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Background Seasonal influenza epidemics are associated with

significant morbidity and mortality each year, particularly

amongst young children and the elderly. Seasonal influenza

vaccines have been available for decades, yet influenza remains a

major public health threat in the US, sparking interest in studies

evaluating the effectiveness of vaccination.

Objectives We sought to identify determinants of serological

responses to inactivated seasonal influenza vaccines including

number of doses, adjuvant, and subject characteristics.

Methods We reviewed 60 articles published between 1987 and

2006. We used weighted multiple logistic regression and random-

effects models to evaluate how seroconversion and seroprotection

rates varied with host and vaccine factors.

Results Both children and seniors tended to have poorer

immune responses compared to adults whereas use of adjuvant

and a second vaccine dose tended to improve immune response.

Pre-vaccination serological status had a large impact on the

immune response to vaccination. We found substantial

heterogeneity among studies, even with similar population settings

and vaccination regimen.

Conclusions Future studies should stratify their results by

pre-vaccination serological status in an effort to produce more

precise summary estimates of vaccine response.

Keywords antibody response, immunogenicity, influenza,

vaccine.
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Background

Despite increasingly comprehensive vaccination coverage

recommendations in the United States, seasonal influenza

epidemics remain a major public health threat. It is esti-

mated that seasonal influenza infection is associated with

more than 36 000 deaths and nearly 294 000 hospitaliza-

tions in the United States every year.1,2 Young children and

the elderly experience the heaviest burden of severe influ-

enza morbidity and mortality; in particular, more than

90% of influenza-related deaths occur in people >65 years.3

Seasonal influenza vaccines are reformulated and relicensed

annually because of frequent antigenic drift in circulating

viruses.4 The hemagglutination inhibition (HI) assay, a

commonly used measurement of immune response to

influenza vaccine, quantifies the level of serum antibody

against haemagglutinin, the major surface antigen in influ-

enza viruses. The US and European regulatory bodies

accept HI titers as surrogate measures for protection

against influenza illness because high titers have been

observed to correlate with clinical protection.5 In 1972,

Hobson et al. 6 described the results of challenge studies in

which the 50% protective dose of antibody (as measured

by the HI assay) was found to be 18–36 for influenza

A ⁄ H2 viruses. Lower titer levels may provide protection

against infection with influenza A ⁄ H1 and B strains.6,7

Hobson et al.’s study is routinely cited as the rationale for

considering an HI antibody titer of 40 to be a marker of

clinical protection; in a population of subjects with anti-

body titers of 40, 50% are expected to be protected.8

Previous reviews of inactivated seasonal influenza vac-

cine have identified determinants of vaccine response,

including subject (age, baseline immunity) and vaccine

(type, number of doses) characteristics.9–14 Vaccine

response was reduced in younger children compared with

older children and in older adults compared with younger

adults.14–16 High pre-vaccination titers were correlated

with high post-vaccination titers.17 While the past research

has focused on the impact of specific factors such as older

age or adjuvant on vaccine response, no study has
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examined the combined impact of vaccine and recipient

characteristics on serological markers of immunity. We

performed a quantitative review to assess the impact

of number of doses, adjuvant, and subject characteristics

on serological response to inactivated seasonal influenza

vaccines. We also discuss sources of heterogeneity in

measurements of immunological responses to influenza

vaccine.

Methods

Literature review
Publications written in English and published through

December 2006 were identified in PUBMED using keyword

search terms ‘influenza’ and ‘vaccine’ and ‘immunogenicity’.

We also consulted references in papers retrieved by the

PUBMED search. We excluded all studies reporting immu-

nological responses for live-attenuated vaccines and focused

on studies discussing inactivated vaccines only. Studies of

inactivated influenza vaccine were included if they contained

A ⁄ H1N1, A ⁄ H3N2, or B antigens, at the dosage level of cur-

rently licensed vaccines (15 lg of HA ⁄ dose), and the study

population was without specific chronic conditions. Studies

administering inactivated vaccines intranasally or subcutane-

ously were excluded. All studies meeting the inclusion crite-

ria were published in 1987 or later. We selected studies

numerically reporting the seroconversion rate (percent of

vaccinees achieving a 4-fold rise in HI titer) and ⁄ or seropro-

tection rate (percent of vaccinees achieving an HI titer

‡40).6,18 Studies were included if immune response was

assessed within 2–8 weeks of vaccination.

