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Parkinson’s disease (PD) is the second most common neurodegenerative disorder. Its neuropathological hallmarks include
neuronal loss in the substantia nigra pars compacta (SNpc) and the presence of Lewy bodies containing aggregates of α-synuclein
(α-syn). An imbalance between the rates of α-syn synthesis, aggregation, and clearance can result in abnormal α-syn levels and
contribute to the pathogenesis of PD. MicroRNAs (miRNAs) are endogenous single-stranded noncoding RNAs (∼22 nucleotides)
that have recently emerged as key posttranscriptional regulators of gene expression. In this review, we summarize the functions of
miRNAs that directly target α-syn. We also review miRNAs that indirectly impact α-syn levels or toxicity through different
pathways, including those involved in the clearance of α-syn and neuroinflammation.

1. Introduction

Parkinson’s disease (PD) is the second most common
neurodegenerative disorder which affects 2-3% of the
population ≥65 years of age [1]. Its cardinal motor features
include tremor, rigidity, and bradykinesia [2]. ,e cause of
PD is not fully understood. Both environmental and genetic
factors contribute to the risk of developing PD [1, 3, 4, 5].
One of the neuropathological hallmarks of PD is neuronal
loss in the substantia nigra pars compacta (SNpc), which
causes striatal dopamine deficiency [1, 6]. Another key
characteristic of PD is the formation of intracellular in-
clusions, namely, Lewy bodies, containing protein aggre-
gates. In 1997, α-synuclein (α-syn), a protein with 140 amino
acids, was identified as the most abundant protein in Lewy
bodies. ,is followed the discovery that mutations in its
gene, SNCA, which causes a monogenic autosomal domi-
nant form of PD [7–10].

,e molecular mechanisms through which abnormal
α-syn aggregates contributing to neurodegeneration in PD

remain unclear. α-Syn is thought to have a role in the
regulation of neurotransmitter release, synaptic function,
and plasticity [11]. Under healthy physical conditions, α-syn
exists predominantly as a monomer. During pathogenesis,
soluble α-syn monomers may initially form oligomers, in-
cluding low-molecular-weight species (such as dimers, tri-
mers, and tetramers) and high-molecular-weight species
(such as spherical, chain-like, and annular structures). ,ese
structures progressively combine to form small protofibrils
which further aggregate into large, insoluble fibrils [12]. ,e
fibrillar forms of α-syn are detected mainly in Lewy bodies,
which are localized in the neuronal cell body. Oligomeric
aggregates are usually found in axons and presynaptic ter-
minals, forming Lewy neurites [1].

Prefibrillar oligomers may represent the toxic form of
α-syn [13, 14], whereas Lewy bodies are thought to reflect an
attempt by the neurons to isolate and/or convert toxic α-syn
oligomers to fibrils, which are stable, less dynamic structures
that exhibit reduced toxicity [11]. Conversion of α-syn to the
toxic oligomeric form may be modulated by many factors,
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including oxidative stress [15], post-translational modifi-
cations [16], interactions with lipids or small molecules [11],
and the concentration of α-syn [11].

An imbalance between the rates of α-syn synthesis,
aggregation, and clearance can result in an abnormal level of
α-syn and thus the formation of toxic oligomeric and fi-
brillar species [17]. Indeed, increased expression of α-syn
due to SNCA duplication was found to be a cause of familial
PD [18, 19]. Biological processes that clear α-syn monomers
and aggregates include direct proteolysis [20], binding to
molecular chaperones [21], and the proteasome [22] and
autophagy pathways [23, 24]. Dysfunction of these processes
may also contribute to PD [23, 25].

MicroRNAs (miRNAs) are endogenous single-stranded
noncoding RNAs (∼22 nucleotides) that have recently
emerged as key posttranscriptional regulators of gene ex-
pression [26, 27]. Regions of the genome that encode
miRNAs are transcribed in the cell nucleus, producing long
primary miRNAs (pri-miRNAs), which are up to several
kilobases in length. ,e RNase III enzyme Drosha converts
pri-miRNAs into 70–100 nucleotide (nt) stem-loop struc-
tures called pre-miRNAs. Pre-miRNAs are transported to
the cytoplasm and cleaved by the enzyme dicer into small,
∼22 nt, miRNA-miRNA complex intermediates. ,en, the
RNA duplex binds to an argonaute (AGO) protein, and one
of the strands is removed, resulting in the mature RNA-
induced silencing complex (RISC). RISC can suppress the
translation and/or promote the degradation of target
mRNAs by binding to their 3’-untranslated regions (3′-
UTRs). miRNAs are abundant in the nervous system and
have key roles in maintaining efficient brain function
[28–32].

