLOSED. In this case, the proportion of
LISTEN differs from that of SYN attack. ,erefore, state
sequences reflecting this divergence can be used for traffic
classification. Packet flags reveal the attacker’s malicious
attack intention. For example, regular data packets must be
queued in the buffer before parsing, while numerous URG
flags set to 1 increase the processing priority, thus enabling
fast attacks. Hence, the packet tampering details that
macroscopic features cannot describe are hidden in the
packet marking sequence, thus detecting the attack. We
choose the degree and betweenness centrality based on the
understanding that destructive attackers usually control

4 Computational Intelligence and Neuroscience

more agents to execute attacks, and targets are generally
critical nodes [42]. ,en, these two centralities can capture
the attack preference to realize attack detection. In con-
clusion, we extract multiple node or edge features for attack
detection, addressing the one-sidedness of the training data.

We extract features from ICMP, UDP, and TCP, re-
spectively. ,e features of protocols except TCP are the
same. For clarity, we take TCP features as an example to
illustrate the attributes of the extracted features, as shown
in Table 1. Among them, ts represents an arbitrary time
field.

Table 1 includes eight edge and two node features. In
particular, the edge feature depicts the traffic distribution
through the edge in period ts; the node feature describes the
spatial distribution of adjacent nodes within ts. URG and ECE
flags are extended to lists to preserve the time-varying
properties. We also introduce degree and betweenness cen-
trality to characterize topology changes. ,e meaning and
acquisition of the features in Table 1 are described below.

Among edge features, except “connection number,”
“connection states,” “URG flag,” and “ECE flag,” the other
four can be calculated by statistical formula. Notably, the

…

Feature
extraction

Test
sample

Training
samples

Neural network
training

Detection
evaluation

Feature
extractor

Traffic
classifier

Pattern
analysis

Parameter
save

Data collection

Regularization

Public dataset

…

DDoS scene

I II III

Figure 1: Framework of DDoS attack detection system based on deep learning.

…

t1 t2 tm

T

…+ + +
G1 G2 Gm

segmented timeline
T = T1 + T2 +...+Tm

III. Topological map
over time

G=G1UG2U...UGm

…

f2
f3

f1 f4

f5
f6

f7
f8

f9

f10

f11

f12

f13

f14

f15

f16

f17

f18

f19

f20

f21

f22

f23

t1 t2 tm

Nsrc
ip1
ip2

ipn

…

I. Traffic distribution
F={ f1, f2,…, fs}

…

conn’s num
duration

interval

f in G?

no
yes

no
yes

no
yes…

table1

II. Construction of
topology over time

Tab=[tab1, tab2,…, tabm] …

conn’s num
duration

interval
…

conn’s num
duration

interval

f in G? f in G?

table2 tablem

time

Figure 2: An example of topological feature extraction and topological map construction process based on time series.

Computational Intelligence and Neuroscience 5

standard deviation measures the discrete distribution of
samples. When the number of samples with the same IP and
protocol in ts is 3, regular flows are much more than attack
flows, making the training challenging to converge. So, when
the number of samples is not less than 3, the standard
deviation has practical significance. In addition, in subse-
quent experiments, we found that the detection efficiency
and accuracy are balanced when the number of samples is
not less than 4. ,erefore, we only consider four or more
identical protocol connections established between the same
node pair as actual training data.

Connection number and connection state are two
macro-edge features. ,e former reflects the frequency of
establishing connections between nodes; the latter reflects
the continuous change in the protocol state. For example,
CLOSED means all active links are closed; LISTEN signifies
waiting for new requests; and ESTABLISHED means the
connection is established. ,ese states can be obtained
through traffic analysis tools like TShark or CICFlowMeter
[43]. However, the acquired elements are of type string and
hard to use for training directly. We use one hot to convert
state sequences into real vectors to simplify computation
[44]. In particular, zero indicates that the state is not enabled,
and one denotes that the state is activated.

“URG flag” and “ECE flag” record the state sequence of
consecutive packets. ,ese two flags represent unexpected
events during the sending of traffic. In particular, a URG of 1
indicates that the current data packet is prioritized and
should be processed without queuing; an ECE of 1 indicates
congestion, and the sending window decreases. ,e ab-
normal state to one is set, and the normal state is set to zero;
then, the state sequence is a list of zeros and ones.,is binary
list can be used for training directly without encoding.

Two node features, degree and betweenness centrality,
characterize the connectivity properties of the neighbor-
hood. Degree centrality uses the number of adjacent nodes
to denote the node importance. Let Len be a function of

solving the number of non-repetitive elements; Nneighbor

represents the number of neighboring nodes of node N;
〈Ns

src, Ns
des〉 indicate flow s. ,en, degree centrality is for-

mulated as follows:

Ndegree �
Nneighbor

Len N
1
src, · · · , N

s
src􏼐 􏼑∪ N

1
des, · · · , N

s
des􏼐 􏼑􏼐 􏼑 − 1

. (1)

Betweenness centrality measures the node importance
by the ratio of shortest paths’ number through a node. Let
Path(N) denote the number of shortest paths containing
node N, and Path(srci, dstj) denote the number of shortest
paths between srci and dstj. ,en, the formula of be-
tweenness centrality is as follows:

Nbetween �
Path(N)

􏽐
i,j

Path srci, dstj􏼐 􏼑. (2)

We also show the construction process of the DDoS
topology map through pseudo-code, as shown in Algorithm
1.

Algorithm 1 can be divided into three main stages,
namely, the initial assignment stage (1∼2), configuration
stage (3∼11), and mapping stage (12∼21). ,e graph
structure is initialized in the initial assignment phase, and
necessary parameters are set. Statistical features are calcu-
lated based on item durations’ total and average in the
configuration stage. In the final phase, nodes and directed
edges are added to graph G, and features are attached to
them. After the above steps are completed, the topology
graph G is constructed.

To sum up, by extracting the features in Table 1 and
constructing a dynamic topology graph according to Al-
gorithm 1, the flow or topology attributes are included in the
node or edge features. Till now, we have obtained structured
data for training.

Table 1: Node or edge TCP features collected from time series.

Item
Object Name Type Number Description

Edge

Connection number Integer 1 Total number of traffic records in ts
Connection states List States’

number Number of communication states in ts

Duration Float 6 Total, mean, median, standard deviation, maximum, and minimum of flow
duration

Packet interval Float 6 Total, mean, median, standard deviation, maximum, and minimum of the
packets’ interval

Forward packets’
number Float 6 Total, mean, median, standard deviation, maximum, and minimum of the

forward packets’ number
Backward packets’

number Float 6 Total, mean, median, standard deviation, maximum, and minimum of the
backward packets’ number

URG flag List Packets’
number Sequences of URG flags in ts

ECE flag List Packets’
number Sequences of ECE flags in ts

Node Degree centrality Float 1 Number of neighbor nodes connected to the node within ts
Betweenness centrality Float 1 Number of shortest paths passing through the node within ts

6 Computational Intelligence and Neuroscience

3.2. Architecture of Deep Learning Model. ,is part intro-
duces GLD-Net, a deep learning model capable of analyzing
and fusing topology and flow features. Its structure is shown
in Figure 3. ,is model has three main parts: the GAT layer,
LSTM, and the fully connected layer (also known as the
dense layer). Firstly, an L-layer GAT network is used to
analyze the topological data. Its output is a spatial sequence
over the neighborhood. Secondly, sequence relationships in
the output are mined by LSTM. Finally, the dense layer
reduces the feature dimension, and the softmax function
limits the output size between zero and one. ,is value
corresponds to the traffic label to achieve classification. In
the following subsections, we will detail the processing
method of each neural network and the information transfer
within it. In particular, L and K in Figure 3 represent the
number of attention mechanisms and the number of splice
heads in multi-head attention, respectively. ,e detailed
parameter functions and setting methods of the GAT,
LSTM, and dense layer will be explained in each subsection.

3.2.1. GAT Layer. ,e two basic units of GAT are attention
coefficient calculation and information aggregation, as
shown in the dotted box in Figure 3. ,e structure of the
attention coefficient calculation is shown in Figure 4.

