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QTL mapping in white spruce: gene maps and
genomic regions underlying adaptive traits across
pedigrees, years and environments
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Abstract

Background: The genomic architecture of bud phenology and height growth remains poorly known in most
forest trees. In non model species, QTL studies have shown limited application because most often QTL data could
not be validated from one experiment to another. The aim of our study was to overcome this limitation by basing
QTL detection on the construction of genetic maps highly-enriched in gene markers, and by assessing QTLs across
pedigrees, years, and environments.

Results: Four saturated individual linkage maps representing two unrelated mapping populations of 260 and 500
clonally replicated progeny were assembled from 471 to 570 markers, including from 283 to 451 gene SNPs obtained
using a multiplexed genotyping assay. Thence, a composite linkage map was assembled with 836 gene markers.
For individual linkage maps, a total of 33 distinct quantitative trait loci (QTLs) were observed for bud flush, 52 for
bud set, and 52 for height growth. For the composite map, the corresponding numbers of QTL clusters were 11,
13, and 10. About 20% of QTLs were replicated between the two mapping populations and nearly 50% revealed
spatial and/or temporal stability. Three to four occurrences of overlapping QTLs between characters were noted,
indicating regions with potential pleiotropic effects. Moreover, some of the genes involved in the QTLs were also
underlined by recent genome scans or expression profile studies.
Overall, the proportion of phenotypic variance explained by each QTL ranged from 3.0 to 16.4% for bud flush, from
2.7 to 22.2% for bud set, and from 2.5 to 10.5% for height growth. Up to 70% of the total character variance could
be accounted for by QTLs for bud flush or bud set, and up to 59% for height growth.

Conclusions: This study provides a basic understanding of the genomic architecture related to bud flush, bud set, and
height growth in a conifer species, and a useful indicator to compare with Angiosperms. It will serve as a basic reference
to functional and association genetic studies of adaptation and growth in Picea taxa. The putative QTNs identified will be
tested for associations in natural populations, with potential applications in molecular breeding and gene conservation
programs. QTLs mapping consistently across years and environments could also be the most important targets for
breeding, because they represent genomic regions that may be least affected by G × E interactions.

Background
For genera where a reference genome is already available
[1] or for others with large and unsequenced genomes
such as for the vast majority of forest tree species, quanti-
tative trait locus (QTL) mapping still represent an attrac-
tive approach that can help improve our comprehension
of the genomic architecture of adaptive traits [2-4].

Under certain conditions, QTL studies also permit the
identification of candidate regions for further in-depth
genomic characterization [5]. In non-model plant species,
there exists a vast body of literature on the genomic
architecture of quantitative traits [6-9]. However, the
conclusions of those studies on the number and location
of QTLs are often confined to a single given experiment
or experimental cross [10]. The comparison of QTLs
among studies and species is also made difficult due to
the large varieties of experimental procedures used to
score phenotypic traits. An additional reason is that
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syntenic QTLs are difficult to identify and validate due to
the limited number of orthologous markers commonly
positioned among unrelated families or species.
With the advent of high-throughput genotyping technol-

ogies and gene catalogs, it is now possible to construct
dense linkage maps with markers derived from expressed
gene sequences. This new generation of gene markers
transferable across pedigrees, including ESTPs, COSs and
SNPs [11-14], allows the construction of consensus linkage
maps with hundreds of expressed gene loci [13]. Further-
more, such gene-based markers are most often ortholo-
gous and should enable comparative mapping studies
(synteny and colinearity) and subsequently, comparative
analysis of QTLs among species and genera [15,16], a task
that has been hardly initiated in conifers [17,18].
In conifers such as loblolly pine (Pinus taeda L.), mar-

itime pine (Pinus pinaster Ait.), Douglas fir (Pseudotsuga
menziesii [Mirb.] Franco) and sugi (Cryptomeria japo-
nica D. Don), the main focus of QTL studies has been
on economical and adaptive traits such as wood proper-
ties [8,19-24], and growth characteristics [9,25]. Up to
now, few QTL studies have focused on adaptive charac-
ters tied to phenological traits and cold hardiness
[26-29]. The context has recently changed, because
adaptive traits are directly involved with response to cli-
mate change. Renewed interest in phenology is how it
impacts on growth-related traits in plants in the context
of global warming, and how it might affect plant pro-
ductivity and ecosystem services [30,31].
Phenophases correspond to adaptive traits, such as bud

flush and bud set, are influenced in part by heredity and
by the environment [32,33]. They determine to a certain
extent the fitness of individuals under particular climatic
conditions [34]. Temperature is a main driver of develop-
mental processes in plants both alone and through inter-
actions with other environmental factors, such as
photoperiod [35,36]. Considering that many factors, such
as the environment and the genetic background, affect
QTL detection, QTL comparative mapping between
unrelated families in different environments through
time represents an interesting strategy to highlight con-
sensus regions of importance for a given trait [18,37].
Bud phenology is known to be variable and quite

highly heritable in forest trees [32,38,39]. Heritability
estimates for bud flush may range from 0.44 to 0.98
[33,40-44] while for bud set, heritability values may
range from 0.37 to 0.72 [33,40]. For height growth, her-
itability can reach up to 0.86 [45,46]. Moreover, some
genetic studies on poplar (Populus sp) and willow (Salix
sp) have reported that relatively few loci with major
effects controlled these traits [33,41,44]. Conversely,
other studies in Douglas fir and poplar have revealed
that growth and bud development were subject to con-
trol by many genetic loci with small to moderate effects

[1,2,26,28]. In white spruce, the number and size effects
of genes underlying these adaptive traits have not been
characterized yet.
Recently, genetic maps with some tens to hundreds of

gene-based markers have been constructed in white
spruce for different segregating families [12,13], which
provides a solid foundation to investigate the genomic
architecture of adaptive traits. While expanding these
maps with additional gene-based SNPs, the specific
objectives of the current study were: i) to identify congru-
ent QTLs or genomic regions underlying phenological
traits across different pedigrees, years, and environments
and ii) to determine putative genomic regions associated
in part with the photoperiodic control of phenology in
white spruce. To do so, the present comparative QTL
mapping study was conducted with clonally-replicated
material representative of two unrelated white spruce
families raised in natural outdoor and environmentally-
controlled conditions, and was conducted through
successive growing seasons.

Methods
Plant material
Two large unrelated full-sib families of white spruce
(Picea glauca (Moench) Voss) were used separately to
map QTLs. The first QTL mapping population, already
used in a previous genetic mapping study [13], was cross
C96-1-2856 (♀80112 × ♂80109) hereafter named cross
P, which progeny was assessed throughout growing sea-
sons 2004 and 2005, i.e. at the age of 2 and 3 years. The
second QTL mapping population was cross C94-1-2516
(♀77111 × ♂2388) hereafter named cross D, which pro-
geny were assessed throughout growing successive sea-
sons 2005, 2006, and 2007, i.e. at the age of 3, 4 and
5 years. Progeny of both crosses were clonally propagated
by root cutting and maintained at the Valcartier Experi-
mental Station near Quebec City, Canada (VES, 46°57′2′′
N, 71°29′50′′W; Canadian Forest Service, Natural
Resources Canada) under natural outdoor conditions.
During the growing seasons, trees were fertilized daily
with a solution 1 g L-1 of a mix 3:1 (w:w) of 20-08-20: 20-
20-20 commercial fertilizers (outdoor conditions:
Solutech, Coopérative Fédérée, Québec, Canada; con-
trolled conditions: Plant-Prod, Brampton, Ontario,
Canada). To promote bud set and growth cessation, ferti-
lization was stopped during the first three weeks of
August, but trees were kept well watered. Fertilization
was resumed with a solution 1 g L-1 of fertilizer 08-20-30
until the end of the experiment.

Genetic maps
a. Development of gene based-markers and genotyping
SNP markers derived from a collection of 16,500 white
spruce EST clusters previously assembled by Pavy et al.
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[47] were assayed on both crosses. For cross P, the gen-
otyping data from a previously developed GoldenGate
bead array (Illumina Inc., San Diego, California, USA)
[48] of 768 SNPs representing 425 genes (Table 1,
Arborea PgLM0 array) was used [13]. As well, a second
set of 384 SNPs representing as many genes were geno-
typed for cross P using the GoldenGate assay developed
for white spruce and also for the closely related Sitka
spruce (Treenomix project, [49]), and resulted in 120
scorable and segregating SNPs in this white spruce
cross. For cross D, a new and larger Illumina bead array
of 1,536 SNPs representing 822 genes (Table 1, Arborea
PgLM1 array) was specifically constructed using the
GoldenGate assay. The array contained 90 SNPs derived
from in silico identification in white spruce clusters of
expressed sequence tags (ESTs) following the methods
of Pavy et al. [50], and 1,416 SNPs and 30 indels (vary-
ing from 1 to 30 nucleotides) selected after genomic re-
sequencing of the mapping parents and of one haploid
megagemetophyte (for paralogs check) following the
methods of Pavy et al. [13]. The 30 indels were located
in untranslated regions. TreeSNPs was used for data
management [51]. To be valid and successfully geno-
typed, the SNPs (including the indels) had to get a mini-
mum quality GenTrain score of 0.25 [13] and had to
segregate in the mapping population. Gene nomencla-
ture follows the Arborea GCAT3.3 white spruce gene
catalogue encompassing around 28,000 genes from the
clustering of 272,172 ESTs (http://www.arborea.ulaval.
ca/research/sequencing/gene_catalogue/index.html).