Data extraction
Studies of inactivated seasonal influenza vaccine in all age

groups were included in this review. Subjects were catego-

rized as children (<18 years), adults (18–59 years), or

seniors (‡60 years). Studies of experimental vaccines were

included so long as they met the licensure criteria for dos-

age; however, we recorded whether the vaccine was com-

mercially licensed. We included studies of both one and two

dose regimens; two dose studies were included if the second

dose of the same formulation was administered within

60 days. We captured antibody response rates after first and

second vaccine dose when available. We also recorded the

presence and type of adjuvant; vaccines were classified as

with or without adjuvant in the primary analysis.

During the period of this review (1987–2006), the WHO

recommended 15 new influenza A ⁄ H3N2, five A ⁄ H1N1,

and nine B strains for inclusion in seasonal vaccines.19,20

We distinguished between new and repeated vaccine strains

whenever possible. Studies including subjects living in

nursing homes or other institutions were included if sub-

jects were not suffering from specific illnesses or chronic

conditions. The analysis included a variable for community

vs institutional residence.

Subjects were considered to have low titers at baseline if

pre-vaccination antibody levels were <40. We collected

information on the proportion of subjects with pre-vacci-

nation titers ‡40 and previous influenza vaccination rates.

Some studies presented the outcomes for both the entire

study population and for the baseline low titer subset; this

was captured for subanalysis. Because few studies reported

vaccination history, prior vaccination status was not used

in multivariate analyses. Our preliminary analysis broadly

categorized the pre-vaccination antibody levels of study

subjects as follows: low titer (0% of subjects have pre-vacci-

nation titers ‡40); seropositive (100% of subjects have pre-

vaccination titers ‡40) and unknown (pre-vaccination titers

not described). Because the bulk of studies fell into the

‘unknown’ category, we created a composite variable to

better capture baseline antibody levels: Negative – 0% sero-

positive; Low – 0–49% seropositive; High – 50–<100%

seropositive; Positive – 100% seropositive; Unknown – sub-

jects’ pre-vaccination titers not described.

Statistical analysis
Many studies presented outcomes for separate population

subgroups based on subject age, pre-vaccination titers, or

other characteristics; each of these was analyzed as a dis-

tinct study arm. In all analyses, the number of subjects was

used as a weighting factor. Crude mean response rates were

calculated for each antigen (A ⁄ H1N1, A ⁄ H3N2, B), out-

come measure (seroprotection and seroconversion rates),

and dose, without adjustment for other factors. To account

for clustering by study, we generated summary measures

for seroprotection and seroconversion rates using meta-

analysis models with random effects.21 Univariate and mul-

tivariate logistic regression models were fit to estimate odds

ratios (OR) and 95% confidence intervals (95% CI) for the

associations between seroprotection and seroconversion

outcomes and vaccine and recipient characteristics. Further,

we performed a similar analysis with the subset of study

arms reporting results for baseline low titer subjects. We

conducted sensitivity analyses to assess the impact of a

more finely categorized adjuvant variable (MF59, virosomal

vaccines, other, none) and to adjust for potential statistical

dependence between observations from studies reporting

vaccine response after one and two doses. For the latter

analysis, multivariate models were refit using generalized

estimating equations (GEE) with exchangeable correlation.