Considering the importance of α-syn in the pathogenesis
of PD and the fact that miRNAs are involved in the regu-
lation of α-syn [33, 34], we have summarized the functions
of miRNAs that directly target α-syn. We also reviewed
miRNAs that indirectly impact the level or toxicity of α-syn
through various pathways, including those involved in the
clearance of α-syn and neuroinflammation.

2. miRNAs That Directly Bind to the 39-UTR of
α-Syn and Their Roles in PD

2.1. miR-7. In 2009, Junn et al. utilized public prediction
algorithms to identify miRNAs that could regulate α-syn
expression, and miR-7 was the only candidate matching all
common predictors [35]. MiR-7 downregulated α-syn ex-
pression by directly binding to the 3′-UTR of α-syn mRNA,
a role which was confirmed by a firefly luciferase reporter
assay in human dopaminergic (DAergic) neuroblastoma
SH-SY5Y cells. Moreover, miR-7 co-localized with α-syn in
neurons, fitting with the localization pattern of a certain
miRNA and its target mRNA. In the MPTP (1-methyl-4-
phenyl-1,2,3,6-tetrahydropyridine) mouse model, MPTP
intoxication upregulates α-syn expression while reducing
miR-7 expression in the ventral midbrain [35]. In the mouse
SNpc, a knockdown of miR-7 resulted in obvious α-syn
overexpression [36]. Clinically, PD patients have signifi-
cantly lower miR-7 levels in the SNpc [36]. All these data

suggest that miR-7 regulates α-syn expression and therefore
is associated with the pathogenesis of PD (Figure 1).

Besides directly targeting α-syn, other neuroprotective
effects of miR-7 have been widely studied (Figure 1).

Bax and sirtuin 2 (Sir2) are two important proteins that
can activate proapoptotic molecules in the 1-methyl-4-
phenylpyridinium (MPP+)-induced model [37, 38]. Bax
and Sirt2 were shown to be direct targets of miR-7 [39].
Decreased expressions of proapoptotic molecules down-
stream of Bax and Sirt2 were involved in the neuroprotective
property of miR-7 [39].

NF-κB is a ubiquitously expressed transcription factor
that regulates gene expression and is involved in a variety of
processes, such as inflammation and apoptosis [40]. In PD
models, RelA mediates MPP+-induced suppression of NF-
κB activity, which is essential for MPP+-induced cell death.
miR-7 directly targets RelA mRNA, thus protecting DAergic
neurons from toxicity by suppressing RelA expression [41].
In a subsequent study, knockdown of RelA through the
overexpression of miR-7 led to the increased expression of
Glut3 [42], the major neuronal cell surface glucose trans-
porter [43]. Glut3 silencing, the presence of a low glucose
medium, or treatment with a glycolytic pathway inhibitor,
diminishes the protective effects of miR-7 against MPP+,
indicating that a functional glycolytic pathway is required
for its protective effects [42]. Voltage-dependent anion
channel 1 (VDAC1) was found to be another direct target of
miR-7 [44]. VDAC1 is an integral protein of the mito-
chondrial outer membrane and is involved in the response to
cytotoxic stimuli, which ultimately trigger cell death [45].
,emiR-7 protective effects are partially exerted through the
promotion of mitochondrial function by targeting VDAC1
expression [44].

Nuclear factor E2-related factor 2 (Nrf2) is a key tran-
scription factor, which activates the expression of several
antioxidant and phase II detoxifying genes for protection
against various stressors, including reactive oxygen species
(ROS) [46]. In normal physiological conditions, Nrf2 is
mainly localized in the cytoplasm in a complex with an
inhibitory protein, Kelch-like ECH-associated protein 1
(Keap1) [47]. Kabaria et al. showed that miR-7 could directly
target Keap1 and results in increased Nrf2 activity. ,rough
this Keap1-Nrf2 axis, miR-7 reduces cellular ROS, exerting
its cytoprotective effects [48]. Interestingly, miR-7-mediated
translational suppression of α-syn can also be relieved by
MPP+-mediated mitochondrial ROS [49].