Additional file 1 provides a list of primer sequences
used for PCR amplification and unigene identifiers
(https://www.gydle.com/arborea/gcat/) corresponding to
the unigene sequences and their annotations from the
gene assembly GCAT3.3 (http://www.arborea.ulaval.ca).
b. Map assembly
For each QTL mapping population P and D, two indivi-
dual (parental) and one sub-composite linkage maps
were assembled from 260 and 500 progeny, respectively,
using the ‘’two-way pseudo-testcross’’ strategy [52]. The
construction of these maps and the assembly of a com-
posite map representative of the white spruce genome
were carried out according to the procedures outlined
by Pelgas et al. [11]. Marker grouping and linked loci
ordering were performed using a minimum LOD
threshold value of 6.0 and a minimum recombination
fraction (θ) of 0.35.

Experimental design and treatments
Six ramets for each of 395 and 740 progeny from the
QTL mapping populations P and D, respectively, with
one ramet placed randomly within each of six blocks
(three “indoor” and three “outdoor” blocks), were main-
tained over several growing seasons. Growth cessation
and bud set occurred under either natural outdoor con-
ditions at VES for the three outdoor blocks, or under
environmentally-controlled conditions at Agriculture
and Agri-Food Canada (AAFC, in Quebec City, Canada)
for the three indoor blocks. At summer solstice (21st

June), indoor blocks were transferred at AAFC in a

Table 1 Genotyping success rates obtained with the 768 and 1,536 SNPs Arborea bead arrays for each of two white
spruce QTL mapping populations using the GoldenGate assay

Bead array (cross) Number of SNPs
(percent success rate)

Number of genes
(percent success rate)

SNPs assayed SNPs with
GenTrain score
≥ 0.25a

Segregating SNPs
with GenTrain
score ≥ 0.25a

Genes assayed Genes with
segregating SNPs

Arborea PgLM0 (for mapping cross P)b

Total 768 603 (79%) 516 (67%) 425 330 (78%)

Number of resequenced SNPsc 730 572 (78%) 505 (69%)

Number of in silico SNPs d 38 31 (82%) 11 (30%)

Arborea PgLM1 (for mapping cross D)

Total 1,536 1,261 (82%) 1,100 (72%) 822e 672f (82%)

Number of resequenced SNPsb 1,416 1,159 (82%) 1,051 (74%)

Number of resequenced indelsg 30 21 (70%) 21 (70%)

Number of in silico SNPsc 90 77 (86%) 28 (31%)
aFor SNPs with a GenTrain score ≥ 0.25, valid GenCall scores were obtained for 99.5% of samples, on average.
bAs reported by Pavy et al. [13].
cPercentage obtained by using the total of 768 SNPs assayed per cross or the total number of genes assayed as a reference.
din silico SNPs were detected in clusters of aligned EST sequences derived from white spruce cDNA libraries from various individuals but not implicating the
mapping parents Pavy et al. [50], which explains the lower rates of segregating SNPs obtained.
eincluding 330 genes shared with PgLM0.
fincluding 250 genes shared with PgLM0.
gIncluding 21 gene indels of 1 to 2 bp, 6 indels of 3 to 6 bp, and 3 indels of over 10 bp, from untranslated regions.
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large growth chamber and exposed to a declining photo-
period to simulate natural changes occurring at VES in
order to help identify QTL clusters responding specifi-
cally to photoperiod. For that purpose, the photoperiod
inside the growth room was adjusted weekly from the
summer solstice to the end of September, i.e. from 16.0
to 12.2 hours. The environmental conditions in the
large growth chamber were: day/night-time tempera-
tures of 24/15C; photosynthetic photon flux density of
600-800 mol photons m-2 s-1 provided by a mixture of
high pressure sodium and metal halide 400W lamps (PL
light Systems, Beamsville, Ontario, Canada). Measures of
bud flush were completed at VES in the spring for all
blocks just before the moving of three of them to AAFC
(indoor conditions). Inversely, measures of bud set were
completed for three blocks at AAFC just before the
moving to VES in the fall. For both QTL mapping
populations (crosses P and D), outdoor and indoor
blocks were considered separately during data collection
and for subsequent statistical analyses.

Phenotypic data collection
a. Timing of bud flush
The timing of bud flush of the terminal bud of the
shoot leader was assessed three times per week by visual
inspection, during two successive springs for both QTL
mapping populations: in 2004 and 2005 for population
P and in 2006 and 2007 for population D. Seven stages
scoring the bud flushing from 0 to 6 were delineated:
stage 0 being the terminal bud completely closed and
stage 6 being the bud completely flushed with needles
elongating [53]. At each date of bud visual inspection,
bud development stage (from 0 to 6) was recorded for
each tree under outdoor conditions at VES for both out-
door and indoor blocks.
b. Timing of bud set
The timing of bud set of the terminal bud was assessed
once a week during both summers 2004 and 2005 for
QTL mapping population P, and once per week during
the summer 2006 for population D. For the latter popu-
lation, the data were also collected two to three times
per week during the 2007 growing season. Six stages of
bud set were defined from 0 to 5 [53]: stage 0 being the
very initiation with small white-green bud and stage 5
being the brown bud completely set with the needle fan
opened towards the outside [53,54]. Data for bud set
were collected at VES for outdoor blocks and at AAFC
under controlled conditions for indoor blocks. At each
date of bud visual inspection, the stage associated to
bud formation (from 0 to 5) was recorded for each tree
positioned under outdoor or indoor conditions.
c. Growth
For both QTL mapping populations, annual growth
expressed as the total height (mm) of the current year

stem was measured at the end of each growing season,
once the terminal bud was set: in 2004 and 2005 for
population P and in 2005, 2006, and 2007 for population
D. For this latter population, the total height of each
tree was also measured in 2006.

Statistical analyses
For each phenotypic trait, statistical analyses were per-
formed similarly for both mapping populations. Descrip-
tive statistics and correlations were calculated from raw
data for growth traits, whereas for the timings of bud
flush and bud set, phenological data scores gathered for
each tree were considered as the date (in Julian days) to
reach each bud development stage. Then, to consider at
once the various qualitative scores of bud flush or bud
set datasets, principal component analysis was con-
ducted for each of these characters at each site and each
year before undertaking QTL analyses (see below).
a. Quantitative data analyses and correlations among
phenotypic traits
Descriptive statistical parameters (Additional file 2), var-
iances and normality (Kolmogorov-Smirnov test) of phe-
notypic traits were obtained using UNIVARIATE and
GLM with the RANDOM option procedure of SAS (Sta-
tistical Analysis System, version 9.1.3, SAS Institute Inc.,
Cary, North Carolina, USA). The PLOT (QQPlot) and
NORMAL options of the UNIVARIATE procedure
(SAS) were further used to judge the normality of
errors. Phenotypic correlation coefficients were calcu-
lated with the CORR procedure (SAS) for all pairwise
trait combinations, using either Pearson or Spearman
correlations, when data followed or not a normal distri-
bution, respectively. Correlations for bud flush and bud
set were estimated based on each developmental stage
separately and thus processed based on the number of
Julian days to reach each stage.
b. Principal component analyses
Principal component analyses (PCA) of phenological
data scores were performed separately for bud flush or
bud set using the covariance matrix as a tool of linear
compression on each data set (R software [55]; R Devel-
opment Core Team 2008). This transformation was
done on block means to decrease the number multi-
data qualitative variables (phenology multi-stages) to a
single, two or three quantitative variables (composite
phenotypes), which may reveal different dimensions in
each dataset. This procedure was preferred to the classi-
cal approach of estimating an index from the various
phenological scores because it does not suppress tem-
poral trends in each dataset. The principal components
were obtained by calculating the eigenvalues of the cov-
ariance matrix, which represent the amount of variance
contributed by each factor. The Kaiser criterion was
applied [56] in order to retain only factors with
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eigenvalues greater than 1: one to three factors per trait
containing the overwhelming majority of the total var-
iance (Table 2) were retained for linkage analyses.
A rotation of components was applied when required to
improve component orthogonality in comparison to
initial data. Rotation was done before retaining the most
important components. Factorial scores derived from
these components showing no departure from normality
were used for QTL analyses.
c. QTL analyses
Analyses were performed on all datasets separately to
assess QTL consistency over mapping populations, years,
and environmental conditions. Thus, single QTLs were
identified. For height annual growth, clonal means across
replications were taken into account separately for each
year and each environmental condition of both mapping
populations and it was the same for the total height data
recorded only in 2006 for the population D. For bud flush
and bud set, factorial scores derived from components
retained after PCA were used as phenotypic data for each
tree. Associations between segregating genetic markers
and the phenotypic variability of each trait were deter-
mined for each year and each environmental condition for
each individual parental map. An interval mapping
approach [57] was used to first seek putative QTLs. Per-
mutation tests were performed to set out chromosome

and genome-wide significant thresholds [58]. Single-QTL
model analyses were carried out with MapQTL software,
version 5.0 [59]. Each linkage group was scanned with one
to five markers as maximum number of neighbouring
markers and 200 iterations. Permutation tests were carried
out on each linkage group to compare hypotheses H1 (pre-
sence of one QTL on the linkage group) versus H0 (no
QTLs on the linkage group). At least 1,000 data permuta-
tions were applied to each linkage group and also gen-
ome-wide to determine the chromosome-wise and
genome-wise statistical significance thresholds. Only geno-
mic regions exceeding chromosome-wise P ≤ 0.05 (sugges-
tive level) or genome-wise P ≤ 0.05 (significance level)
significance were reported as supporting the existence of a
QTL. Multiple-QTL model analyses were performed with
MultiQTL software, version 2.6 (http://www.multiqtl.com)
to increase the accuracy of the estimated QTL position.
The Kosambi mapping function with the option ‘marker
restoration’ was used to reduce the effect of missing infor-
mation. Permutations tests were carried out on each link-
age group to compare hypotheses H1 versus H0 and also
to compare hypotheses H2 (presence of two QTLs on the
linkage group) versus H1. The two-linked QTL model was
run to prevent the spurious detection of “ghost” QTLs
that can arise when two QTLs are segregating on the
same linkage group [60].