Results

Study characteristics
We identified 60 eligible articles published between 1987

and 2006 describing inactivated seasonal influenza vaccine

Antibody response to seasonal influenza vaccines

Published 2011. This article is a US Government work and is in the public domain in the USA, Influenza and Other Respiratory Viruses, 6, 52–62 53



immunogenicity studies conducted in the United States,

Canada, Europe, Israel, and Russia.10,22–80 We included 129

independent study arms of which 119 reported data on

response to A ⁄ H1N1, 109 on influenza B, and 108 on

A ⁄ H3N2 vaccine strains (Table 1). More than 84% of study

arms assessed serological response within 3–4 weeks of vac-

cination; the minimum and maximum intervals were 2 and

6 weeks, respectively. The number of subjects ranged from

2 to 595 in each arm (mean 85, SD 101). The most preva-

lent age group was seniors (50% of study arms), followed

by adults (42%) and children (9%). Only one study

focused on young children (age range 6 months to

5 years)47; all other studies concentrated on older popula-

tions. A total of 127 study arms measured response after

one dose; seven arms measured after two doses. Nearly

16% of study arms assessed response to adjuvanted vac-

cines; the most common adjuvants were the oil-in-water

emulsion MF59 approved for use in Europe and virosomal

vaccine preparations (40% of adjuvanted vaccine study

arms each).

Vaccine response rates
The crude mean response rates after one dose of influenza

vaccine were similar across the three antigens for both

seroprotection (range 75–81%) and seroconversion (range

51–62%) (Table 2). The proportion of subjects achieving

seroprotection was greater than that of seroconversion for

subtype A, and response rates were higher after two doses.

The summary effect size estimates from the random effects

models were generally higher than the mean estimates

(Table 2). The test for variance heterogeneity was highly

significant for nearly all antigen-outcome combinations. To

reduce the variance between studies, we repeated the ran-

dom effects analysis on the subset of studies reporting

responses after a single dose of commercially licensed vac-

cine administered to adults, published between 1990 and

2006. The summary estimates for seroprotection were

remarkably consistent across the antigens (A ⁄ H1N1 86%;

A ⁄ H3N2 88%; B 89%) (Figure 1), and the estimates for

individual studies ranged from 49 to 100%. The summary

estimates for seroconversion were also consistent across

subtype (A ⁄ H1N1 72%; A ⁄ H3N2 73%; B 70%); however,

there was more variation between individual studies with

seroconversion rates ranging from 20 to 100% (Figure 2).

The test for variance heterogeneity was highly significant

for all combinations of antigens and serological outcomes.

Factors associated with vaccine response
The number of study arms included in the univariate

regression models ranged from 40 to 115. A second vac-

cine dose significantly increased the odds of both seropro-

tection (OR range 1Æ2–2Æ1, P < 0Æ01) and seroconversion

(OR range 1Æ8–2Æ7, P < 0Æ01) (Table S1). Seniors had sig-

nificantly decreased odds of either serological outcome

compared with adults (OR range: 0Æ2–0Æ6, P < 0Æ01). Chil-

dren had reduced odds of seroprotection and seroconver-

sion compared with adults, however, many of the 95%

CIs overlap 1 (OR range: 0Æ3–1Æ1, P value range: <0Æ01–

0Æ58). The use of adjuvant boosted serological response to

A subtypes but was associated with weaker response to B

strains. In contrast, serological response to B strains

improved when vaccine recommendations were updated

and a new B strain was included. Both institutional resi-

dence and previous influenza vaccination were associated

with lower odds of protective responses. Higher baseline

Table 1. Characteristics of 60 seasonal inactivated influenza

vaccine studies included in quantitative review*

Number of study arms

H1N1 H3N2 B

Total 118 109 107

Age (years)

<18 11 11 11

18–59 48 38 42

‡60 59 60 54

Number of doses

1 116 107 105

2 6 7 7

Adjuvant

No 100 89 88

Yes 18 20 19

Baseline serological status**

Low titer 13 5 6

<50% Positive 42 42 33

>50% Positive 10 16 22

100% Positive 4 4 4

Unknown 49 42 42

Novel vaccine strain

Yes 26 63 29

No 91 46 78

Missing 1 0 0

Reported % of subjects with

previous vaccination

60 50 52

Reported % of subjects with

previous high titers

69 67 65

*The 60 included studies were published between 1987 and 2006

and reported results from 129 independent study arms.
**Pre-vaccination categorical variable coded as follows:

Low titer – 0% of subjects have pre-vaccination antibody titers ‡40.

<50% Positive – 0–50% of subjects have pre-vaccination antibody

titers ‡40.