In Figure 4, we take four adjacent nodes
Nj � (n1

j , n2
j , n3

j , n4
j) of node ni as an example to illustrate the

information transfer progress in calculating the attention
coefficient. Let Uij � (u1

ij, u2
ij, u3

ij, u4
ij), ur/ij be the inter-

mediate variables obtained by splicing the initial node ni and
the adjacent node nr

j after feature enhancement φ, and
Concat denote concatenation operation; that is,

u
r
ij � Concat φ ni(􏼁,φ n

r
j􏼐 􏼑􏼐 􏼑, r � [1, 2, 3, 4] . (3)

Let w be a trainable shared weight, and φ(ni) and φ(nr
j)

can be obtained by linear transformations, which are, re-
spectively, expressed as follows:

φ ni(􏼁 � w · ni, φ n
r
j􏼐 􏼑 � w · n

r
j. (4)

A similarity coefficient er
ij can be obtained by the inner

product of the intermediate variable ur
ij and the trainable

parameter vector s
→. In addition, the deviation of similarity

coefficients is corrected by LeakyReLU. ,e negative axis
slope of LeakyReLU retains negative values so that similarity
coefficients do not suffer from the loss of negative infor-
mation like ReLU. ,e formula of er

ij is expressed as follows:

e
r
ij � LeakyReLU 〈 s

→T
, u

r
ij〉􏼒 􏼓. (5)

er
ij needs to be normalized on the interval [0, 1] to fa-

cilitate information aggregation. According to different
transformation modes, normalization can be divided into
linear methods, such as min-max [45] and Z-score [46], and
nonlinear methods, such as softmax [47]. In particular, min-
max only needs extremum and current values. Its calculation
is simple but easily affected by individual points. Z-score
utilizes comprehensive information and is less affected by
outliers. However, the data must meet the normal

distribution; otherwise, the output will be seriously dis-
torted. ,e exponential calculation of softmax is a smooth
derivative transformation that retains each value’s influence
and has no data distribution requirements. We choose the
nonlinear function softmax as the normalization method to
prevent the loss of complex information in the transfor-
mation process. ,en, the attention coefficient σr

ij can be
calculated by the following formula:

σr
ij �

exp e
r
ij􏼐 􏼑

􏽐
4
k�1 exp e

k
ij􏼐 􏼑

. (6)

,e attention coefficient σr
ij contains the correlation

between node ni and neighbor node nr
j. ,en, the infor-

mation aggregation based on neighborhood nodes can be
realized with the attention coefficient. Its structure is shown
in Figure 5.

In Figure 5, the new node feature ni
′ can be calculated by

the weighted sum of all neighbor node features φ(nr
j) with

σr
ij. ,e calculation formula is as follows:

ni
′ � τ 􏽘

4

r�1
σr

ij · φ n
r
j􏼐 􏼑⎛⎝ ⎞⎠, (7)

where τ is the transformation function that maps the original
vector spaceRr to a new vector spaceRr′ centered at ni

′. Due
to errors, there may be offsets in a single calculation.
,erefore, we use multi-head attention with parameter K to
improve the robustness of the results. Commonly used
methods of combining multiple attention include concate-
nation and averaging [14]. We choose arithmetic averaging
as the synthesis algorithm for reduced dimensionality and
higher efficiency. ,en, the following formula is obtained:

ni
′(K) �

1
K

τ 􏽘
K

h�1
ni
′(h)⎛⎝ ⎞⎠. (8)

Except for the learnable parameters w and s
→, other

parameters, including the number of attentionmechanisms L,
the number of multiple heads K, and the gradient θ of
LeakyReLU, are hyperparameters configured before training.
Grassia et al. [48] pointed out that the size of L is related to the
ability of information aggregation, and a single attention
mechanism can learn node features up to 3 hops away. ,us,
the bigger L is, the wider the range of information aggregation
is. In datasets such as NSL-KDD2009, the number of IP hops
of data packets does not exceed seven jumps [49], so L set to
three can meet the requirements. K determines the learning
perspective of relevant information. Efficiency and accuracy
are balanced when K is set to 20 in subsequent experiments. θ
affects the weight update rate, and its value should be adapted
to the dataset size and learning depth. Combined with the
tradeoff theory [50], θ is set to 0.3.

To sum up, we achieve local information aggregation of
node features through GAT’s feature transformation and
multi-head attention mechanism.,is study considers edges
and nodes as entities of the same status. Edge features are
merged into node features for unified processing to simplify
computation.

Computational Intelligence and Neuroscience 7

3.2.2. LSTM. After GAT training, the output vector n′ �
ni
′, i ∈ no de􏼈 􏼉 is obtained. ,is vector contains the spatial

sequence information of nodes in the neighborhood.
Suppose it is directly poured into the classifier without
processing. In that case, it will cause the loss of semantic
information. Common network structures for processing
sequence data are RNN and LSTM [51]. RNN uses memory
units to retain historical data. ,us, the output is deter-
mined by the previous data and current input. However,
due to the disappearance of the back propagation gradient,
it is easy to cause short-term memory. LSTM enhances
memory with gating units to learn relevant information in
longer sequences. ,ere are many adjacent attack nodes in
DDoS attacks, making the distance between related data in
the original data larger. ,erefore, we choose LSTM to
mine long sequence information. For clarification, we use
the input xt of LSTM at time t as an example to illustrate the
information flow. In Figure 3, the memory cell St at time t
comprises three gating units: input gate I(t), forgetting gate
F(t), and output gate O(t). Assuming that the output of the

memory cell at time t-1 is ct−1, then the calculation for-
mulas of I(t), F(t), and O(t) at the next moment t are as
follows:

I(t) � sigmoid W
t
i · concat ct−1, xt(􏼁 + b

t
i􏼐 􏼑

F(t) � sigmoid W
t
f · concat ct−1, xt(􏼁 + b

t
f􏼐 􏼑

O(t) � sigmoid W
t
o · concat ct−1, xt(􏼁 + b

t
o􏼐 􏼑

, (9)

where Wt and bt represent the weight and bias of trans-
formation at time t, respectively. ,e sigmoid function
controls the values of I(t), F(t), and O(t) to fall within the
interval [0,1]. In particular, one means all the information
flow is passed, and zero means the information flow is
blocked. Let 􏽥B(t) be the data to be processed, and its cal-
culation formula is as follows:

􏽥B(t) � tanh W
t
e · concat ct−1, xt(􏼁 + b

t
e􏼐 􏼑, (10)

where Wt
e and bt

e are the parameters of memory cell state
transition. Assume the intermediate state of the memory cell
at time t-1 is Bt−1.,e recording of 􏽥B(t) and the forgetting of
Bt−1 are controlled by I(t) and F(t), respectively. Let ⊗
denote the defined gating transformation; then, at the next
moment, the updated intermediate state Bt can be expressed
as follows:

Bt � F(t)⊗Bt−1 + I(t)⊗ 􏽥B(t). (11)

,e output gate O(t) controls the actual information
passing through the intermediate state Bt. ,en, the formula
to obtain the final output ct is as follows:

ct � O(t)⊗ tanh Bt(􏼁. (12)

In addition to the learnable weight W and bias b, the
calculation of ct has three key parameters: the input vector
dimension, the state dimension of the intermediate layer,
and the number of memory cell layers. In particular, the
input vector dimension is consistent with the received data
n′. ,e middle layer’s state dimension determines memory
cells’ learning ability. It is set to 32 to cover as many patterns
as possible. ,e internal recursive structure of LSTM makes
nonparallel operations more complicated. Noticeably, the
excellent extraction ability of LSTMmakes it unnecessary to
stack too many layers in practical applications. For example,
Google Translate only requires no more than eight layers to
complete the vast majority of bidirectional translation tasks

…1 K

σ1
ij σ2

ij

σ3
ij σ4

ij

σ1
ij σ2

ij

σ3
ij σ4

ij

ní ní ní

mean ()

Figure 5: Flow mechanism of the information aggregation based
on attention coefficients in GAT.