Table 2 Proportion of the total phenotypic variance explained by each principal component (PC1, PC2 and PC3)
retained for the timings of bud flush and bud set

Traits and sitesa Mapping
populationb

Year Proportion of total variance (range of phenology stagesc)

PC1 PC2 PC3

Bud flush

VES P 2004 65.4 (4.4-4.6) 9.9 (3.6-4.0) -

2005 50.1 (3.9-4.9) 12.9 (2.0-2.7) -

D 2006 62.3 (0.4-2.3) 13.6 (3.4-5.2) -

2007 56.9 (1.4-3.5) 12.8 (4.2-5.7) -

AAFC P 2004 - - - - -

2005 - - - - -

D 2006 66.8 (1.6-3.4) 12.5 (4.3-5.8) -

2007 73.5 (3.8-5.0) 10.9 (1.1-2.5) -

Bud set

VES P 2004 73.4 (3.9-4.7) 14.3 (3.3-3.9) -

2005 64.4 (4.3-4.5) 13.7 (1.7) -

D 2006 73.9 (3.1-4.3) - -

2007 66.7 (3.7-4.7) 11.9 (1.9-3.0) 6.4 (1.9-2.5)

AAFC P 2005 45.8 (4.0-4.7) 34.1 (2.1) -

D 2006 80.9 (3.4-4.7) - -

2007 64.0 (0.7-3.6) - -
aAAFC, indoor controlled conditions at Agriculture and Agri-Food Canada; VES, natural outdoor conditions at Valcartier Experimental Station.
bP, first mapping population (cross C96-1-2856); D, second mapping population (cross C94-1-2516).
ccorresponds to the range of bud phenology stages explained by each principal component (indeed, PCA were performed from means of stages of three blocks
for each environmental condition).
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d. QTL location
The central position of each single QTL was determined
by the position where the highest LOD was reached on
the linkage map, i.e QTL-LOD peak. The confidence
interval in centimorgans of each QTL corresponded to a
LOD score drop of 1 and 2 on either side of the likeli-
hood peak, i.e. at -1LOD and -2LOD below the QTL-
LOD peak, providing at least 95% confidence [61]. To
portray single QTL locations, results were graphically
converted with the MapParse 2.0 software (http://mac.
softpedia.com/get/Math-Scientific/MapParse.shtml,
P. Meirmans, unpublished) and MapChart [62]. A sim-
plified visualization of single QTLs observed for the four
different parental maps was plotted onto the composite
genetic map. Single QTLs were projected on the compo-
site map, using markers of left and right flanking ends
of the confidence intervals shared by individual linkage
maps and the composite map, by means of a homothetic
function as proposed by Chardon et al. [37]. In a few
cases where anchor markers displayed a discrepancy in
ordering between an individual map and the composite
map, the projection was processed with the next flank-
ing markers. For each trait, single QTLs sharing ortho-
logous markers positioned in the same genomic region
at the level of the composite map and in the -1LOD
confidence interval were considered as characterizing
the same QTL cluster. Also, to determine whether
QTLs among different traits were significantly co-
located, first, the proportion of QTLs within each QTL
cluster for different traits that had overlapping confi-
dence intervals was determined. Then, QTL confidence
intervals were randomized across the linkage map 1,000
times, and the distribution of the proportion of overlap-
ping QTLs of different traits determined. If this propor-
tion of randomized QTLs was less than the original
QTL overlap 95% of the time, the co-location was
deemed significant.

Results
Genotyping SNP-array PgLM1
For the new data generated by the 1,536-SNP genotyp-
ing array PgLM1 for the cross D, 72% of the polymorph-
isms assayed (1,100 SNPs) had a Gentrain quality score
of 0.25 or more and segregated among the progeny
(Table 1). They were thus deemed successful. This suc-
cess rate was comparable with previous genotyping suc-
cess rate on the cross P using a 768-SNP genotyping
array (PgLM0, [13]). A number of SNPs with acceptable
Gentrain score were found to be monomorphic, pre-
sumably because of the failure of one of the two allele-
specific oligos (ASO) included in the GoldenGate assay
[13]. For the 1,100 polymorphisms successfully geno-
typed and segregating, the call rate was 99.5% on aver-
age, with the lowest call rate at 95% for any given SNP

(or maximum of 5% missing data). Based on the inclu-
sion of 14 positive controls, the repeatability of the gen-
otyping assay was estimated at 99.47%. The overall
success rate was higher for resequenced SNPs than for
SNPs derived from the alignment of EST sequences
(Table 1). Because a subset of genes (317 out of 822)
had more than one SNP genotyped, the success rate was
marginally higher on a gene basis (82%) (Table 1) and
when two SNPs were successfully genotyped for a given
gene, the one with the least missing data was kept for
gene mapping purposes. A number of small indels
located in untranslated regions could be successfully
genotyped using the GoldenGate assay. Fifteen out of 21
indels of 1 to 2 bp assayed could be successfully geno-
typed, also 6 indels of 3 to 6 pb, but none of three
indels above 10 bp (12, 21, 30 bp) could be successfully
genotyped. Therefore, for small indels, the genotyping
success rate with the GoldenGate assay was comparable
to that of SNPs.

Genetic maps
Four saturated linkage maps were assembled from 454 to
570 markers, including 283 to 451 gene SNPs (Table 3):
the parental maps for the female 80112 and the male
80109 of cross P were assembled each on 12 major link-
age groups (LGs) by positioning respectively 549 and 570
markers, including newly genotyped gene SNPs (using
the Sitka spruce/white spruce SNP array, see Methods)
and previously mapped AFLPs, SSRs, ESTPs, and gene
SNPs [12,13]; parental maps for the female 77111 and
the male 2388 of cross D were assembled for each of the
12 major LGs by positioning respectively 471 and 454
markers composed of newly genotyped gene SNPs (using
the PgLM1 array, see above). The alignment between
each homoeologous linkage group of the four individual
linkage maps could be conducted on account of common
gene markers between both mapping populations. Syn-
teny and colinearity were well conserved between indivi-
dual linkage maps within the same mapping population.
Indeed, marker order was the same for 159 out of 165
(96.4%) homoeologous markers between the male
(80109) and female (80112) linkage maps of cross P, and
for 244 out of 258 (94.6%) homoeologous markers
between the male (2388) and the female (77111) linkage
maps of cross D.
The sub-composite maps of crosses P (955 markers:

473 AFLPs, 12 SSRs, 31 ESTPs, and 439 gene SNPs
including 327 SNPs from the PgLM0 array and 112
SNPs from the Sitka spruce/white spruce SNP array)
and D (639 markers: 17 ESTPs and 622 gene SNPs from
the PgLM1 array) could be merged using 251 syntenic
gene loci (sub-composite maps not shown). Out of
them, 221 (88.4%) were positioned in the same order
through both sub-composite linkage maps, allowing to
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assemble the composite linkage map for the species.
This composite linkage map consisted of 1,301 markers
(453 AFLPs, 12 SSRs, 33 ESTPs, and 803 gene SNPs)
positioned on 12 major linkage groups, corresponding
to a marker density of 1 marker per 1.6 cM (Figures 1,
2, 3 and 4, Table 3). With 836 genes, this composite
map can be considered as the most enriched composite
conifer map in genes up to now.

Statistical parameters of phenotypic data
Kolmogorov-Smirnov tests and QQplots revealed that
height growth data followed a normal distribution,
whereas bud flush and bud set data did not always follow
such a distribution except for few developmental stages.
For phenotypic traits following a normal distribution, sig-
nificant differences were observed among clones within
cross but not among blocks. Correlation coefficients

revealed a small number of significant correlations
among traits ranging from low to high (Additional file 3).
Pearson’s and Spearman’s correlation coefficients were
considered as small, medium and large when values were
between 0.1 to 0.3, 0.3 to 0.5, and 0.5 to 1, respectively.

QTL detection within crosses
QTL results for each trait are tabulated in three addi-
tional files 4, 5, 6 following each individual linkage map
from both mapping populations. They are also reported
on Figures. 1, 2, 3 and 4 for the composite linkage map.
Over all four parental maps, a total of 137 single QTLs
related to growth and phenology were detected: 33 for
bud flush (eight from cross P; 25 from cross D), 52 for
bud set (14 from cross P; 38 from cross D) and 52 for
growth (four from cross P; 48 from cross D). For bud
flush, bud set, and height growth, respectively, nine,

Table 3 Parameters used to assemble the individual and composite white spruce linkage maps

Mapping parameters Individual maps Composite map

Cross P Cross D

♀80112 ♂80109 ♀77111 ♂2388

Available markersa 600 671 521 508 1,578b

Distorted markersc 10 12 15 19 33

Markers without segregation distortion 590 659 506 489 1545

Assigned markers 580 650 486 470 1,342

AFLP loci 256 289 - - 470

SSR loci 9 10 - - 12

Gene loci

ESTPs 22 23 20 20 33

SNPs 293 328 466 450 827d

Total 315 351 486 470 860

Positioned marker loci (%) 549 (94.7) 570 (87.7) 471 (96.9) 454 (96.6) 1,301 (96.9)