Mammalian target of rapamycin complexes (mTORC1/
2) serves as indispensable regulators of cell metabolism,
growth, and survival [50]. Stress-activated protein kinase/c-
Jun NH2-terminal kinase (SAPK/JNK) is a kinase with a
central role in neuronal microtubule stability [51]. Sup-
pression of mTOR and SAPK/JNK signaling pathways
contributes to MPP+-induced cell death [52, 53]. Fragkouli
and Doxakis showed that miR-7 could protect neurons by
recovering the activation of mTOR and SAPK/JNK signaling
pathways [53].

miRNAs work as regulators of their mRNA targets.
Intriguingly, it has been recently shown that miRNAs
themselves could be targeted and regulated by RNA
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molecules. ,ese miRNA sponge transcripts, the so-called
competing endogenous RNAs (ceRNAs), de-repress all
target genes of the respective miRNA family [54]. CiRS-7
(circular RNA sponge for miR-7) was identified as a miR-7
sponge, which can strongly inhibit miR-7 activity, resulting
in increased levels of miR-7 targets, including α-syn [54].
,e role of ciRS-7 in PD requires further investigation.
Recently, circular SNCA RNA (circSNCA) was reported as
another miR-7 sponge [55]. Pramipexole (PPX), a dopamine
receptor agonist with proven efficacy in the treatment of PD,
downregulates circSNCA in a MPTP model, leading to miR-
7 upregulation and α-syn downregulation, resulting in re-
duced cell apoptosis [55]. More comprehensive studies re-
garding the miR-7 sponge are necessary for a complete
understanding of the α-syn regulatory network.

Regulation of autophagy [56] and α-syn-induced in-
flammation [57, 58] also contributes to the neuroprotective
properties of miR-7, and these will be discussed later in this
review.

2.2. miR-153. miR-153 is another miRNA that post-
transcriptionally regulates α-syn expression [59]. Junn et al.
predicted that miR-153 could bind to α-syn mRNA based on
prediction algorithms [35]. Doxakis demonstrated that miR-
153 can directly target the α-syn 3′-UTR and downregulate
its mRNA and protein levels [59]. It is intriguing that miR-7
and miR-153 may utilize different kinetics to regulate α-syn.
,at is, miR-7 has a stronger effect on α-syn protein
translation inhibition, while miR-153 transiently impacts
mRNA degradation [59]. Like miR-7, miR-153-mediated
translational suppression of α-syn can also be relieved by
MPP+-mediated mitochondrial ROS [49]. In addition, miR-
153 may protect cortical neurons from MPP+-induced
toxicity by preserving the activation of mTOR and SAPK/
JNK signaling pathways, while attenuating MPP+-induced
activation of p38 MAPK [53].

Nucleotides 459–465 of the SNCA 3′-UTR were pre-
dicted to be the target sequence for miR-153 [60]. A rare
variation in the 3′-UTR of SNCA, 464 C>A, was reported in
a PD patient [60]. ,is variation is able to disturb the hybrid
structure between miR-153 and α-syn mRNA, thus atten-
uating the inhibiting ability of miR-153 [60]. Whether this
variant is a rare cause of PD requires further investigation.

2.3. miR-34b and miR-34c. miR-34b and miR-34c directly
target α-syn, inhibiting its expression and aggregation for-
mation [61]. An SNP in the 3′-UTR of SNCA, namely,
rs10024743, is able to reduce miR-34b-mediated repression
of α-syn expression [61]. ,e association of this poly-
morphism with PD risk needs to be clarified. miR-34c-5p
was found to be decreased in the amygdala, frontal cortex,
substantia nigra, and cerebellum of PD patients in both
clinical (motor) stages (Braak stages 4 and 5) and the
premotor stages (stages 1–3), compared with that of control
individuals [62]. Depletion of miR-34b or miR-34c in vitro
results in reduced cell viability, which is accompanied by
mitochondrial dysfunction, elevation of cellular ROS, and
downregulation of DJ1 and Parkin, two proteins associated
with the familial forms of PD [62].

,e adenosine A2A receptor (A2AR) is a G protein-
coupled receptor. In the brain, A2ARs are highly enriched
in striatal GABAergic medium spiny neurons, which help
control voluntary movement [63]. A2ARs protein levels are
increased in the putamen of PD cases, in both motor and
premotor disease stages [64]. miR-34b has been shown to
directly target A2ARs [64], but the role of this interaction in
PD requires further investigation.