>50% Positive – 50–<100% of subjects have pre-vaccination anti-

body titers ‡40.

100% Positive – 100% of subjects have pre-vaccination antibody

titers ‡40.

Unknown – subjects’ pre-vaccination antibody titers not described.
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antibody titers were significantly positively associated with

seroprotection (OR range: 1Æ8–6Æ3, P < 0Æ01), but inversely

associated with seroconversion (OR range: 0Æ2–0Æ8,

P < 0Æ01).

The number of study arms included in each multivariate

model ranged from 76 to 114 (Table 3). The impact of a

second dose was less consistent after controlling for other

factors, significantly increasing the odds of protective

responses for A ⁄ H1N1 and B, but not A ⁄ H3N2. Both

seniors and children had significantly reduced odds of both

outcomes compared with adults (OR range: 0Æ1–0Æ7,

P < 0Æ01). Institutional residence increased the odds of

seroconversion by 20–80%; this factor increased the odds

of seroprotection for B, but not type A strains. The inclu-

sion of new B strains was associated with two to fivefold

increased odds of protective responses. High baseline HI

titers were significantly associated with increased odds of

seroprotection but reduced odds of seroconversion.

Subanalysis of baseline low titer subjects
Given the apparent importance of baseline serological sta-

tus, we conducted a subanalysis of subjects with low titers

Table 2. Mean serological response rates to seasonal inactivated influenza vaccines by antigen and dose

Antigen Dose

Seroprotection Seroconversion

No. of

study

arms

No. of

subjects

Mean

(95% CI)

Random

Effects

Summary

No. of

study arms

No. of

subjects

Mean

(95% CI)

Random

Effects

Summary

H1N1 1 74 7949 78 (74, 82) 82 (78, 86) 111 9987 58 (53, 63) 61 (55, 66)

2 6 503 88 (79, 97) 88 (81, 96) 3 252 84 (66, 100) 85 (78, 92)

H3N2 1 71 7800 81 (77, 85) 83 (79, 87) 101 9664 61 (58, 65) 64 (60, 67)

2 7 518 86 (75, 98) 82 (70, 95) 4 267 70 (61, 79) 70 (65, 75)

B 1 72 7972 75 (69, 80) 83 (79, 88) 101 9914 51 (45, 56) 56 (51, 62)

2 7 518 80 (59, 100) 89 (79, 99) 4 267 93 (87, 100) 93 (90, 97)

CI, Confidence Interval.

Seroprotection rate: % of vaccinees achieving a HI titer ‡40.

Seroconversion rate: % of vaccinees achieving a 4-fold rise in HI antibody titer.
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Figure 1. Meta-analysis plot of seroprotection rates from single dose, commercially licensed, inactivated vaccine studies in adults (18–59 year). Box

sizes are proportional to the number of subjects in each study arm. The summary effect estimates were obtained from the random effects meta-

analysis models. The test for variance heterogeneity was highly significant for all antigens (P < 0.001).
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Figure 2. Meta-analysis plot of seroconversion rates from single dose, commercially licensed, inactivated vaccine studies in adults (18–59 year). Box

sizes are proportional to the number of subjects in each study arm. The summary effect estimates were obtained from the random effects meta-

analysis models. The test for variance heterogeneity was highly significant for all antigens (P < 0.001).

Table 3. Multivariate regression analysis of subject and vaccine characteristics associated with protective serological responses*

Seroprotection Seroconversion

H1N1 H3N2 B H1N1 H3N2 B

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Dose (2 versus 1) 2Æ5 (1Æ7, 3Æ6) 0Æ6 (0Æ4, 0Æ9) 3Æ1 (2Æ3, 4Æ3) 2Æ0 (1Æ3, 3Æ0) 1Æ1 (0Æ8, 1Æ5) 5Æ5 (3Æ2, 9Æ3)

Age (ref = 18–59 years)

‡60 years 0Æ4 (0Æ4, 0Æ5) 0Æ4 (0Æ3, 0Æ5) 0Æ1 (0Æ1, 0Æ2) 0Æ2 (0Æ2, 0Æ3) 0Æ3 (0Æ3, 0Æ4) 0Æ2 (0Æ1, 0Æ2)