AFLP loci 239 235 - - 453

SSR loci 8 10 - - 12

Gene loci

ESTPs 19 19 20 20 33

SNPs 283e 306f 451 434 803g

Total 302 325 471 454 836

Major linkage groups (n > 10 markers) 12 (4h) 12 (1h) 12 12 12

Minor linkage groups (3 ≤ n ≤ 10 markers) 1 0 0 0 0

Unlinked markers 10 9 20 19 58

Map length GF, cM (Kosambi) 2,163.6 2,276.1 2,055.6 1,700.1 2,086.8

Average map density, cM (Kosambi) 3.9 4.0 4.4 3.7 1.6

Average size for major linkage groups, cM (Kosambi) 143.3 162.6 171.3 141.7 173.9
aFor individual linkage maps, only markers segregating 1:1 or 1:1:1:1 were used.
b256 markers were shared between the two crosses.
cBonferroni correction: P ≤ 0.01/number of loci.
d373 gene loci from Arborea PgLM0 SNP array, 339 from Arborea PgLM1 array, and 115 from Treenomix array.
e215 gene loci from Arborea PgLM0 SNP array, and 68 from Treenomix array.
f239 gene loci from Arborea PgLM0 SNP array, and 67 from Treenomix array.
g370 gene loci from Arborea PgLM0 SNP array, 325 from Arborea PgLM1 array, and 108 from Treenomix array.
hNumber of linkage groups composed of 2 subgroups having more than 10 markers.
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seven and 25 QTLs were significant at the 5% genome-
wide level, 23, 38, and 21 were significant at the 5%
chromosome-wide level (i.e. suggestive QTLs), and two,
seven, and six were also considered as indicative (even if
not significant). These latter trivial QTLs were retained
as informative QTLs since they co-localized with at least
two significant QTLs, except for one associated with
only one significant QTL on LG IV for height growth
(Additional file 6). For bud flush, bud set and height
growth, respectively, four, six, and 11 suggestive QTLs
(as defined above) co-localized with significant QTLs.

Out of the total of 137 single QTLs detected, 26 (19%)
were derived from the mapping population P and the
other 111 (81%) from the mapping population D.
The percent of phenotypic variance accounted for by

single QTLs ranged from 3.0 to 16.4% for bud flush, 2.7
to 22.2% for bud set, and 2.5 to 10.5% for height growth.
The proportion of phenotypic explained variance (PPVE)
for each QTL detected from cross P was rarely below
10% with a maximum of 22.2%, whereas for cross D,
PPVE values were often near 5% with a maximum of
14.4%. For the first cross P, the sum of PPVE per

Figure 1 Genomic architecture of adaptive traits in white spruce: distribution of QTLs significantly associated to bud flush, bud set,
and height growth on linkage groups I to III of the composite map of white spruce assembled from both mapping populations P (♀
80112 × ♂ 80109) and D (♀ 77111 × ♂ 2388). Genetic distances are indicated in cM (Kosambi) at the left of each linkage group. QTLs for
bud flush, bud set and height growth are indicated by green, blue, and orange circles and bars, respectively. Thin and large vertical bars of each
QTL correspond respectively to -1LOD and -2LOD confidence intervals and are positioned compared to marker position on central bar of each
linkage group. Circles identify gene markers associated to each -1LOD confidence interval of each QTL. Note that because of the dense
positioning of markers, physical position of circles and confidence intervals can not be plotted beside each other. QTL names correspond to
environmental condition (indoor = AAFC or outdoor = VES), year and for bud flush and bud set, principal component identifying each QTL, i.e.
PC1, PC2 or PC3 (Table 2). An asterisk was added for QTLs identified from total height growth in order to distinguish them to QTLs identified for
annual height growth in 2006 for the cross D. Red stars indicate the correspondence between QTL-marker and outlier candidate gene SNPs
involved in local adaption for white spruce [108].
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individual based on the maximum LOD value was
18.5%, 45% and 19.3%, respectively for bud flush, bud
set, and height growth for the parent 80109, and 36.1%,
70.2% and 21.0%, respectively, for the parent 80112,
with generally two to five QTLs per trait, corresponding
to an average PPVE value per QTL ranging between 9.3
and 14%. For the second cross D, the corresponding
numbers were 69.5%, 53.6% and 51.5% for the parent
2388, and 55.0%, 55.5% and 58.6% for the parent 77111,
with 9 to 11 QTLs per trait, corresponding to an aver-
age PPVE value per QTL ranging between 5.2 and 7.0%.
In general for the second cross D, most QTLs each
explained less than 10% of the total phenotypic variance

on an individual basis for any of the three traits (Tables
S2, S3, and S4).

QTL comparison across individuals between crosses
At the level of the composite linkage map, a total of 34
QTL clusters (11, 13 and 10) regrouping all of 137
QTLs (33, 52, 52) were found for the three traits (bud
flush, bud set, and height growth, respectively). For each
trait, QTL clusters regrouped all single QTLs positioned
in the same genomic regions at the level of the compo-
site map, i.e. having shared orthologous loci in their
-1LOD confidence intervals. For instance, on LG I, two
QTL clusters, one for bud set and another one for

Figure 2 Genomic architecture of adaptive traits in white spruce: distribution of QTLs significantly associated to bud flush, bud set,
and height growth on linkage groups IV to VI of the composite map of white spruce assembled from both mapping populations P
(♀ 80112 × ♂ 80109) and D (♀ 77111 × ♂ 2388). Genetic distances are indicated in cM (Kosambi) at the left of each linkage group. QTLs for
bud flush, bud set and height growth are indicated by green, blue, and orange circles and bars, respectively. Thin and large vertical bars of each
QTL correspond respectively to -1LOD and -2LOD confidence intervals and are positioned compared to marker position on central bar of each
linkage group. Circles identify gene markers associated to each -1LOD confidence interval of each QTL. Note that because of the dense
positioning of markers, physical position of circles and confidence intervals can not be plotted beside each other. QTL names correspond to
environmental condition (indoor = AAFC or outdoor = VES), year and for bud flush and bud set, principal component identifying each QTL, i.e.
PC1, PC2 or PC3 (Table 2). An asterisk was added for QTLs identified from total height growth in order to distinguish them to QTLs identified for
annual height growth in 2006 for the cross D. Red stars indicate the correspondence between QTL-marker and outlier candidate gene SNPs
involved in local adaption for white spruce [108].
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height growth, were identified. The first QTL cluster
regrouped four single QTLs observed with the mapping
population D, whereas the second QTL cluster
regrouped two and four single QTLs detected from both
mapping populations P and D, respectively (Figures. 1,
2, 3 and 4). About one third of all QTL clusters (10 out

of 34), were detected in cross P (20% for growth, 27%
for bud flush, and 39% for bud set), compared to more
than 85% in cross D for each trait (100% for growth,
91% for bud flush, and 85% for bud set). Indeed, the
analyses performed on the mapping population P
revealed that the 26 single QTLs mentioned above were

Figure 3 Genomic architecture of adaptive traits in white spruce: distribution of QTLs significantly associated to bud flush, bud set,
and height growth on linkage groups VII to IX of the composite map of white spruce assembled from both mapping populations P
(♀ 80112 × ♂ 80109) and D (♀ 77111 × ♂ 2388). Genetic distances are indicated in cM (Kosambi) at the left of each linkage group. QTLs for
bud flush, bud set and height growth are indicated by green, blue, and orange circles and bars, respectively. Thin and large vertical bars of each
QTL correspond respectively to -1LOD and -2LOD confidence intervals and are positioned compared to marker position on central bar of each
linkage group. Circles identify gene markers associated to each -1LOD confidence interval of each QTL. Note that because of the dense
positioning of markers, physical position of circles and confidence intervals can not be plotted beside each other. QTL names correspond to
environmental condition (indoor = AAFC or outdoor = VES), year and for bud flush and bud set, principal component identifying each QTL, i.e.
PC1, PC2 or PC3 (Table 2). An asterisk was added for QTLs identified from total height growth in order to distinguish them to QTLs identified for
annual height growth in 2006 for the cross D. Red stars indicate the correspondence between QTL-marker and outlier candidate gene SNPs
involved in local adaption for white spruce [108].
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distributed among three distinct QTL clusters for bud
flush (one onto LG XI and two onto LG IV), five for
bud set (LGs III, IV, VI, VIII and X), and two for height
growth (LGs I and X). For each trait, bud flush, bud set,
and height growth, respectively, two (67%), four (80%),
and two (100%) QTL clusters were commonly identified
in the two parental maps, across all years and for all
tested environments. Similar analyses carried out for the
mapping population D indicated: 10 distinct QTL clus-
ters for bud flush (one onto LGs III, IV, X, and XII, and

two onto LGs V, VI, and XI), 11 for bud set (one onto
LGs I, II, III, VI, VIII, XI, and XII, and two onto LGs V
and X), and 10 for height growth (one onto LGs I, II,
III, and VIII, and two onto LGs IV, V, and X). For this
second cross, nine (i.e. 90%), ten (i.e. 91%), and ten (i.e.
100%) QTL clusters, respectively for bud flush, bud set,
and height growth, were commonly identified in the two
parental maps, for all years and environments tested. By
considering all 34 QTL clusters detected for the three
traits on the composite map, two QTL clusters out of

Figure 4 Genomic architecture of adaptive traits in white spruce: distribution of QTLs significantly associated to bud flush, bud set,
and height growth on linkage groups X to XII of the composite map of white spruce assembled from both mapping populations P
(♀ 80112 × ♂ 80109) and D (♀ 77111 × ♂ 2388). Genetic distances are indicated in cM (Kosambi) at the left of each linkage group. QTLs for
bud flush, bud set and height growth are indicated by green, blue, and orange circles and bars, respectively. Thin and large vertical bars of each
QTL correspond respectively to -1LOD and -2LOD confidence intervals and are positioned compared to marker position on central bar of each
linkage group. Circles identify gene markers associated to each -1LOD confidence interval of each QTL. Note that because of the dense
positioning of markers, physical position of circles and confidence intervals can not be plotted beside each other. QTL names correspond to
environmental condition (indoor = AAFC or outdoor = VES), year and for bud flush and bud set, principal component identifying each QTL, i.e.
PC1, PC2 or PC3 (Table 2). An asterisk was added for QTLs identified from total height growth in order to distinguish them to QTLs identified for
annual height growth in 2006 for the cross D. Red stars indicate the correspondence between QTL-marker and outlier candidate gene SNPs
involved in local adaption for white spruce [108].
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11 (18%) and two out of 10 (20%) were replicated
between the two mapping populations for bud flush and
height growth, respectively, while three out of 13 (23%)
were replicated between the two mapping populations
for bud set. In fact, among the QTL clusters identified
from cross P, 66% were also observed in cross D for
bud flush, 60% for bud set, and 100% for height growth.