Topology features

hi

…
…

1

…

K

…

…
…

1

…

K

1 L

S0

X0

y0

St

Xt

yt

…

W1 …

… …
Attack

Slow Fast

GAT layers
LSTM Dense layer

Input

Normal

h1

hj

Figure 3: Overall architecture of the deep learning model GLD-Net.

ni +

+

+

w

w

w

w

Soft
max

n1
j u1

ij

n2
j u2

ij S
→T

S
→T

S
→Tn3

j u3
ij

n4
j u4

ij

σ1
ij

σ2
ij

σ3
ij

σ4
ij

{eij}

Figure 4: Information transfer process of the attention coefficient
calculation in GAT.

8 Computational Intelligence and Neuroscience

[52]. In this study, when the number of memory cell layers is
set to 3, the correlation extraction of DDoS data can be
satisfied.

3.2.3. Dense Layer. ,e previous chapter realized the fusion
of sequence information. ,en, in this part, the final eval-
uation value will be obtained based on information aggre-
gation. In Figure 3, LSTM is followed by fully connected
layers, constituting a classifier with the dropout layer and
activation function. GAT and LSTM map the DDoS raw
sample to the feature space. ,en, the fully connected layer
maps the learned feature representation to the DDoS label
space. ,e dense layers are set to 3 to learn nonlinear
correlation [53]. ,e number of neurons in each layer is 128,
64, and 32, considering the running efficiency and learning
ability. We also add dropout layers after the first and second
layers to avoid overfitting. In testing, the removal probability
was set to 0.3 to improve the model’s generalization ability.
Distinguishing the attack type (slow or fast) is a multi-
classification problem. Softmax is selected to assign prob-
abilities between 0 and 1 for different input samples. ,e
formula is as follows:

Pi � softmax ci(􏼁 �
e

ci

􏽐ie
ci

. (13)

,is model belongs to supervised learning. Labels allow
the model to use the feedback value of the cross-entropy loss
function to correct errors during the back propagation. ,e
weights and biases are updated layer by layer to approximate
the expectation. Training ends when all iterations are over.
Training is done multiple times, and the best performing
parameters are saved for fast classification.

4. Experiment

In this section, we elaborate on the implementation and
evaluation details of the proposed method. First, running
environments are illustrated to enhance the reproducibility
of results. Secondly, training datasets are selected, and data
preprocessing is given. ,en, measures including accuracy,
recall, precision, and F1-score are used to evaluate the ef-
fectiveness of detection methods. Finally, compared with
baselines and state-of-the-art techniques, the performance of
the proposed method is verified, and its efficiency is ex-
amined. Further, the correlation between the detection value
and the source distribution is also analyzed.

4.1. Running Environment. ,e experiments were run on a
Windows 10 workstation with Intel Core i7-12700H 4.7GHz
processor, 32GB RAM, 512GB SSD, andNVIDIA RTX 3060
graphics card. ,e GLD-Net model uses Python 3.5 as the
programming language and adopts Keras as the deep
learning framework to improve portability. Keras provides
structured modules and connects to the GPU for acceler-
ation via the backend engine TensorFlow’s cuDNN library.
Additionally, libraries such as Pickle, NumPy, and SciPy are
loaded to enhance the efficiency of algorithms.

4.2. Datasets. Commonly used cybersecurity datasets include
NSL-KDD2009 [54], CIC-IDS2017 [55], CIC-IDS2018 [56],
and CIC-DDoS2019 [57]. In particular, CIC-IDS2018 and
CIC-DDoS2019 simulate DDoS attacks through point-to-
point transmission and lack topology characterization, which
cannotmeet the needs of this study. In addition to the 76 basic
features collected based on CICFlowMeter, CIC-IDS2017
includes the timestamp, source IP and port, destination IP
and port, protocol, and attack type. Topology structures in
different periods can be obtained through the connection
relationship’s change between the source and destination IPs.
Although IPs are not added in NSL-KDD2009, they can be
obtained by parsing the original pcap of DARPA 98 and
associated with the traffic record. ,erefore, this study
chooses two public datasets, NSL-KDD2009 and CIC-
IDS2017, as the experimental datasets. ,e attack on the fifth
day of CIC-IDS2017 was a DDoS attack, and its traffic was
recorded in “Friday-WorkingHours-Afternoon-DDos.pca-
p_ISCX.csv.” ,e topology change is illustrated by taking
every 50 traffic records of the fifth day as a unit. Further, four
destination IPs, 192.168.10.25/3/50/9, are selected as exam-
ples, as shown in Figure 6.

In Figure 6, a typical DDoS topology A-B-C appears in
period 51∼100. Compared with the other two periods, the
topology has changed significantly. From the number, there
is a jump change 2-3-2; from the structure, there are different
connection relationships: one-to-one, many-to-one, and
one-to-many. ,e connections with the same source or
destination address at various stages are also distinct. In
brief, the topological changes like Figure 6 in the dataset can
support the validation of the findings of this study.

,e first dataset, NSL-KDD2009, is an improved ver-
sion of KDD99 [58]. It optimizes some inherent problems
of KDD99, such as the repeated identical records, missing
data, and disproportionate training and testing data. ,is
dataset covers 39 conventional attack methods, including
six information gathering (probe), ten blocking attacks
(DDoS), nine privilege acquisition (U2L), and 14 remote
logins (R2L). Its traffic composition is shown in Table 2,
where the bold characters indicate the attack types of the
training data.

,e second dataset, CIC-IDS2017, was developed by
Sharafaldin et al. [59] to implement real network traffic
collection based on user behavior simulation. It optimizes
NSL-KDD2009 by adding the latest attack methods,
expanding the feature set, and adding metadata. Fourteen
new attack methods are included: two information gath-
ering, six DDoS attacks, three privilege acquisition, and
three remote logins. ,e dataset is not differentiated by
training and test data but by acquisition period. Table 3
describes its composition.

4.3. Preprocessing. DDoS-related traffic records are
extracted from NSL-KDD2009 and CIC-IDS2017 and
classified according to different attack principles, as shown
in Table 4. Due to erroneous data, improper formatting, and
redundancy, these two datasets require preprocessing before
neural network training.

Computational Intelligence and Neuroscience 9

First, non-numeric features are standardized. ,ere are
two types of non-numeric features in the dataset: irrelevant
and categorical strings. ,e former, such as Flow ID, Source
IP/Port, Destination IP/Port, and Timestamp in CIC-
IDS2017, have nothing to do with flow characterization and
are removed from the dataset. For the latter, such as pro-
tocol_type, service, and flag in NSL-KDD2009, its classifi-
cation includes detection information, which must be

converted before use. ,ere are two standard methods of
string conversion: one-hot and normalized encoding [60].
One-hot sparse matrix has an enormous dimension and low
computational efficiency. ,is study uses continuous inte-
gers [0,1,2, ...] to encode the classification and map it be-
tween zero and one through normalization.

Secondly, the classification labels are digitized. Unlike
categorical features, the Euclidean distance between labels

Topology I Topology II Topology III

192.168.10.25
192.168.10.3

192.168.10.50

192.168.10.3

192.168.10.50

192.168.10.15121.29.54.141
192.168.10.14

192.168.10.16
192.168.10.12

192.168.10.16

192.168.10.9
151.101.0.166

1~50 51~100 101~150Flow serial
number

172.217.11.1

172.217.12.162

172.217.9.232

Figure 6: Example of topology structure changing in CIC-IDS2017.