<18 years 0Æ4 (0Æ3, 0Æ6) 0Æ3 (0Æ2, 0Æ5) 0Æ1 (0Æ1, 0Æ1) 0Æ7 (0Æ6, 0Æ9) 0Æ5 (0Æ4, 0Æ7) 0Æ6 (0Æ5, 0Æ7)

Adjuvant 3Æ3 (2Æ8, 3Æ8) 2Æ1 (1Æ7, 2Æ4) 1Æ6 (1Æ4, 1Æ8) 2Æ7 (2Æ4, 3Æ0) 1Æ7 (1Æ5, 1Æ9) 1Æ9 (1Æ7, 2Æ2)

Institutional residence 1Æ0 (0Æ9, 1Æ2) 1Æ0 (0Æ9, 1Æ2) 3Æ2 (2Æ7, 3Æ7) 1Æ3 (1Æ1, 1Æ4) 1Æ7 (1Æ5, 1Æ9) 1Æ8 (1Æ6, 2Æ0)

Baseline serostatus composite (ref = Low titer)**

<50% Positive 2Æ6 (2Æ1, 3Æ1) 2Æ1 (1Æ6, 2Æ7) 4Æ6 (3Æ7, 5Æ6) 0Æ8 (0Æ7, 1Æ0) 0Æ7 (0Æ5, 0Æ9) 0Æ8 (0Æ6, 1Æ0)

>50% Positive 4Æ5 (3Æ5, 5Æ9) 6Æ1 (4Æ3, 8Æ8) 12Æ6 (9Æ8, 16Æ1) 0Æ3 (0Æ2, 0Æ4) 0Æ3 (0Æ2, 0Æ4) 0Æ6 (0Æ5, 0Æ8)

100% Positive 27Æ2 (11Æ7, 63Æ2) >100*** >100*** 0Æ3 (0Æ2, 0Æ6) 0Æ2 (0Æ1, 0Æ4) 1Æ4 (0Æ7, 2Æ8)

Unknown 2Æ3 (1Æ8, 2Æ8) 4Æ1 (3Æ2, 5Æ4) 2Æ2 (1Æ8, 2Æ8) 0Æ8 (0Æ6, 1Æ0) 0Æ6 (0Æ4, 0Æ8) 0Æ5 (0Æ4, 0Æ6)

New strain year 0Æ9 (0Æ8, 1Æ0) 0Æ6 (0Æ5, 0Æ7) 3Æ8 (3Æ2, 4Æ6) 1Æ3 (1Æ2, 1Æ4) 0Æ8 (0Æ8, 0Æ9) 2Æ0 (1Æ8, 2Æ2)

CI, confidence interval.
*The number of study arms included in each multivariate regression model ranged from 76 to 114.
**Pre-vaccination categorical variable coded as follows:

Low titer – 0% of subjects have pre-vaccination antibody titers ‡40.

<50% Positive – 0–50% of subjects have pre-vaccination antibody titers ‡40.

>50% Positive – 50–<100% of subjects have pre-vaccination antibody titers ‡40.

100% Positive – 100% of subjects have pre-vaccination antibody titers ‡40.

Unknown – subjects’ pre-vaccination antibody titers not described.
***Odds ratios very large because of the small number of studies in this category.

Seidman et al.

56 Published 2011. This article is a US Government work and is in the public domain in the USA, Influenza and Other Respiratory Viruses, 6, 52–62



at baseline. Of the 24 study arms included, subjects had

baseline titers £10 in 42% of study arms, and the remain-

der had titers between 10 and <40. Mean seroprotection

rates after one dose ranged from 57 to 65% (only one

study reported results after two doses); mean seroconver-

sion rates ranged from 62 to 76% after one dose (no stud-

ies included reported results after two doses) (Table 4). We

found greater heterogeneity between antigens and outcomes

as compared to the main analysis, possibly due to

decreased sample size.