Yearly and environmental replications of QTLs
Of the total of 10 QTL clusters identified from the map-
ping population P for the three traits, three for bud
flush, five for bud set, and two for height growth, 40%
(2, 2, 0) were detected in 2004 and 90% (2, 5, 2) in
2005, with 30% (1, 2, 0) shared between the two years
(numbers in parentheses refer to bud flush, bud set and
height growth, respectively). For this cross, comparisons
between environments were limited because no mea-
surements under controlled conditions (indoor at
AAFC) could be recorded for any of the three traits dur-
ing the first growing season in 2004, but bud set and
height growth could be assessed under controlled indoor
conditions for this mapping population in 2005. Indeed,
70% (-, 5, 2) of the 10 QTL clusters were identified dur-
ing the second year (in 2005) for indoor experimenta-
tion under controlled conditions, and they were related
to bud set and height growth; whereas in natural condi-
tions (outdoor at VES), 40% (2, 2, 0) of QTL clusters
were observed in 2004, and 20% (2, 0, 0) in 2005 (for
bud flush, bud set, and height growth, respectively). In
general, out the whole of 10 QTL clusters, 45% (-, 2, 1)
were commonly detected under outdoor and indoor
environmental conditions (for bud flush, bud set and
height growth, respectively).
For the second mapping population (D), out the sum

of 31 QTL clusters detected for bud flush (10), bud set
(11), and height growth (10), 61% (3, 9, 7) were detected
in 2006 and 61% (9, 5, 5) in 2007, with 26% (2, 3, 3)
found in common between the two years. During the
first growing season in 2006, 55% (3, 8, 6) of QTL clus-
ters were detected under controlled conditions (AAFC)
and 42% (7, 2, 4) in 2007 (for the three traits, respec-
tively), whereas in natural conditions (VES), 36% of
QTL clusters (1, 4, 6) were observed in 2006 and 39%
(5, 4, 3) in 2007. Thus, out of 31 QTL clusters, 52% (6,
4, 6) were commonly detected from both environmental
conditions for bud flush, bud set, and height growth,
respectively.
When considering all mapping populations and years,

QTLs were shared 64% of time (7 QTL clusters out of
11) between indoor and outdoor environments for bud
flush, 46% (6 QTL clusters out of 13) for bud set, and
60% (6 QTL clusters out of 10) for height growth. Thus,
more than 46% of QTL clusters were replicated into
both environmental conditions. In parallel, three, five,

and three QTL clusters (i.e. 32%) were identified as spe-
cific to indoor controlled conditions (AAFC) compared
to one, two and one (i.e. 12%) detected only in outdoor
conditions (VES), for bud flush, bud set and height
growth, respectively. QTL clusters specific to indoor
controlled conditions were mostly identified for the sec-
ond year for bud flush (100%) and height growth (67%),
whereas mainly for the first year for bud set (80%).
In general, out of the 11, 13 and 10 QTL clusters

identified onto the composite map for bud flush, bud
set, and height growth, respectively, 3 (27%), 6 (46%),
and 6 (60%) were replicated between years. Year-specific
QTL clusters were mainly observed during the first year
for bud set (5 out of 7) and during the second year for
bud flush (6 out of 8), and mainly for the mapping
population D. Year-specific QTL clusters were observed
as often for the first year (2 out of 10) as for the second
year (2 out of 10) for height growth.

Phenological development stages versus QTLs
For bud flush and bud set, the data used (factorial scores)
for QTL analyses were generated by PCA analyses (see
Methods). Considering the nature of each component
retained after PCA (Table 2), each single QTL for bud set
or bud flush did not necessarily correspond to only one
bud development stage [53], but rather to a grouping of
these different stages with variable weighting in the prin-
cipal component. Thus, when considering all single
QTLs characterizing each out of the 11 and 13 QTL clus-
ters identified for bud flush and bud set, respectively, it
appeared that one (onto LG VI) and two (onto LGs III
and XII) QTL clusters had a group of single QTLs with
components involved in almost all bud flush or bud set
development stages, unlike other QTL clusters that
involved principal components more narrowly defined in
terms of bud development stages (Table 2). For example,
the chromosomal region involved in bud set onto LG X
(cross D: AAFC 2006 PC1, Figure 4) could play a part in
the transition from stages 3 to 4 (Bud set_AAFC_cross
D_2006_PC1, Table 2). For bud flush, the genomic region
detected onto LG V (cross D: AAFC 2007 PC1 and VES
2007 PC2, Figure 2) could be involved into the transition
from stages 4 to 5 (Bud flush_AAFC_cross D_2007_PC1/
VES_cross D_2007_PC2, Table 2).

Shared QTL clusters among traits
Permutation tests conducted onto all -1LOD and -2LOD
QTL intervals (data not shown) allowed to compare
QTL positions of each QTL cluster among traits and
estimate the level of overlapping QTLs between pheno-
typic traits. Four to five occurrences of overlapping
QTLs between characters considered two at a time were
highly significant (with 1-P-value of 0.99 or 1.0). Five
QTL clusters positioned onto LGs III, IV, V, VI, and X
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were identified as affecting both bud flush and bud set
traits with an overlapping proportion ranging from 14.3
to 100% at -1LOD (Figures 1-2, 4). QTLs positioned
onto LGs III, IV, V, and X also revealed at -1LOD a sig-
nificant overlapping (from 9.1 to 100%) between QTL
clusters for bud flush and height growth. QTLs detected
for bud set and height growth co-located significantly
onto four linkage groups (Figures 1-2, 4: LGs III, IV, V,
and X). The overlapping range between QTLs affecting
simultaneously height growth and bud set varied from
18.8 to 100% (Figures 1-2, 4). QTLs involving the three
adaptive traits co-located together onto the linkage
groups III, IV, V, and X.
To investigate associations among characters at the

phenotypic level, correlations within and among the
three adaptive traits were estimated and revealed some
significant associations (Additional file 3). For bud flush,
no or barely significant correlations for the different bud
stages were observed between years for both crosses and
by considering each environmental condition separately.
The trend was relatively similar for bud set with a nota-
ble exception: in both crosses, a small number of low
positive and significant correlations were observed
under outdoor environmental conditions (VES) between
stage 3 of bud set for the first experimental year and all
stages of bud set for the second experimental year (from
0.192 to 0.228 for cross P and from 0.147 to 0.174 for
cross D). For height growth, highly significant correla-
tion estimates were observed between years within a
range of low to medium values: under outdoor environ-
mental conditions at VES, a moderate positive correla-
tion was observed (0.424) between 2004 and 2005 for
cross P, whereas for cross D, low positive correlations
were identified (from 0.134 to 0.149) between 2005,
2006, and 2007. For this latter cross, significant correla-
tions were observed (up to 0.340 between years) under
controlled environmental conditions (at AAFC). As for
relationships among traits, a small number of significant
correlations ranging from low to high were identified
(Additional file 3). For instance, for cross D in 2006,
almost all stages of bud flush were slightly to highly
negatively correlated with height growth (-0.179 to
-0.546). In 2007, negative significant correlations were
also observed between these traits (up to -0.345). These
correlations reflects the observation that white spruces
with an early bud flush have a longer growing season and
consequently, a greater height growth. No or barely sig-
nificant correlations were observed between the different
stages of bud flush and bud set considering the same year
of bud development. Also, almost no significant correla-
tions were observed between height growth and bud set
during the first growing season for cross D, whereas in
2007, low to moderate positive correlations between
height growth and all stages of bud set (0.133 to 0.437)

were observed. For cross P, correlation results were rela-
tively similar (see details in Additional file 3), with an
exception: low negative correlations were detected in
2004 between the last stages (5 and 6) of bud flush and
the stages 1 and 3 of bud set (-0.184 to -0.236), suggest-
ing that for a number of genotypes, later bud flush and
earlier bud set co-occurrred, and vice-versa.

Discussion
In white spruce, a rapidly growing number of genes
(nearly 28,000) are being identified through more than
270,000 ESTs [47]. Together with SNP discovery, this
resource provides the basis for highly informative QTL
mapping studies associated with important adaptive
traits such as bud flush, bud set and height growth,
facilitating the identification of potentially causative
genes in the future. In the present study, the genotyping
of several hundreds gene SNPs permitted the construc-
tion of four linkage maps highly enriched in gene loci.
The resulting composite linkage map of the white
spruce genome represents the most dense gene-based
linkage map yet for a conifer. Until recently, the
restricted availability of dense marker linkage maps
through several populations was a limiting factor for the
accurate identification of a large number of QTLs. New
high throughput genotyping methods have begun to
overcome this barrier such as diversity arrays (DArT) or
SNP arrays technologies, allowing the construction of
high-density genetic maps with hundreds and now thou-
sands of gene-based marker loci [13,63,64]. With the
expansion of genetic linkage maps with additional gene-
based SNPs, the present study highlighted the genomic
architecture of the conifer white spruce for three adap-
tive traits by the identification of congruent QTLs
underlying bud flush, bud set and height growth across
different pedigrees, years, and environments.