Input: NetFlow items F � f1, f2, · · · , fs􏼈 􏼉, connection relationship C � < nu⟶ nv > between node pair (nu, nv) in node set N,
time series T � t1, t2, · · · , tm􏼈 􏼉

Output: network structure graph G of node and edge distribution based on time series
(1) Initialize graph G � G1 ∪G2 ∪ · · · ∪Gm, normalize traffic F, create mapping table N⟶CF;
(2) set edge list P �, time segment serial number i, item serial number j, items’ quantity num;
(3) for (i � 1; i≤m; i + +) do
(4) num� 0;
(5) for (start_time(fj) � Δt · (i − 1); end_time(fj)≤Δt · i; j + +). do
(6) if 􏽐

j−1
o�1to < Start_time(fj ∈ F)

�����End_time(fj ∈ F)< 􏽐
j
o�1 to. then

(7) Calculate the total time 􏽥T and average time T that fall into period ti;
(8) num � num + 1;
(9) P.append(num);
(10) extract features on ti, such as duration, interval, and bits;
(11) save as edgei

num � table(attr1, attr2, · · · , attrs), Ci
num � <Nsrc⟶ Nde s > ;

(12) for (i � 1; i≤m; i + +) do
(13) for (j � 1; j≤p[i − 1]; j + +)do
(14) if graph Gm does not contain node Nsrc or Ndes of Ci

j then
(15) add edge 〈Nsrc, Ndes〉 to graph Gm;
(16) if graph Gm contains the edge between Nsrc and Ndes then
(17) add extracted time attributes edgei

num to the edge 〈Nsrc, Ndes〉;
(18) else
(19) create an edge between Nsrc and Ndes;
(20) add extracted time attributes edgei

num to the edge 〈Nsrc, Ndes〉;
(21) return G

ALGORITHM 1: Construction of dynamic DDoS topology graph based on time series.

Table 2: Traffic composition of the NSL-KDD2009 dataset.

Type Attack method
Benign normal
Probe ipsweep, mscan, nmap, portsweep, saint, satan
DDoS apache2, back, land, mailbomb, neptune, pod, processtable, smurf, teardrop, udpstrom
U2L bufferoverflow, loadmodule, perl, ps, rootkit, snmpguess, sqlattack, worm, xterm

R2L ftp_write, guesspasswd, httptunnel, imap, multihop, named, phf, spy, sendmail, snmpgetattack, warezclient, warezmaster,
xlock

10 Computational Intelligence and Neuroscience

used for error metrics cannot be represented by consecutive
integers with uneven differences. After one-hot encoding,
the distance between categories is the same and easy to
matrix transformation. ,erefore, we choose one hot to
represent labels for efficient loss function computation.
,en, the labels translate to normal traffic (1,0,0), fast traffic
(0,1,0), and slow traffic (0,0,1). ,e columns marked with
one here represent the corresponding classifications.

,irdly, the invalid data are removed. ,ere are two
types of useless data: useless row or column data. Useless
row data include rows containing ambiguous characters
“NaN” and “Infinity.” Useless column data include the
column where the 43rd feature “success_pred” of NSL-
KDD2009 is located. ,is feature denotes the number of
correct predictions, regardless of traffic attributes. Both are
deleted from the dataset directly.

Finally, topological features are extracted and normal-
ized. According to Algorithm 1, the topological structure
data are obtained. We use min-max to normalize features to
cancel the influence of different scales. xmin and xmax are
used to represent the minimum and maximum values of
feature x, respectively, and its calculation formula is as
follows:

􏽥x �
x − xmin

xmax − xmin
. (14)

After the above processing, NSL-KDD2009 is trans-
formed into a matrix consisting of 41 features and 45927
moments. CIC-IDS2017 is transformed into a matrix
composed of 77 elements, with a total of 2827876 moments.
,e values in each matrix are between 0 and 1; then, we get
normalized input data that are easy for deep learning ar-
chitectures to process.

4.4. Performance Metrics. ,e detection accuracy verifica-
tion of the proposed method includes distinguishing be-
tween background traffic and attack traffic and between
regular traffic, fast attack traffic, and slow attack traffic. ,e
former is a two-class problem, and the latter is a three-class
problem. ,e two have different fine-grained partitions, so
we use the targeted evaluation criteria to measure. For
binary classification, the indicators are established through
the confusion matrix, which has four essential components:
true positive (TP), false positive (FP), true negative (TN),
and false negative (FN). TP refers to the correct classifi-
cation of positive samples as positive classes; FP is the
proportion of negative samples misidentified as positive
classes; TN refers to the correct classification of negative
samples as negative classes; and FN refers to the mis-
classification of positive samples as negative classes. Based
on the combination of these parts, we can get four per-
formance metrics: precision, recall, precision, and F1-
score. In particular, accuracy is the proportion of correctly
classified samples xcorrect to the total samples xtotal. ,e
formula can be expressed as follows:

accuracy �
xcorrect

xtotal

�
TP + TN

TP + TN + FP + FN
. (15)

Recall is the ratio of correctly classified positive samples
xcorrect to the total positive samples xtotal. Its calculation is as
follows:

recall �
xcorrect

xtotal

�
TP

TP + FN
. (16)

Precision is the ratio of the correctly classified positive
samples xcorrect to the detected positive samples xtotal+ . ,e
formula is expressed as follows:

Table 3: Traffic composition of the CIC-IDS2017 dataset.

Type Attack method
Benign BENIGN
Probe Heartbleed, PortScan
DDoS DoS Hulk, DDoS, DoS GoldEye, DoS slowloris, DoS Slowhttptest, bot
U2L Web Attack-XSS, Infiltration, Web Attack-Sql Injection
R2L FTP-Patator, SSH-Patator, Web Attack-Brute Force

Table 4: Number and classification of DDoS-related traffic records.

Datasets Attack method Sort Number Total

NSL-KDD 2009

0. normal Normal 0 67,343

113,270

1. neptune
Fast flow (1,2,3)

41,214
2. pod 201
3. smurf 2,646
4. back

Slow flow (4,5,6)
956

5. land 18
6. teardrop 892

CIC-IDS 2017

0. BENIGN Normal 0 2,273,097

2,655,751

1. bot

Fast flow (1,2,3,4)

1,966
2. DoS Hulk 231,073
3. DDoS 128,027

4. DoS GoldEye 10,293
5. DoS slowloris Slow flow (5,6) 5,796

6. DoS Slowhttptest 5,499

Computational Intelligence and Neuroscience 11

precision �
xcorrect

xtotal+
�

TP

TP + FP
. (17)

F1-score refers to the weighted harmonic mean of recall
and precision. It is used to measure the relative stability of
the two. Its formula is as follows:

F1 − score �
recall− 1 + precision− 1

2
􏼠 􏼡

− 1

�
2TP

2TP + FP + FN
.

(18)

For triple classification, we adopt comprehensive metrics
to measure the overall performance of the detection method,
such as macro-average and micro-average. In particular, the
macro-average calculates the mean of the metrics under all
categories; the micro-average is an extension of the two-
category metrics. Considering all class effects, we choose the
macro-average as the three-class measure. Let n denote the
number of classifications and Xi denote the ith value of
indicator X, and the formula is as follows:

Macro X �
1
n

􏽘

n

i�1
Xi. (19)

Furthermore, this study also studies the relationship
between the evaluation result and the distribution of attack
source IPs. ,e Pearson coefficient is used as the correlation
measure. Let cov(X, Y), σx, and σy denote the formulas for
calculating the covariance and variance of variables x and y,
respectively, and E(X) and E(Y) denote the expectation
calculation. Its formula is as follows:

ρ(x, y) �
cov(X, Y)

σxσy

�
E(XY) − E(X)E(Y)

�������������
E X

2
􏼐 􏼑 − E

2
(X)

􏽱 �������������
E Y

2
􏼐 􏼑 − E

2
(Y)

􏽱 . (20)

4.5. Results and Analysis. As shown in Table 4, the traffic
composition of NSL-KDD2009 and CIC-IDS2017 is quite
different. For these imbalanced datasets, 10-fold cross-val-
idation is used for optimization. ,is method divides the
sample into ten equal subsamples, sequentially uses one part
for testing and the remaining nine parts for training, and
takes the average of 10 times as the final result.

Testing the same method on different datasets may yield
different results. ,erefore, all DDoS detection methods are
validated on the same dataset for comparative effectiveness.
In addition, the same features in Table 1 were chosen for
training for control variables.

,e experiment consists of four parts: the comparison of
two-classification methods, the comparison of three-clas-
sification methods, the correlation analysis of source IP
distribution, and the analysis of method performance. Two-
classification and three-classificationmethods are not always
the same. ,erefore, different baselines and state-of-the-art
methods are selected as the comparison objects for the two
comparison experiments.