In univariate analysis, a second vaccine dose, use of

adjuvant, and previous vaccination were generally associ-

ated with significantly increased odds of protective

responses (Table S2). The magnitude and direction of the

effect sizes for age, residence, and new vaccine strains var-

ied between antigens and outcomes. The number of study

arms included in each multivariate model ranged from 7 to

18 (Table 5). Adjustment for the other factors strengthened

the association between a second dose and immunological

responses. Both seniors and children had lower odds of

seroprotection compared with adults. The use of adjuvant

was associated with increased odds of protective responses,

and new vaccine strains increased the odds of seroprotec-

tion but decreased the odds of seroconversion for subtype

B strains. Overall, this suggests that while pre-vaccination

serostatus significantly affects serologic outcomes, this is

not the only factor responsible for the observed hetero-

geneity of vaccine responses.

Table 4. Mean serological response rates to seasonal inactivated influenza vaccines by antigen and dose, sensitivity analysis of subjects with low

titers at baseline*

Antigen Dose

Seroprotection Seroconversion

No. of studies No. of subjects Mean (95% CI) No. of studies No. of subjects Mean (95% CI)

H1N1 1 14 661 58 (39, 76) 17 575 70 (56, 85)

2 1 103 85* 0 – –

H3N2 1 9 434 65 (45, 85) 7 320 76 (63, 89)

2 1 19 68* 0 – –

B 1 10 647 57 (36, 78) 11 579 62 (48, 75)

2 1 155 48* 0 – –

CI, Confidence Interval.

Seroprotection rate: % of vaccinees achieving a HI titer ‡40.

Seroconversion rate: % of vaccinees achieving a 4-fold rise in HI antibody titer.
*No CI given because only one study arm was included.

Table 5. Multivariate regression analysis of subject and vaccine characteristics associated with protective serological responses, subanalysis of

subjects with low titers at baseline*

Seroprotection Seroconversion

H1N1 H3N2 B H1N1 H3N2 B

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Odds ratio

(95% CI)

Dose 10Æ9 (5Æ5, 21Æ6) 18Æ4 (3Æ2, 106Æ6) 4Æ5 (2Æ7, 7Æ7)

Age (ref = 18–59 years)

‡ 60 years 0Æ5 (0Æ3, 1Æ0) 0Æ3 (0Æ2, 0Æ5) 1Æ2 (0Æ7, 2Æ0) 0Æ4 (0Æ1, 0Æ9) 0Æ3 (0Æ1, 0Æ7)

<18 years 0Æ3 (0Æ1, 0Æ6) 0Æ0 (0Æ0, 0Æ0) 0Æ4 (0Æ1, 1Æ0) 1Æ9 (0Æ3, 10Æ7) 0Æ0 (0Æ0, 0Æ1)

Adjuvant 8Æ5 (4Æ8, 15Æ2) 6Æ2 (3Æ6, 10Æ6) 1Æ9 (1Æ2, 3Æ1) 2Æ6 (1Æ4, 4Æ9) 3Æ3 (1Æ8, 5Æ9) 2Æ3 (1Æ5, 3Æ4)

Institutional residence 0Æ7 (0Æ4, 1Æ4) 1Æ0 (0Æ5, 1Æ9) 0Æ1 (0Æ0, 0Æ1) 1Æ7 (0Æ8, 3Æ7) 0Æ1 (0Æ0, 0Æ3)

New strain year 0Æ6 (0Æ3, 1Æ2) 0Æ4 (0Æ2, 0Æ6) 4Æ8 (2Æ9, 7Æ9) 0Æ2 (0Æ1, 0Æ6)

CI, Confidence Interval.
*The number of study arms included in each multivariate regression model ranged from 7 to 18.
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Sensitivity analyses
Although only a small number of study arms used MF59-

adjuvanted or virosomal vaccines, in multivariate analysis,

both improved the odds of seroconversion and seroprotec-

tion compared with unadjuvanted vaccines (OR range: 1Æ3–

3Æ8, Table S3). Inclusion of the more finely categorized

adjuvant variable did not have an impact on the OR esti-

mates for the other variables. Such comparisons warrant

further study, especially in light of the current debate about

the use of adjuvanted vaccines for pandemic influenza.