QTL detection
Repeatability values for bud flush (0.33 to 0.57), bud set
(0.33 to 0.54), and height growth (0.49 to 0.80) indicated
moderate to high heritabilities of these complex traits
(detailed data not shown). These repeatability values are
only suggestive, because their estimation is based on
only two mapping populations and not on a large num-
ber of families. Regardless, they were about in the same
order or marginally higher than those reported for simi-
lar characters in white spruce [e.g. [32]] or for other
tree species [65,66]. The clonal nature of the material
used herein could account for these marginally higher
values. Consequently, QTLs were expected to segregate
for these characters in the two mapping populations stu-
died, as showed by others [26,28].
Of all QTL clusters observed with mapping population

P, most (90%) were detected with population D.
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However, the opposite was not true, with only 24% of
QTLs of population D detected in population P. One
possible explanation for this asymmetry of QTL detec-
tion is the difference of sample size and marker density
between the two mapping populations. The difference in
progeny number (260 for cross P versus 500 for cross
D) had likely a major effect in the power to detect
QTLs. Indeed, after 10 simulation tests performed with
a random draw of 250 progeny at a time from 500 pro-
geny selectioned for the cross D, the number of QTLs
detected was in the same range than that for cross P
(data not shown). Only 29% of all QTLs detected with
cross D from 500 progeny were identified from 250 pro-
geny and PPVE values were approximately twice as large
as those obtained with 500 progeny. Thus, the small
progeny size of cross P (or D during simulations)
decreased the sensitivity of QTL detection and resulted
in an overestimation of the effect size of main QTLs
(PPVE >9% per QTL), while QTLs of small effects
remained undetected. For Douglas fir, in the most com-
plete QTL studies realized until now on adaptive traits
in conifers across multiple years and/or multiple envir-
onments [26,28], the estimated effects of each QTL
detected were relatively in the same range than that in
our study using the large cross D, i.e. with PPVE values
ranging between 1.2 to 11.5% using 98 progenies from
one cross and between 0.7 to 9.5% using about 400 pro-
genies from a second cross.
The present results corroborate previous QTL mapping

simulation studies, where the use of small segregating
populations (progeny size of about 200) resulted in low
power detection, with disproportionately large effects on
phenotype and with poor congruence of QTL position
[67-70]. Although QTLs detected in the present study
generally have effects in the same range as that in other
forest trees [26,28,65], more QTLs of small effects (around
5%) were revealed by the larger mapping population D in
the present study. Other QTL analyses performed with
very large populations in mouse or maize also revealed
that many genes of relatively small effects characterized
many quantitative traits, disclosing a complex genetic
architecture [70-72]. Regarding marker density, which was
high in the present study, simulation studies carried out
by Darvasi et al. [73] to determine the effect of marker
spacing, gene effect, and population size on the power of
marker/QTL association indicated that while marker den-
sity influenced very little the accuracy of QTL location,
the addition of new markers supplied supplementary
alleles that could be associated to the detection of new
QTLs. Indeed, even with an infinite number of markers,
the confidence intervals of QTLs were more strongly
affected by population size and gene effect.
Another possible explanation of the lack of congru-

ence in QTL detection between mapping populations

P and D is genetic heterogeneity between populations, i.
e. diverse marker subsets that would segregate in each
population. Indeed, Beavis et al. [74], by observing that
very few QTLs were common across four Maize popula-
tions, found that the lack of congruence among these
independent linkage populations was associated to dif-
ferent sets of polymorphic alleles segregating in the dif-
ferent genetic backgrounds. In fact, polymorphic alleles
at QTLs in one population can be monomorphic in
another. Thus, the use of different unrelated populations
increases the power to detect QTLs (see below).

Repetition effect of experimental design
The evaluation of replicated QTLs across genetic back-
grounds and environments may be essential to confirm
the utility of specific marker/QTL linkage information
prior to the implementation of marker-assisted breeding
methods. The impact of the environment and the
genetic background on quantitative trait variation and
the detection of QTL has been documented early on
and suggests that the general conclusions about QTLs,
particularly those with small effects discovered on the
basis of single environment and single population, could
be erroneous [74,75]. QTLs found from experiments
involving different crosses and/or different environments
and/or yearly replicated can increase the number of
QTLs detected and also provide additional confidence in
their locations [9,26,74,76,77]. However, comparisons of
QTLs can become complex due to the probability that
different crosses will be segregating for different QTLs,
with perhaps G x E effects, and/or a lack of common
markers between crosses.
a. QTL stability in relation to genetic background
QTL clusters shared by the two unrelated mapping
populations P and D in the present study correspond
to about 20% of the total number of QTL clusters
identified. This level of overlapping, in agreement with
the proportion of shared gene loci between the two
mapping populations, i.e. about 40%, allowed the vali-
dation of QTLs at the intraspecific level. Chromosomal
regions with shared QTLs across different populations
generally correspond to greater mapping precision and
greater QTL significance compared to other genomic
regions with QTLs discovered from single mapping
populations [37,78]. In our study, syntenic regions
revealed a high level of marker colinearity (> 93%)
among individual linkage maps of both crosses, made
easier the identification of QTLs shared between map-
ping populations, i.e. QTL clusters, by synteny-based
projection from a homothetic function. High levels of
colinearity are a prerequisite for the identification of
candidate genes for traits of interest using cross-spe-
cies information [79]. Meta-analyses are a good illus-
tration of integrated QTL maps from synteny-based
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projections [80]. Thus, the conservation of gene order
between genome maps provides a framework for the
comparative analysis of genome architecture of com-
plex traits. Cereal species, largely syntenic, lend them-
selves well to QTL projections across rice, maize,
Sorghum, teosinte, wheat, and barley genomes
[37,75,78,81,82]. For instance, rice candidate genes
were projected onto the maize genome using a synteny
conservation approach between maps and thence, asso-
ciations between maize QTLs and genes involve in
flowering time in rice were observed [37].
More comprehensive analyses of the genetic architec-

ture of complex traits may require the consideration of
multiple populations that represent a larger sample of
the standing intraspecific variation and thus provide a
framework for comparative analyses [80]. The existence
of QTLs identified for white spruce in other Picea spe-
cies remains to be investigated in closely-related and
phylogenetically more distant conifer taxa, using homo-
eologous genome segments that would allow the
unequivocal recognition of QTL regions across taxa.
Given the high genome macro-synteny and macro-coli-
nearity between the phylogenetically remote white
spruce and black spruce [13], it is expected that a num-
ber of QTLs should be conserved across taxa. While
logistically and financially demanding, such studies may
also highlight the control of adaptive/wood traits by
homoeologous chromosomal regions across conifer spe-
cies. Recently, Casasoli et al. [16] reported a high con-
servation of QTLs for bud flush between two broad-
leaved forest species, oak and chestnut, with the help of
orthologous markers used to find homoeologous geno-
mic regions between both species.
However, even if synteny-based projections can be

useful to identify new candidate genes that explain trait
variation across taxa, when orthologous QTLs underline
the same trait, the involvement of each orthologous
gene to the phenotype may vary across taxa. This differ-
ential contribution of one gene for a same trait between
species was observed by Doust et al. [83] for the genetic
control of branching in foxtail millet and in maize. As
well, local gene duplications followed by subfunctionali-
zation [84] may also contribute to differential genetic
control in spite of similar QTL location. In line with
this, recent comparative studies among knox-1 gene
family members across diverse spruce species indicate
that selection patterns vary among family members
across different species, suggesting the differential evolu-
tion of gene duplicates among congeneric species [85].
The comparison of genes harbouring outlier SNPs puta-
tively involved in adaptation between spruce species also
suggested parallel evolution and the implication of dif-
ferent genes from the same gene families [86]. QTL
comparative studies with more complete maps of the