4.5.1. Two-Classification Experiment. We choose six base-
line and state-of-the-art methods as comparison objects in

the binary classification experiment. In particular, baselines
include the statistical method NaHiD [22], machine learning
SKM-HFS [25], and random forest [26]; the latest methods
include LUCID [30], DDoSNet [9], and BI-LSTM-GMM
[34]. Baselines are reproduced with the Python library. In
particular, NaHiD is obtained according to the mean and
standard deviation of NumPy. SKM-HFS and random forest
are calculated according to scikit-learn. ,ese methods do
not support GPU, so all baselines run on CPU. Furthermore,
deep learning runs on GPU and compares the efficiency.

First, on NSL-KDD2009, GLD-Net is compared with six
other means to verify binary classification performance. ,e
epochs are set to 100, and the results are shown in Figure 7.
As shown in Figure 7, these methods have different effects.
Random forest achieves the best performance among the
baselines with an accuracy of 0.896. ,e three deep learning
methods show better detection performance with scores all
above 0.9. In particular, BI-LSTM-GMM achieved the
highest accuracy of 0.97 among the three. GLD-Net per-
forms the highest metric on four indicators compared with
the above techniques. Its accuracy reaches 0.991, which is
0.205 and 0.021 higher than the baselines and BI-LSTM-
GMM, respectively.

Secondly, we also conducted a binary classification
comparison experiment on CIC-IDS2017, and the result is
shown in Figure 8. As shown in Figure 8, there is a significant
gap between different methods. NaHiD still performs
poorly, with both precision and recall not exceeding 0.65.
,e accuracy of deep learning is excellent, all exceeding 0.95.
Compared with the other six methods, GLD-Net achieves
the best performance, 0.191 and 0.0101 higher than the
baseline and BI-LSTM-GMM.

Finally, we compare the accuracy distributions of GLD-
Net and the three newest methods on two classifications, as
shown in Figure 9. From Figure 9, GLD-Net has the highest
accuracy and a concentrated distribution across multiple
tests. ,e upper and lower quartile distances of LUCID and
DDoSNet exceed 0.01, and the gap between the maximum
and the minimum is close to 0.02. In contrast, the quantile
distance of GLD-Net is only 0.003, more than four times
lower than the average distance of 0.014 of other newest
methods, showing the stability of the attack detection.

In summary, the accuracy of GLD-Net on NSL-KDD2009
and CIC-IDS2017 reaches 0.9914 and 0.9942, respectively.
Compared with the latest methods, its average improvements
are 0.021 and 0.0101; its stability increases four times, showing
the best detection performance and stability.

4.5.2. ;ree-Classification Experiment. Given the low pre-
cision, statistical methods are usually not used to solve multi-
classification problems.We choose five baselines and state-of-
the-art methods as comparison objects in three-classification
experiments. Among them, the baseline methods include
decision tree [27] and random forest [26], and the latest
methods include Stacked-DNN [36], FastGRNN [37], and
ResNet [38]. Baselines are calculated according to scikit-learn.

First, we compare the three-classification performance of
GLD-Net and five other methods on NSL-KDD2009. ,e

12 Computational Intelligence and Neuroscience

0.786097
0.691

0.772

0.896

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.954 0.962 0.97 0.991

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 (%
)

S-H RF LUC DNet GMM GLDNaH
Methods

(a)

0.667

0.823 0.817

0.954 0.96 0.972 0.994

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
ca

ll
(%

)

S-H RF LUC DNet GMM GLDNaH
Methods

(b)

0.814 0.805 0.838
0.918 0.92 0.963 0.988

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

 (%
)

S-H RF LUC DNet GMM GLDNaH
Methods

(c)

0.733
0.814 0.827

0.936 0.94 0.968 0.991

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-s

co
re

 (%
)

S-H RF LUC DNet GMM GLDNaH
Methods

(d)

Figure 7: Comparison of binary classification performance between GLD-Net and other six methods on NSL-KDD2009.

0.803222

0.643

0.846
0.921 0.974 0.982 0.984 0.994

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

 (%
)

S-H RF LUC DNet GMM GLDNaH
Methods

(a)

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.578

0.792
0.884

0.971 0.983 0.986 0.989

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Re
ca

ll
(%

)

S-H RF LUC DNet GMM GLDNaH
Methods

(b)

Figure 8: Continued.

Computational Intelligence and Neuroscience 13

results are shown in Figure 10. As shown in Figure 10, GLD-
Net achieves the best three-classification performance
compared with other methods. Its macro-accuracy reaches
0.958, an average improvement of 0.174 and 0.047 over
baselines and the newest techniques.

Secondly, based on CIC-IDS2017, the three-classification
experiment was performed, and the results are shown in
Figure 11. As shown in Figure 11, GLD-Net achieves the best
performance, with the accuracy and F1-score reaching 0.925
and 0.924, respectively. Compared to Figure 10, deep
learning performance degrades partly due to varying traffic
types in datasets. Compared with baselines and the newest
methods’ averages, GLD-Net improves the accuracy by 0.131
and 0.019, respectively.

Finally, we compare the difference in the confusion
matrix among GLD-Net and three other methods, as shown
in Figure 12. ,e colors in the graph range from white to
blue, representing accuracy from 0 to 1.0. ,e darker the
blue, the higher the ratio. As shown in Figure 12, GLD-Net

achieves good results in traffic type detection, and TP ex-
ceeds 0.9. While the normal flow of decision tree, slow flow
of random forest, and fast flow of ResNet have lower TP,
which is 0.62, 0.75, and 0.86, respectively. Detection based
on GLD-Net has better balance and can meet the needs of
fine-grained discrimination.

Compared with the state-of-the-art methods, the three-
class accuracy of GLD-Net is improved by 0.047 and 0.02,
respectively. Its availability is also increased by 0.023,
showing better performance and broad applicability.

4.5.3. Distribution Correlation Analysis. First, the correla-
tion between TP of attack detection and the number of
attack source IPs is investigated. ,e results are shown in
Figure 13. It can be seen from Figure 13 that there is a
positive correlation between the TP of GLD-Net and the
number of attack source IPs. Its Pearson coefficient is 0.789;
greater than 0.75 shows a strong correlation.

Secondly, the correlation between TP and the IP hop
count (the average hop count of all leaf nodes) is examined.
,e result is shown in Figure 14. As shown in Figure 14, a
positive correlation exists between TP and IP hops’ numbers
using GLD-Net.,e Pearson coefficient is 0.695, close to 0.7,
indicating that the two have specific relevance.

,irdly, at the network level, the number of subnets [61]
and closeness centrality [62] are used to investigate the
aggregation and distribution of attack sources. ,e results
are shown in Figure 15. It can be seen from Figure 15 that the
number of subnetworks and closeness centrality increase
with the rise of TP. After 200 cycles of calculation and taking
the mean value, the Pearson coefficients obtained are 0.812
and 0.834, respectively, and over 0.8 indicates a strong
correlation.

Finally, GLD-Net is compared with other detection
methods using non-topological features as input in the
correlation between TP and attack source IP number, hop
number, subnet number, and closeness centrality. ,e results

0.762
0.866

0.913
0.966 0.976 0.985 0.995

NaH
S-H
RF

LUC
DNet

GMM
GLD

S-H RF LUC DNet GMM GLDNaH
Methods

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
ec

isi
on

 (%
)

(c)

0.657

0.827
0.898

0.968 0.98 0.985 0.992

NaH
S-H
RF

LUC
DNet

GMM
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

F1
-s

co
re

 (%
)

S-H RF LUC DNet GMM GLDNaH
Methods

(d)

Figure 8: Comparison of binary classification performance between GLD-Net and other six methods on CIC-IDS2017.

LUCID
DDoSNet

GMM
GLD-Net

0.94

0.95

0.96

0.97

0.98

0.99

1

Ac
cu

ra
cy

 (%
)

Figure 9: Performance distribution comparison between GLD-Net
and three state-of-the-art methods.