The GEE model fitting procedure generally produced

similar OR estimates to the main analysis, although confi-

dence intervals were wider than for the standard logistic

regression. In this sensitivity analysis, the strength of the

associations between a second dose and protective serologi-

cal responses was increased although the statistical signifi-

cance of the relationship between baseline serological status

and vaccine response was somewhat weakened. The proce-

dure failed to converge for three of the six antigen-outcome

models (A ⁄ H3N2 for both outcomes and B models for sero-

protection). Because only a small proportion of studies

reported results after the first and second dose (4%), we felt

that correlation because of repeated observations was lim-

ited, and that confidence interval estimates from the stan-

dard logistic regression were sufficiently robust.

Discussion

We reviewed the seasonal inactivated influenza vaccine lit-

erature to quantify the associations between antibody

responses to immunization and vaccine and recipient char-

acteristics. Despite considerable heterogeneity in study

results, several patterns emerged. A second vaccine dose

and the use of adjuvant generally increased the proportion

of subjects achieving serological markers of protection. This

concurs with previous reviews of MF59-adjuvanted vac-

cines, reporting increased immunogenicity in elderly sub-

jects compared with non-adjuvanted vaccines 81,82 and

suggesting similar benefits in younger age groups.83 Viroso-

mal vaccines have also been shown to boost immunogenic-

ity, especially among subjects with low titers prior to

vaccination.84,85 In our study, the effects of a second dose

and adjuvant were magnified in populations with low base-

line titers.

Seniors were less likely to respond to vaccine compared

with adults, consistent with estimates reported elsewhere.15

Although seasonal influenza vaccines are widely used in

elderly populations, there is only one randomized, con-

trolled trial assessing vaccine efficacy in this age group that

suggests decreased benefit with increasing age.86 The youn-

gest subjects were also less likely to achieve protective levels

compared with adults. Our review included only one publi-

cation of very young children (6 month–5 year); in this

study, seroconversion rates in previously vaccinated chil-

dren were lower than in their unvaccinated age peers.47

Vaccine-naı̈ve children are recommended to receive two

doses to boost immunogenicity, and older children have

been shown to have significantly increased antibody

responses compared with younger children.87–89 In the

baseline low titer analysis, the effect of age on responses to

influenza vaccination was less consistent, likely due to small

sample size.

A striking finding was the magnitude of the impact of

pre-vaccination antibody titers on post-vaccination serolog-

ical outcomes. Studies with large proportions of subjects

with pre-vaccination titers ‡40 reported higher seroprotec-

tion rates following vaccination. In contrast, the proportion

of baseline seropositive subjects was inversely correlated

with seroconversion. A previous meta-analysis of annual

vaccination studies found no difference in seroprotection

rates between unvaccinated and previously vaccinated indi-

viduals.90 However, individuals with high baseline titers

may easily achieve the seroprotection threshold, but may

not be able to generate a fourfold increase. Few studies

stratify by the baseline serostatus of the study population,

making it difficult to assess true vaccine immunogenicity.

Beyer et al. 11,91 suggest linear regression or other statistical

procedures to adjust post-vaccination serological measures

for pre-vaccination antibody titers to facilitate meaningful

evaluation of influenza vaccines.

Vaccination with new strains was associated with

improved serological responses for influenza B, weaker

responses for influenza A ⁄ H3N2, and had no impact on

responses to influenza A ⁄ H1N1. It is surprising that vacci-

nation with influenza B strains included in prior year for-

mulation tends to elicit a weak immune response. A study

of immune response to repeated annual vaccination with

unaltered antigen composition found evidence of gradual

impairment of antibody response with influenza B in

elderly populations.92 Further, modeling work suggests that

vaccine efficacy may increase as the antigenic distance

between the vaccine strain and strains previously encoun-

tered increases.93 The variation in serological response to

new vaccine strains of influenza A and B types warrants

further study.