gene space should help understand these trends at the
genome level.
b. QTL stability between environments
The different environmental conditions tested in the
present study did not seem to influence the identifica-
tion of at least half of the total number of QTL clusters.
Environmental conditions differed by the fact that three
blocks of progeny out of six were studied under con-
trolled indoor conditions at AAFC (day/night tempera-
tures fixed at 24/15°C) from the summer solstice to the
end of september to evaluate the impact of the declining
photoperiod on bud set compared to the three other
blocks maintained under natural outdoor conditions
(VES). The identification of more than 46% of QTL
clusters across both environments indicates that subsets
of QTLs controlling phenology and growth traits are
spatially quite stable. More diverse environmental condi-
tions remained to be tested. However, our present
results are hardly comparable with those observed in
Douglas fir for bud flush, which was tested under a
dozen different environmental conditions, differing in
elevation, latitude, moisture, temperature, day length
[26,28]. QTL replications for bud flush in Douglas fir
were in a range of 0% to 83% following the environmen-
tal conditions considered. However, in most cases, a
very little overlap across sites was observed, suggesting
that different genes controlling bud flush were expressed
differently considering the diverse environments tested
for Douglas fir. For bud set and growth traits, Jermstad
et al. [28] observed few or no QTL replication (i.e. up to
17%) across the four different environments tested,
reflecting important genotype x environment interac-
tions. These discrepancies with the results of the present
study reflect to some extent the variability of environ-
mental conditions tested in each study but also, they
correlate well with observations from analysis of quanti-
tative genetic variation in adaptive traits in white spruce
and Douglas fir. Indeed, small or null genotype x envir-
onment interactions were noted in white spruce [32], as
compared to large genotype x environment interactions
in Douglas fir [87,88], which could be related to more
diverse environmental conditions in the Pacific North-
west, as compared to those affecting white spruce in
eastern Canada [32,89-91]. In hybrid poplar (black cot-
tonwood × eastern cottonwood), results more similar to
ours with about 33% of environmental replication for
bud set QTLs were observed across environments differ-
ing by temperature regimes between field and green-
house conditions [10], suggesting that a large fraction of
phenotypic variation for bud set (1/3) could be
explained by a subset of stable genomic regions
responding to diverse environmental conditions. Envir-
onmentally stable QTLs for bud flush and bud set in
our study may correspond to genomic regions putatively
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involved during nearly all the stages of bud developmen-
tal processes, considering the nature of the principal
components implicated in these QTLs. Thus, almost all
stages of bud development may be controlled in part by
genomic regions under moderate to low environmental
influence. Considering the moderate to high heritability
values observed for the three adaptive traits (i.e. about
0.41, 0.40 and 0.62 on average for both environments,
for bud flush, bud set and height growth, respectively;
detailed data not shown), these environmentally stable
QTLs that explain at least 30% of the total phenotypic
variance would account for more than 48% of the
genetic additive variance.
c. QTL stability among years
Temporal stability has been observed for numerous
QTL clusters. Overall, about one third of QTL clusters
for bud flush were replicated across years, while it was
near 50% and 60% for bud set and height growth,
respectively. The repeated detection of QTLs from one
year to the next suggests that several genes controlling
bud flush, bud set, and height growth are repeatedly
expressed through time for white spruce. QTL replica-
tion over multiple growing seasons was not always
observed in previous studies [41]. However, our results
are congruent with studies of bud flush in Douglas fir
and for different growth traits in Maritime pine and
Japanese cedar [Cryptomeria japonica (D. Don)]
[25,26,40,92]. Another recent study revealed large tem-
poral stability (across at least 10 years) for wood density
QTLs, suggesting a link between tree maturation and
temporal stability of QTLs [9]. In the present study, the
information from QTLs replicated across years indicates
that the phenotypic variance explained by each repli-
cated QTL is relatively similar to that observed for
year-specific QTLs for bud flush, and about 25% larger
than those year-specific QTLs for bud set and height
growth. These temporally stable QTLs may explain alto-
gether at least 20%, 48%, and 32% of the total phenoty-
pic variance for bud flush, bud set, and height growth,
respectively. In view of heritability values for each trait
(i.e. about 0.39, 0.40, and 0.61, on average for different
years, for bud flush, bud set, and height growth, respec-
tively; detailed data not shown), these QTLs may
account for more than 51% of the genetic additive
variance.
d. Overview of QTL stability
If our experimental design had been based on the use of
only one mapping population in a single environment
during one growing season, two and 13 QTL clusters
would have been detected in the worse and best of
cases, respectively. Such a strategy would have revealed
only 6% to 38% of the total number of QTL clusters
identified in the present study. By assuming a design
based on only one mapping population (i.e. cross D

because of its large progeny number) with yearly replica-
tion and testing in two the environmental conditions, up
to 91% (31/34) of QTL clusters would have been identi-
fied in the present study. On the other hand, without
year-to-year replication, 44% (15/34) of QTL clusters
would have been observed across the two tested envir-
onments in the best case. Generally, QTL mapping
designs for characters related to forest trees allowed for
the detection of QTLs across different environments,
but they rarely relied on replication across mapping
populations and/or growing seasons [9,10,26,28,76,77].
Thus, the experimental design retained in the present
study, and based on a repetition effect across mapping
populations, environments, and years, was favourable to
the detection of a large number of QTL clusters, in
which one can observed genetic, environmental, and
year-to-year stability of QTLs. In a breeding perspective,
QTLs mapping consistently across years and environ-
ments could be a most important target for breeding,
because they represent genomic regions that may likely
be least affected by G × E interactions.

QTL clusters associated to photoperiodic control
QTL clusters specific to natural outdoor conditions
detected for bud set may highlight genomic regions that
may be putatively activated by diverse connected envir-
onmental signals, mainly temperature and photoperiod.
For many temperate and boreal trees including conifers
such as spruces and Douglas fir, bud flush and shoot
elongation are mainly triggered by rising air tempera-
tures in early spring [93-95], whereas bud emergence
and growth cessation are essentially activated by
decreasing photoperiod [96,97]. In the present study, to
possibly disentangle the effects of temperature and
photoperiod, night and day temperatures were fixed
under controlled indoor conditions, while photoperiod
conditions were similar as for outdoor conditions.
Moreover, soil moisture and nutrients were relatively
well controlled in both environmental conditions to
avoid their implication with the variation observed. Con-
sequently, QTL clusters detected for bud set only from
trees grown at AAFC indoor controlled conditions
could not be influenced by temperature but mainly by
photoperiod conditions. While QTL clusters specific to
natural outdoor conditions for bud set may highlight
only genomic regions responding simultaneously and
mainly to temperature and photoperiod conditions.
QTLs found specific to indoor conditions (AAFC) were
mainly detected during the first year of measurement
for cross D and the second year for cross P, and they
were observed for composite phenotypes (after PCA)
explaining the transition between the stages 3, 4, and 5
of bud set (e.g. QTLs identified as AAFC 2006 on LGs
II, IV, V, and X, see Figures 1-2, 4 and Additional file
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5). Assuming moderate heritability values for bud set (e.
g. on average 0.43 and 0.36 for cross P and D, respec-
tively; data not shown), these QTLs explaining 20% of
the total phenotypic variance would account for at least
47% of the genetic additive variance. Thus, close to half
of genetic variation in bud set may be associated to
genomic regions controlled only by declining photoper-
iod. Given that photoperiod is an environmental factor
easily monitorable and stable year after year, genomic
regions responding to this factor during bud set could
be short-listed for the partial control of height growth
via the duration of the growing season (see below the
section on QTL overlapping). Additional analyses could
be conducted to corroborate with accuracy that these
bud set QTLs are only associated to photoperiod. A
recent study showed that the genes implicated in the
photoperiod pathway may be quite conserved among
different plant species [98]. Thus, orthologues to the
candidate genes of this pathway should be mapped and
co-location with bud set QTLs be checked. Though
logistically demanding, an additional QTL mapping
experiment with long-day and short-day conditions
could be undertaken on the large mapping population D
to obtain a factual measure of photoperiodic response,
as done in wheat [99].
For bud flush, QTL clusters identified only from the

second cross D during the second experimental year,
and which were replicated across environments (i.e.
QTLs identified as AAFC 2007 or VES 2007 on LGs III,
V, and XI, see Figrues 1-2, 4 and Additional file 4), pos-
sibly indicate genomic regions responding to tempera-
ture variations of the previous winter, or could be
linked to the declining photoperiod of the previous
summer season. The main factor initiating bud flush is
reportedly temperature [100,101]. However, because bud
set is associated to the formation of needle primordia
through the end of the growing season and declining
photoperiod, the height growth for the following year is
thus predetermined [102,103]. Therefore, QTLs for bud
flush and height growth that were observed only for the
second year in both environmental conditions could be
closely tied to the declining photoperiod of the previous
year via bud set and the formation of needle primordia.

QTL overlapping among traits
A number of significant occurrences of overlapping
QTLs among bud flush, bud set, and height growth
were observed after permutation tests among all QTL
positions. For instance, on LG X, the confidence inter-
vals of height growth QTLs significantly overlapped
with those detected for bud flush and bud set (Figure 4).
Another instance of significant co-locations of QTLs
was identified for the three adaptive traits on linkage
groups III, IV, and V (Figures 1-2). Such co-locations

indicate that the shared QTL clusters may bear pleio-
trophic effects.
The co-locations of QTLs identified for both phenolo-

gical traits and height growth in the present study indi-
cated a similar number of overlapping QTL clusters
between height growth and bud flush, and between
height growth and bud set. In juvenile eastern white
spruce, early studies have shown for instance that height
growth is correlated to bud set and the length of the
growth season, which itself is partly determined by the
timing of bud set [32]. While QTLs for bud flush and
bud set corresponded to composite phenotypes in our
study, correlations between the principal coordinates
derived from PCA and the original stages (expressed in
Julian days, see Mat&Meth) were also high (data not
shown). Thus, establishing the correspondence between
QTL co-locations and correlations between phenotypic
characters appears possible. Considering together the
three adaptive traits studied herein, significant correla-
tions were observed: up to -0.55 between height growth
and bud flush, and up to 0.44 between height growth
and bud set. These correlations are in the same range
and signs as previous estimates in juvenile black spruce
[104] and eastern white spruce [32], indicating the
opposite effects of these characters on the length of the
growth season and ensuing height growth [32]. In differ-
ent Angiosperms, similar observations could be made
where some of the QTLs detected for spring flush, stem
height, basal area, and sylleptic branch number in
poplar, for bud flush and height growth in oak, or for
bunch number and bunch weight in palms, were over-
lapping on the same linkage groups and could be related
to significant correlations among these traits [41,45,77].
Previous quantitative trait genetic studies suggested that
trait correlations may be attributable to either pleiotro-
pic effects of single genes or to tight linkage of several
genes that individually influence specific traits [105,106].
It should not be too difficult to disentangle these two
effects. A few examples of potential quantitative trait
nucleotides (QTNs) or SNPs closely link to QTNs
would suggest that pleitropy might be involved. For
instance, on LG X, the gene SNP 5437a (e.i. cluster
#GQ03507_B21 in Arborea Gene Catalog GCAT version
3.3, ftp://ftp.gydle.com/pub/arborea) was observed as
having the highest LOD value simultaneously in QTLs
for bud flush, bud set, and height growth. The corre-
sponding gene for this SNP was observed as deregulated
(up-expressed) in an expression profile study recently
conducted on growth cessation and bud formation in
white spruce [107]. On the same linkage group, another
gene SNP, e.i. 4148e (cluster #GQ0203_O13 in Arborea
Gene Catalog GCAT version 3.3, ftp://ftp.gydle.com/
pub/arborea), was observed as simultaneously associated
to bud set and height growth in -1LOD interval under
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the maximal LOD value of QTLs, so in a highly signifi-
cant confidence interval. This latter SNP (4148e) was
identified as candidate for adaptation from a genome
scan aimed at finding SNPs with significant differentia-
tion among natural populations of white spruce [108]. If
such SNPs influence bud flush or bud set timings, then
they would also modulate height growth and could be
considered as putative causal SNPs or QTNs (quantita-
tive trait nucleotides). Association studies in unstruc-
tured populations should allow to verify these
hypotheses. However, even if the same genes or sets of
genes are involved in QTL co-locations or overlaps,
there should likely be variations in magnitude of effects,
as recently observed for common gene sets underlying
the developmental control of male and female flowers in
maize [106]. Indeed, when orthologous QTLs underlie
different traits, the contribution of each of the ortholo-
gous genes to the traits might vary. Moreover, a variable
part of the covariance between phenotypic characters
can also be accounted for by QTLs mapping to different
regions of the genome [109].