14 Computational Intelligence and Neuroscience

0.784421
0.721

0.847 0.872
0.922 0.94 0.958

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_A

cc
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(a)

0.731
0.819

0.876 0.893 0.923 0.959

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_R

ec
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(b)

0.741
0.839 0.88 0.92 0.946 0.952

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_P

re
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(c)

0.736
0.829

0.878 0.906 0.934 0.955

DT
RF
SNN

GRNN
RNet
GLD

RF SNN GRNN RNet GLDDT
Methods

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_F

1
(%

)

(d)

Figure 10: ,ree-class performance comparison of GLD-Net and other five methods on NSL-KDD2009.

0.723
0.794294 0.866 0.902 0.901 0.912 0.925

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_A

cc
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(a)

0.744
0.855 0.897 0.904 0.918 0.927

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_R

ec
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(b)

Figure 11: Continued.

Computational Intelligence and Neuroscience 15

0.93 0.042 0.1

0.00350.039

0.0090.027

0.95

0.9slow

fast

normal

Pr
ed

ic
t

slownormal fast
True

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a)

0.06 0.022

0.041

0.0840.029

0.0088

0.96

0.94

0.86

slow

fast

normal

Pr
ed

ic
t

slownormal fast
True

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

0.17 0.11

0.076

0.0340.15

0.23

0.62

0.8

0.82slow

fast

normal

Pr
ed

ic
t

slownormal fast
True

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)

0.065 0.24

0.01

0.00410.048

0.071

0.88

0.93

0.75slow

fast

normal

Pr
ed

ic
t

slownormal fast
True

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(d)

Figure 12: Confusion matrix of GLD-Net and three other methods for three-class detection. (a) GLD-Net. (b) ResNet. (c) Decision tree. (d)
Random forest.

0.723

0.872 0.905 0.901 0.911 0.921

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_P

re
 (%

)

RF SNN GRNN RNet GLDDT
Methods

(c)

0.733

0.863 0.901 0.902 0.914 0.924

DT
RF
SNN

GRNN
RNet
GLD

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
ar

co
_F

1
(%

)

RF SNN GRNN RNet GLDDT
Methods

(d)

Figure 11: ,ree-class performance comparison of GLD-Net and other five methods on CIC-IDS2017.

16 Computational Intelligence and Neuroscience

are shown in Figure 16. It can be seen from Figure 16 that the
correlation coefficients of the comparative methods are pri-
marily in the range 0.3∼0.5. ,e correlation coefficients of
GLD-Net fall on the interval 0.7∼0.83, and the average in-
creases in the four correlations are 0.441, 0.36, 0.393, and
0.391, respectively. ,e rise of around 0.4 shows that GLD-
Net is more capable of inferring the distribution of attack
sources based on the detection results than other methods.

In short, we found that the four attack source distri-
bution indicators have correlation coefficients with TP of

GLD-Net reaching 0.789, 0.695, 0.812, and 0.834, respec-
tively. Compared with other methods that take non-topo-
logical features as input, the average improvement is 0.441,
0.36, 0.393, and 0.391, respectively. ,e strong correlation of
0.7∼0.83 supports using the evaluation result to infer the
distribution of attack sources. For example, when TP is 0.8,
combined with Figures 13–15, it can be deduced that the

Accuracy

Number of subnets
Closeness centrality

0
2
4
6
8

10
12
14
16

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 15: Variation trend of detection TP, number of subnets, and
closeness centrality of GLD-Net.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

2-class GLD
3-class GLD

2-class GMM
3-class RNet

Figure 17: Comparison of accuracy trends of GLD-Net and other
methods on two-classification and three-classification detection
during 100 epoch training.

0

200

400

600

800

1000

1200

1400

NaHiD S-H RF LUCID SNN ResNet GLD-Net

Training time
Testing time

Figure 18: Comparison of training and testing times for GLD-Net
and other six standard methods.

N
um

be
r o

f I
Ps

0

100

200

300

400

500

600

0.2 0.4 0.6 0.8 10
Accuracy

Figure 13: Correlation between TP and IP number under GLD-
Net.

0

2

4

6

8

10

12

N
um

be
r o

f I
P

ho
ps

0.2 0.4 0.6 0.8 10
Accuracy

Figure 14: Correlation between TP and IP hop count under GLD-
Net.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

NaHiD DT RF DDoSNet GMM ResNet GLD-Net

Number of IPs
Number of subnets

Number of IP hops
Closeness centrality

Figure 16: Comparison of correlation coefficients between GLD-
Net and other six methods for detecting TP and four distribution
metrics.

Computational Intelligence and Neuroscience 17

attack source IPs’ number is around 350, hops’ number is 7,
subnets’ number is 12, and closeness centrality is 0.59.

4.5.4. Efficiency Analysis. First, we investigate the accuracy
variation of GLD-Net during 100 epochs. We choose BI-
LSTM-GMMand ResNet as the two-classification and three-
classification comparison objects. ,e results are shown in
Figure 17. It can be seen from Figure 17 that the accuracy of
BI-LSTM-GMM and ResNet tends to be stable at the 22nd
and 28th epochs, respectively. ,e accuracy of GLD-Net
gradually stabilized at the 11th or 16th epoch. In contrast,
our proposed model can converge faster and achieve better
performance.

Secondly, we also analyze the training and testing time of
GLD-Net. We selected six other methods for comparison,
and the result is shown in Figure 18. As shown in Figure 18,
the average training time of GLD-Net reaches 1312 s, 4.14
times that of random forest and 1.59 times that of ResNet.
,e test time of GLD-Net is 107 s, which is 8.16% of its
training time and 50.47% of random forest. ,e results show
that although the training time is slightly longer than other
deep learning methods, the test time is still within the
tolerance range. ,is overhead is worthwhile compared with
the improved accuracy.

To summarize, GLD-Net converges in 11 or 16 epochs in
binary or multi-classification, an average of 11.5 epochs
ahead of the best other methods. ,e average training and
testing times of GLD-Net are 1312 s and 107 s, respectively.
Its training time is 4.14 times that of random forest; the test
time is only 50.47% of that of random forest, indicating the
better practical efficiency of GLD-Net.

5. Conclusions

In this study, we propose GLD-Net, a new deep learning
DDoS attack detection method based on topological and
flow features. A graph model is introduced for feature
extraction. Traffic features are added to edge features, and
node features represent topological features. A dynamic
DDoS topology feature construction algorithm is pro-
posed by calculating the feature table and mapping to-
pological entities on the time series. For non-Euclidean
input, GATmines complex topological relationships, and
LSTM extracts sequence correlation in vectors. Finally,
the fully connected layer obtains the traffic type through
data integration. ,e experimental results show that
DDoS detection with topology and flow features as input
can solve the problem of limited accuracy due to in-
complete feature input. It can also estimate the distri-
bution of attack sources based on the detection results,
which facilitates the rapid and accurate deployment of
subsequent security strategies. In the future, we also need
to design a more fine-grained differentiation model for
different traffic types and explore unknown traffic dis-
covery techniques. ,ese related researches will expand
the scope of application to escort system security in the
current increasingly complex network confrontation
situation.

6. Future Research

We verified the effectiveness of the proposed DDoS detec-
tion method GLD-Net through comparative experiments on
two network security datasets. Nevertheless, there are still
the following issues to be studied.

Question 1. We mainly verify the method’s performance in
distinguishing normal, fast, and slow traffic for the multi-
classification. Whether this method is suitable for more fine-
grained differentiation, such as HTTP applications, requires
further verification.

Question 2. ,e neighborhood computation efficiency of
GAT is not high, and it cannot cope with real-time training.
Next, we need to study a lightweight GAT structure to
improve the execution speed.

Question 3. ,is research mainly focuses on relationship
mining in the existing traffic. It cannot discover unknown
traffic such as 0-day attacks. ,erefore, it is necessary to
study novel deep learning methods that simultaneously
identify known and anonymous traffic.