Strain-specific analysis was limited by the small number

of studies of specific strains. Evidence from the past pan-

demics suggests that exposure to influenza virus in child-

hood could provide life-long immunity. In particular,

recent studies have shown that seniors enjoyed partial clini-

cal protection during the 2009 pandemic through pre-exist-

ing cross-reactive antibodies to the 2009 A ⁄ H1N1pdm

virus.94 Here, we controlled for prior influenza exposure by

including terms for age and baseline serostatus in the

regression models. Current vaccine evaluation standards are

independent of strain antigenic characteristics; thus, we felt
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pooling studies of different strains within a subtype was

valid. We only considered influenza subtypes A ⁄ H1, A ⁄ H3,

and B; these results may not be generalizable to other

emergent subtypes such as A ⁄ H5N1 or the recent swine

origin A ⁄ H1N1 virus. In addition, it would be useful to

conduct challenge studies to systematically compare

seroprotective threshold titers across different influenza

subtypes. Alternatively, field studies following well-charac-

terized, serologically mixed populations through vaccina-

tion and natural exposure to influenza would further

our understanding of the protection afforded by current

vaccines.

There are several limitations to this study. Owing to lack

of standardization in reporting, our categorical variables

were broadly defined. Studies providing separate results for

baseline low titer individuals used various threshold levels

to define seronegativity. While previous studies have found

differences in vaccine response or efficacy when comparing

within age categories (younger versus older elderly; younger

versus older children), we used wide age categories to allow

inclusion of most studies.14,15 Very few studies stratified by

narrow age ranges, precluding more refined analysis of the

impact of age on antibody responses to influenza vaccine.

We included a variable for type of residence (institu-

tional or community dwelling) in our models. Although we

excluded publications of study populations with specific

comorbid conditions, it is likely that institutionalized sub-

jects are more frail than the general population and have

weakened immune response to vaccination.15 The majority

of the institutionalized populations studied were also

seniors, so we were concerned about potential colinearity

between these two variables. When the multivariate models

were run both with and without the residence variable, the

OR estimates for the association between age and vaccine

response were virtually unchanged; thus, we felt that the

colinearity did not affect our analysis.

We note that variation in study results was high, even in

studies with similar population and vaccine characteristics,

as evidenced by the meta-analysis statistics. Although our

study suggests that heterogeneity in baseline antibody levels

could explain some of the variability in vaccine immunolog-

ical response, variability could also result from the serologi-

cal assay itself. The HI assay, developed in 1941, remains

the standard method for serological evaluation of influenza

vaccine for licensure in both the United States and Eur-

ope.95–97 The HI assay is highly variable and sensitive to fac-

tors such as reagents, erythrocyte source, and virus passage

history, but is not standardized across laboratories.98–100

Few studies provided enough detail on the laboratory meth-

ods used to be able to include these factors in our analyses.

Additionally, studies may have used different starting dilu-

tions to calculate a fourfold rise and report seroconversion

rates, but did not systematically report this information.

In an international collaborative study of HI assay

reproducibility, Wood et al.99 found that relative HI titers

were consistent between laboratories, but absolute levels

were not. They found microneutralization assays to be

even more variable.101 Further, although high HI titers

have been shown to correlate with clinical protection, HI

assays are an indirect measurement of antibody levels.6,98

This calls into question the utility of using absolute crite-

ria, such as the presence of HI titers above 40, for the

evaluation of vaccine immunogenicity, especially without

the use of reference sera as advocated by Wood et al.99

Improved and standardized assays are necessary for better

characterization of influenza vaccine immunogenicity, as

well as a better understanding of the relationship between

HI titers and clinical protection against influenza virus

infection.

Conclusions

We recommend that reporting guidelines for seasonal inac-

tivated influenza vaccine licensure and relicensure studies

include characterization of the baseline serostatus of the

study population and stratification of post-vaccination

responses by the baseline status. In addition, future studies

should provide greater detail on the protocols used for the

HI assay and standards for how to report on the results of

influenza vaccine immunogenicity studies should be estab-

lished by the research community. Our data confirm that

vaccine response in seniors and children may be weaker

than in adult populations. More immunogenic vaccines are

warranted for these population groups at high risk of

severe disease outcomes. Finally, our study also strongly

emphasizes the need for more basic research into standard-

izing HI tests and identifying the most appropriate markers

of protective humoral and cell-mediated immunity in

different age groups.
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