QTLs and gene expression profiles
To follow upon the above observations of SNPs possibly
tightly linked to QTNs or representing QTNs, we inves-
tigated expression profile studies conducted in spruce
species in an effort to find genes that would co-localize
with QTLs. While there may be several potential candi-
date genes that mapped within the confidence limits of
QTL location, and because only a fraction of the gene
space was mapped, care must be taken not to blindly
accept the first suitable candidate with a plausible func-
tion. Analyses of comprehensive microarray gene
expression profiling in white spruce and Sitka spruce
[110] have shed light on changes of gene expression
during bud formation, growth cessation, and cold accli-
mation, potentially revealing regulating genes. Several
genes differentially expressed during bud development
and cold hardiness [110] were found to co-localize with
QTLs specifically associated to bud set in the present
study. As mentioned in the previous section, the gene
SNP 4148e is a good example. Another possible case is
the BAS1/CyP734A gene (targeted by the gene SNP
5068f, i.e. cluster #GQ04107_J01 in Arborea’s Gene Cat-
alog GCAT version 3.3, ftp://ftp.gydle.com/pub/arborea),
which was included in a QTL for bud set positioned
onto LG VIII. This gene was also found to be involved
in response to light stimulus and it was up-expressed by
short day induction [107]. The BAS1/CyP734A gene
likely belongs to the brassinosteroid family, which was
shown to regulate dormancy [111,112]. Another gene
associated to a bud set QTL detected onto LG VI (with
the gene SNP 10583v1, i.e. cluster #GQ03808_I16 in
Arborea Gene Catalog GCAT version 3.3, ftp://ftp.gydle.

com/pub/arborea) was from the dehydrin family and
turned out to be up-expressed after an induction of
short days [107]. A SNP of this gene was also previously
identified as candidate for adaptation from a genome
scan aimed at finding SNPs with significant differentia-
tion among natural populations of white spruce [108].
Its putative role as antifreeze gene may be to stabilize
cellular membrane [110]. The up-regulation of this gene
after an induction of seven short days and throughout
all bud stages until the dormancy [107], suggests that a
high level of freezing tolerance could be rapidly
achieved, that could decrease frost damages during the
timing of bud set.
These few examples, though not comprehensive, indi-

cate that QTL analysis together with gene mapping,
population structure studies, and expression profiling
can reveal candidate genes for bud formation and
growth cessation, suggesting valuable new paths of
investigations at the functional level. Many other genes
differentially expressed during bud development could
also be associated to overlapping bud set and bud flush
QTLs, suggesting that these genes could also involved in
the biochemical pathways underlying the expression of
both traits. However, while bridging the gap between
structural, population, and functional genomics and pro-
viding new research hypotheses, these temptative asso-
ciations should not be interpreted as definite proofs of
the causal role of the genes identified in the underlying
QTLs, because QTL mapping implicates large arrays of
genes by simple virtue of linkage.

Conclusions
Some years ago, Chen et al. [10] suggested that the can-
didate gene approach would probably become the
method of choice for identifying QTLs in most organ-
isms, including forest trees. The present study is a sig-
nificant effort in this direction. Robust QTL mapping
with gene-based linkage maps resulted in a much
improved estimation of the genetic architecture of a
conifer genome in terms of the magnitude of QTL
effects, QTL-environment interactions, and putative
pleiotropy. The co-location of candidate genes and QTL
intervals cannot to be considered as a strict evidence of
these genes being causally involved in the quantitative
trait. However, the use of gene maps in conjunction
with QTL architecture, gene expression and outlier
detection studies also allowed to propose genes and
gene SNPs with potential causal roles in the underlying
QTLs. Supplementary validations involving large surveys
in natural populations and formal association genetic
studies [31,108,113], as well as expression studies and
functional characterization [114], appear essential to
attest such associations [3]. Recent association mapping
studies have proven useful to reveal significant
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associations between genes previously identified in cold-
hardiness QTLs [29] and SNPs genotyped in Douglas fir
association populations [113], and between gene SNPs
putatively involved in light signal transduction and bud
set timing variation in Sitka spruce [31].
The next challenge should be to enhance the repre-

sentation of gene space on genomic maps and narrow
down the intervals to small regions that would include
small numbers of candidate genes. Such gene maps
should also be highly useful for comparative genomics
and to orientate and support efforts in sequencing the
conifer genome. To instigate this highly challenging
task, different strategies should be put forward. Rese-
quencing of expressed sequenced tags (ESTs) using pyr-
osequencing should allow to identify segregating SNPs
and map all expressed genes at a reasonable cost, which
currently add up to nearly 28,000 genes in white spruce
(Arborea GCAT3.3 gene catalogue). Currently half of
the expressed genes is being mapped in white spruce
using such strategies and high-throughput genotyping
and mapping populations in the order of thousands of
progeny. Plans for similar maps are being developed in
other conifers, which will facilitate large-scale compara-
tive analysis of genome structure and quantitative traits
architecture. These maps should also be useful to priori-
tize the sequencing of gene-containing BACs corre-
sponding to QTLs or gene-rich regions. Shotgun
sequencing of these BACs should represent a useful
starting point to conifer genome sequencing, given the
mapping of the entire gene space which should facilitate
the assembly of gene-rich regions.
A complete understanding of the genes and gene net-

works underlying traits involved in the control of height
growth and adaptive traits associated to bud phenology
is crucial, to help orientate association genomics efforts
and hasten the development of genomics-assisted selec-
tion aimed at increasing forest productivity in the face
of an uncertain and rapidly changing environment [18].
Selected genotypes should combine an optimum dura-
tion of seasonal height growth with frost hardiness,
implicating that timings of bud flush and bud set take
place in time to avoid injuries by late frosts in the spring
and by early frosts in the fall [93,115-118]. These
requirements are expected to change dramatically under
northern latitudes, where climate warming has already
been shown to be proportionally greater [119].
In a near future, using one of the present mapping

populations, a QTL mapping study will integrate the
expression profiles of a large number of white spruce
genes or expression QTLs (eQTLs). Transcript abundance
may act as intermediate phenotype between loci and
macroscopic phenotypes, and can be considered as expres-
sion quantitative trait (e-trait) in order to identify chromo-
somal regions where genotypes significantly affect gene

expression [120]. By using cis- and trans- mapping
approaches, other interesting questions regarding gene
expression regulation could be addressed by combining
QTL and eQTL: for instance the relative contributions of
cis-regulatory elements versus trans-regulatory elements
[121], or the exploration of the effect of gene duplications
on the genetic regulatory network [122]. Because of the
virtually unlimited types of data that can be integrated in
QTL mapping for an “overall genomic information sys-
tem” (e.g., eQTL, proteomics, metabolomics, association
studies), the increase of gene mapping efforts in conifer
species shall represent an important stage for conifer com-
parative genomics, simultaneously opening stimulating
perspectives for evolutionary studies and molecular breed-
ing applications.

Additional material

Additional file 1: List of gene markers retained for linkage map
construction. List of primer sequences used for PCR amplification for
each gene-marker retained for the construction of individual linkage
maps for both crosses P and D.

Additional file 2: Measurements of bud flush, bud set and height
growth, over three years, two sites and for two unrelated mapping
populations. Statistical parameters of phenotypic data for bud flush, bud
set and height growth, over three years, two sites and for two unrelated
mapping populations.

Additional file 3: Pearson’s and Spearman’s (grey background)
correlation coefficients for each trait measured in outdoor (VES)
and indoor (AAFC) conditions for both mapping populations P and
D. (* significant at 5% level; ** at 1% level; *** at 0.1% level) Phenotypic
correlation coefficients within and among the three adaptive traits.

Additional file 4: QTLs identified for bud flush. List of QTLs identified
for bud flush within each mapping population, P and D, for each
environmental condition and year (QTL interval position, PPVE percent of
phenotypic variance explained, LOD value, list of gene loci for each QTL).

Additional file 5: QTLs identified for bud set. List of QTLs identified
for bud set within each mapping population, P and D, for each
environmental condition and year (QTL interval position, PPVE percent of
phenotypic variance explained, LOD value, list of gene loci for each QTL).

Additional file 6: QTLs identified for height growth. List of QTLs
identified for growth within each mapping population, P and D, for each
environmental condition and year (QTL interval position, PPVE percent of
phenotypic variance explained, LOD value, list of gene loci for each QTL).
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