Data Availability

,e NSL-KDD2009 and CIC-IDS2017 datasets used to
support the finding of this study are included within the
article.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this study.

Acknowledgments

,e authors thank the deep learning team of the State Key
Laboratory of Mathematical Engineering and Advanced
Computing for their help and encouragement. Primarily, Dr.
Qiu proposed significant revisions for the experiments in
this article.

References

[1] H. Abusaimeh, “Distributed denial of service attacks in cloud
computing,” International Journal of Advanced Computer
Science and Applications, vol. 11, no. 6, 2020.

[2] A. Agarwal, M. Khari, and R. Singh, “Detection of DDOS
Attack Using Deep Learning Model in Cloud Storage Ap-
plication,” Wireless Personal Communications, 2021.

[3] F. Alatawi, “Defense mechanisms against distributed denial of
service attacks: comparative review,” Journal of Information
Security and Cybercrimes Research, vol. 4, no. 1, pp. 81–94,
2021.

[4] Z. Wu, Q. Wei, K. Ren, and Q. Wang, “Dynamic defense for
DDoS attack using openflow-based switch shuffling ap-
proach,” Dianzi Yu Xinxi Xuebao/Journal of Electronics and
Information Technology, vol. 39, no. 2, 2017.

[5] K. Singh, K. Singh Dhindsa, and B. Bhushan, “Distributed
Defense: An Edge over Centralized Defense against DDos

18 Computational Intelligence and Neuroscience

Attacks,” International Journal of Computer Network and
Information Security, vol. 9, 2017.

[6] Y. Liu, T. Zhi, M. Shen, L. Wang, Y. Li, and M. Wan,
“Software-defined DDoS detection with information entropy
analysis and optimized deep learning,” Future Generation
Computer Systems, vol. 129, pp. 99–114.

[7] M. Mittal, K. Kumar, and S. Behal, “Deep Learning Ap-
proaches for Detecting DDoS Attacks: A Systematic Review,”
Soft Computing, 2022.

[8] A. Pektaş and T. Acarman, “Deep learning to detect botnet via
network flow summaries,” Neural Computing & Applications,
vol. 31, no. 11, pp. 8021–8033, 2019.

[9] M. S. Elsayed, N. A. Le-Khac, S. Dev, and A. D. Jurcut,
DDoSNet: A Deep-Learning Model for Detecting Network
Attacks, in Proceedings of the 2020 IEEE 21st International
Symposium on “A World of Wireless, Mobile and Multimedia
Networks” (WoWMoM), Cork, Ireland, Augest2020.

[10] J. He, Y. Tan, W. Guo, and M. Xian, “A Small Sample DDoS
Attack Detection Method Based on Deep Transfer Learning,”
in Proceedings of the 2020 International Conference on
Computer Communication and Network Security (CCNS),
Xi’an, China, Augest2020.

[11] C. Liaskos and S. Ioannidis, “Network topology effects on the
detectability of crossfire attacks,” IEEE Transactions on In-
formation Forensics and Security, vol. 13, no. 7, pp. 1682–1695,
2018.

[12] K. Sharma and A. Mukhopadhyay, “Kernel naı̈ve Bayes
classifier-based cyber-risk assessment and mitigation frame-
work for online gaming platforms,” Journal of Organizational
Computing & Electronic Commerce, vol. 31, no. 4, pp. 343–
363, 2021.

[13] Q. Shafi and A. Basit, “DDoS Botnet Prevention Using
Blockchain in Software Defined Internet of ,ings,” in Pro-
ceedings of the 2019 16th International Bhurban Conference on
Applied Sciences and Technology (IBCAST), Islamabad,
Pakistan, Janunary2019.

[14] P. Veličković, A. Casanova, P. Liò, G. Cucurull, A. Romero,
and Y. Bengio, “Graph Attention Networks,” 2018, https://
arxiv.org/abs/1710.10903.

[15] C. Zhang, J. Cheng, X. Tang, V. S Sheng, Z. Dong, and J. Li,
“Novel DDoS feature representation model combining deep
belief network and canonical correlation analysis,” Com-
puters, Materials & Continua, vol. 61, no. 2, pp. 657–675, 2019.

[16] Y. Cui, Q. Qian, C. Guo et al., “Towards DDoS detection
mechanisms in Software-Defined Networking,” Journal of
Network and Computer Applications, vol. 190, Article ID
103156.

[17] X. Yuan, C. Li, and X. Li, “DeepDefense: Identifying DDoS
Attack via Deep Learning,” in Proceedings of the 2017 IEEE
International Conference on Smart Computing
(SMARTCOMP), Hong Kong, China, May 2017.

[18] M. Idhammad, K. Afdel, and M. Belouch, “Semi-supervised
machine learning approach for DDoS detection,” Applied
Intelligence, vol. 48, no. 10, pp. 3193–3208, 2018.

[19] R. Doshi, N. Apthorpe, and N. Feamster, “Machine Learning
DDoSDetection for Consumer Internet of,ings Devices,” in
Proceedings of the 2018 IEEE Security and Privacy Workshops
(SPW), Francisco, CA, USA, May 2018.

[20] F. S. De Lima Filho, F. A. F. Silveira, A.DeMedeiros Brito Junior,
G. Vargas-Solar, and L. F. Silveira, “Smart Detection: An Online
Approach for DoS/DDoS Attack Detection Using Machine
Learning,” Security and Communication Networks, 2019.

[21] R. K. Chouhan, M. Atulkar, and N. K. Nagwani, “A
Framework to Detect DDoS Attack in Ryu Controller Based

Software Defined Networks Using Feature Extraction and
Classification,” Applied Intelligence, 2022.

[22] N. Hoque, H. Kashyap, and D. K. Bhattacharyya, “Real-time
DDoS attack detection using FPGA,” Computer Communi-
cations, vol. 110, pp. 48–58, 2017.

[23] L. D. Tsobdjou, S. Pierre, and A. Quintero, “An Online En-
tropy-Based DDoS Flooding Attack Detection System with
Dynamic ,reshold,” IEEE Transactions on Network and
Service Management, vol. 19, 2022.

[24] A. Ahalawat, K. S. Babu, A. K. Turuk, and S. Patel, “A low-rate
DDoS detection and mitigation for SDN using Renyi Entropy
with Packet Drop,” Journal of Information Security and Ap-
plications, vol. 68, Article ID 103212, 2022.

[25] Y. Gu, K. Li, Z. Guo, and Y. Wang, “Semi-supervised k-means
ddos detection method using hybrid feature selection algo-
rithm,” IEEE Access, vol. 7, pp. 64351–64365, 2019.

[26] S. Pande, A. Khamparia, D. Gupta, and D. N. H. ,anh,
“DDOS detection using machine learning technique,” in
Studies in Computational Intelligencevol. 921, 2021.

[27] I. Cvitic, D. Perakovic, B. B. Gupta, and K. K. R. Choo,
“Boosting-based DDoS detection in Internet of things sys-
tems,” IEEE Internet of ;ings Journal, vol. 9, no. 3,
pp. 2109–2123, 2022.

[28] S. Kumar, H. G Sastry, V. Marriboyina et al., “Ddos detection
in sdn usingmachine learning techniques,” Computers, Ma-
terials & Continua, vol. 71, no. 1, pp. 771–789, 2022.

[29] X. Liang and T. Znati, “A Long Short-Term Memory Enabled
Framework for DDoS Detection,” in Proceedings of the 2019
IEEE Global Communications Conference (GLOBECOM),
Waikoloa, HI, USA, Decemeber2019.

[30] R. Doriguzzi-Corin, S. Millar, S. Scott-Hayward, J. Martinez-
Del-Rincon, and D. Siracusa, “Lucid: a practical, lightweight
deep learning solution for DDoS attack detection,” IEEE
Transactions on Network and Service Management, vol. 17,
no. 2, pp. 876–889, 2020.

[31] A. E. Cil, K. Yildiz, and A. Buldu, “Detection of DDoS attacks
with feed forward based deep neural network model,” Expert
Systems with Applications, vol. 169, Article ID 114520.

[32] J. Boonchai, K. Kitchat, and S. Nonsiri, “,e classification of
DDoS attacks using deep learning techniques,” in Proceedings
of the 2022 7th International Conference on Business and
Industrial Research, pp. 544–550, 2022.

[33] L.Wang and Y. Liu, “ADDoSAttack DetectionMethod Based
on Information Entropy and Deep Learning in SDN,” in
Proceedings of the 2020 IEEE 4th Information Technology,
Networking, Electronic and Automation Control Conference
(ITNEC), Chongqing, China, June 2020.

[34] C. S. Shieh, W. W. Lin, T. T. Nguyen, C. H. Chen,
M. F. Horng, and D. Miu, “Detection of unknown ddos at-
tacks with deep learning and Gaussian mixture model,”
Applied Sciences, vol. 11, no. 11, p. 5213, 2021.

[35] J. G. Almaraz-Rivera, J. A. Perez-Diaz, and J. A. Cantoral-
Ceballos, “Transport and application layer DDoS attacks
detection to IoT devices by using machine learning and deep
learning models,” Sensors, vol. 22, no. 9, p. 3367, 2022.

[36] P. Toupas, D. Chamou, K. M. Giannoutakis, A. Drosou, and
D. Tzovaras, “An Intrusion Detection System for Multi-Class
Classification Based on Deep Neural Networks,” in Pro-
ceedings of the 2019 18th IEEE International Conference On
Machine Learning And Applications (ICMLA), Boca Raton,
FL, USA, December 2019.

[37] H. Alzahrani, M. Abulkhair, and E. Alkayal, “A multi-class
neural network model for rapid detection of IoT botnet

Computational Intelligence and Neuroscience 19

https://arxiv.org/abs/1710.10903
https://arxiv.org/abs/1710.10903

attacks,” International Journal of Advanced Computer Science
and Applications, vol. 11, no. 7, 2020.

[38] F. Hussain, S. G. Abbas, M. Husnain, U. U. Fayyaz,
F. Shahzad, and G. A. Shah, “IoT DoS and DDoS Attack
Detection Using ResNet,” in Proceedings of the 2020 IEEE 23rd
International Multitopic Conference (INMIC), Bahawalpur,
Pakistan, November2020.

[39] M. Rusyaidi, S. Jaf, and Z. Ibrahim, “Detecting distributed
denial of service in network traffic with deep learning,” In-
ternational Journal of Advanced Computer Science and Ap-
plications, vol. 13, no. 1, 2022.

[40] M. P. Novaes, L. F. Carvalho, J. Lloret, and M. L. Proença,
“Adversarial Deep Learning approach detection and defense
against DDoS attacks in SDN environments,” Future Gen-
eration Computer Systems, vol. 125, pp. 156–167, 2021.

[41] R. Doriguzzi-Corin and D. Siracusa, “FLAD: adaptive fed-
erated learning for DDoS attack detection,” vol. 1–12, 2022,
https://arxiv.org/abs/2205.06661.

[42] A. Lohachab and B. Karambir, “Critical analysis of DDoS—an
emerging security threat over IoT networks,” Journal of
Communications and Information Networks, vol. 3, no. 3,
pp. 57–78, 2018.

[43] H. Kousar, M. M. Mulla, P. Shettar, and D. G. Narayan,
“Detection of DDoS Attacks in Software Defined Network
Using Decision Tree,” in Proceedings of the 2021 10th IEEE
International Conference on Communication Systems and
Network Technologies (CSNT, Bhopal, India, June2021.

[44] J. Liang, J. Chen, X. Zhang, Y. Zhou, and J. Lin, “One-hot
encoding and convolutional neural network based anomaly
detection,” Qinghua Daxue Xuebao/Journal of Tsinghua
University, vol. 59, no. 7, 2019.

[45] A. A. Abdulrahman and M. K. Ibrahem, “Evaluation of DDoS
attacks detection in a new intrusion dataset based on clas-
sification algorithms,” Iraqi Journal of Information & Com-
munications Technology, vol. 1, no. 3, pp. 49–55, 2019.

[46] X. Tang, R. Cao, J. Cheng, D. Fan, and W. Tu, “DDoS attack
detection method based on V-Support vector machine,” in
Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bio-
informatics)vol. 11983, , 2019.

[47] Ö. Kasim, “An efficient and robust deep learning based
network anomaly detection against distributed denial of
service attacks,” Computer Networks, vol. 180, Article ID
107390, 2020.

[48] M. Grassia, M. De Domenico, and G. Mangioni, “Machine
learning dismantling and early-warning signals of disinte-
gration in complex systems,”Nature Communications, vol. 12,
no. 1, p. 5190, 2021.

[49] O. E. Tayfour and M. N. Marsono, “Collaborative detection
and mitigation of DDoS in software-defined networks,” ;e
Journal of Supercomputing, vol. 77, no. 11, pp. 13166–13190,
2021.

[50] X. Zhang, Y. Zou, and W. Shi, “Dilated convolution neural
network with LeakyReLU for environmental sound classifi-
cation,” in Proceedings of the International Conference on
Digital Signal Processing, London, UK, 2017-August.

[51] A. Sherstinsky, “Fundamentals of recurrent neural network
(RNN) and long short-term memory (LSTM) network,”
Physica D: Nonlinear Phenomena, vol. 404, Article ID 132306,
2020.

[52] X. Huang, H. Tan, G. Lin, and Y. Tian, “A LSTM-Based
Bidirectional Translation Model for Optimizing Rare Words
and Terminologies,” in Proceedings of the 2018 International

Conference on Artificial Intelligence and Big Data (ICAIBD),
Chengdu, China, May2018.

[53] L. Zhang, Z. Shi, M. M. Cheng et al., “Nonlinear regression via
deep negative correlation learning,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 43, no. 3,
pp. 982–998, 2021.

[54] L. Dhanabal and S. P. Shantharajah, “A study on NSL-KDD
dataset for intrusion detection system based on classification
algorithms,” International Journal of Advanced Research in
Computer and Communication Engineering, vol. 4, no. 6, 2015.

[55] Y. Zhou, G. Cheng, S. Jiang, and M. Dai, “Building an efficient
intrusion detection system based on feature selection and
ensemble classifier,” Computer Networks, vol. 174, Article ID
107247.

[56] J. L. Leevy and T. M. Khoshgoftaar, “A survey and analysis of
intrusion detection models based on CSE-CIC-IDS2018 Big
Data,” Journal of Big Data, vol. 7, no. 1, p. 104, 2020.

[57] I. Sharafaldin, A. H. Lashkari, S. Hakak, and A. A. Ghorbani,
“Developing realistic distributed denial of service (DDoS)
attack dataset and taxonomy,” in Proceedings - International
Carnahan Conference on Security Technology, Chennai, India,
2019-October.

[58] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
Detailed Analysis of the KDD CUP 99 Data Set,” in Pro-
ceedings of the 2009 IEEE Symposium on Computational In-
telligence for Security and Defense Applications, Ottawa, ON,
Canada, July2009.

[59] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward
generating a new intrusion detection dataset and intrusion
traffic characterization,” in Proceedings of the 4th Interna-
tional Conference on Information Systems Security and Pri-
vacy, 2018-January.

[60] P. Rodŕıguez, M. A. Bautista, J. Gonzàlez, and S. Escalera,
“Beyond one-hot encoding: lower dimensional target em-
bedding,” Image and Vision Computing, vol. 75, pp. 21–31,
2018.

[61] M. Dimolianis, A. Pavlidis, and V. Maglaris, “AMulti-Feature
DDoS Detection Schema on P4 Network Hardware,” in
Proceedings of the 2020 23rd Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN), Paris,
France, Feburary2020.

[62] J. Li, L. Lyu, X. Liu, X. Zhang, and X. Lyu, “FLEAM: a fed-
erated learning empowered architecture to mitigate DDoS in
industrial IoT,” IEEE Transactions on Industrial Informatics,
vol. 18, no. 6, pp. 4059–4068, 2022.

20 Computational Intelligence and Neuroscience

https://arxiv.org/abs/2205.06661