With an increase in nonionizing radiation arising from
both environmental and manmade sources, exposure to
electromagnetic fields (EMFs) and their subsequent path-
ogenic effects have become a growing concern [65]. Ex-
tremely low-frequency (0Hz to 100 kHz) magnetic fields
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Figure 1: miR-7 playing a neuroprotective role in PD. miR-7 has multiple direct targets, including α-syn, Bax, Sir2, RelA, Nlrp3, VDAC1,
and Keap1. By directly targeting the 3′-UTR of α-syn, miR-7 significantly reduces α-syn expression. miR-7 downregulates Nlrp3 through
direct targeting and inhibiting α-syn upstream, resulting in decreased levels of IL-1β and IL-18 and alleviating neuroinflammation. In
another pathway, miR-7 inhibits Bax and Sir2 expression, preventing apoptosis. Additionally, miR-7 downregulates RelA, which causes
downstream upregulation of NF-κB and Glut3, resulting in the activation of gene expression in glycolysis and NF-κB pathways. Moreover,
by directly targeting VDAC1, miR-7 activates mitochondrial function. miR-7 also reduces reactive oxygen species (ROS) via the Keap1-Nrf2
pathway. All of the above contribute to the neuroprotective roles of miR-7 in PD.
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(ELF-MFs) have been associated with an increased risk of
neurodegenerative disorders, such as Alzheimer’s disease
(AD), whereas an univocal association with PD is still
lacking [66]. Consales et al. found that ELF-MFs down-
regulated miR-34b and miR-34c in human DAergic neu-
roblastoma SH-SY5Y cells. ,is effect is caused by
hypermethylation of the CpG island within the miR-34b/c
promoter [67]. ELF-MFs exposure stimulated α-syn ex-
pression via miR-34b/c downregulation and oxidative stress,
demonstrating that environmental factors affect miR-34b/c
and may be involved in the pathogenesis of PD [67].

2.4. miR-214. miR-214 is another miRNA that can directly
target α-syn [68]. In the MPP+-induced PD model, Wang
et al. found downregulation of miR-214 and upregulation of
α-syn, indicating a neuroprotective role for miR-214 [68].
,e effects of miR-214 in PD warrant additional studies.

3. miRNAs That Indirectly Impact
α-Syn without Binding to the α-Syn 39-UTR

Besides directly targeting α-syn, some miRNAs exert their
effects in PD by indirectly impacting the level or toxicity of
α-syn through a variety of pathways, including those in-
volved in the clearance of α-syn (Figure 2) and neuro-
inflammation (Figure 3).

3.1. miRNAs that Regulate the Clearance of α-Syn via CMA.
As mentioned above, the clearance of α-synuclein mono-
mers and aggregates occurs through several pathways, in-
cluding the chaperone-mediated autophagy (CMA) pathway
[69]. In this pathway, a pentapeptide motif (KFERQ) pre-
sented in the protein is recognized by the heat shock cognate
protein 70 (Hsc70) chaperone and internalized into the
lysosome by the lysosomal-associated membrane protein 2a
(Lamp2a) membrane receptor [69]. α-Syn contains a pen-
tapeptide sequence (VKKDQ) that is consistent with a CMA
recognition motif, by which α-syn is selectively translocated
into lysosomes for degradation [23]. Inhibition of CMA
through downregulation of Lamp2a protein levels leads to
α-syn accumulation [70, 71] and neurodegeneration [72].
Lamp2a and Hsc70 proteins are decreased in the SNpc and
amygdala in PD brains compared with both age-matched
controls and AD patients [71] (Figure 2).

Alvarez-Erviti et al. used the miRBase target database to
predict whichmiRNAs directly target the 3′-UTR of Lamp2a
or Hsc70 mRNA in humans. ,e luciferase reporter assay in
SH-SY5Y cells demonstrated that four miRNAs (hsa-miR-
21∗; hsa-miR-224; hsa-miR-373∗; and hsa-miR-379) target
the 3′-UTR of Lamp2a, while three miRNAs target the 3′-
UTR of Hsc70 (hsa-miR-26b; hsa-miR-106a∗; and hsa-miR-
301b). Transfection of these miRNAs also decreases en-
dogenous Lamp2a and Hsc70 protein levels, resulting in
significant α-syn accumulation. ,e analysis of PD brains
confirmed that six of these miRNAs, including hsa-miR-21∗,
hsa-miR-224, hsa-miR-373∗, hsa-miR-26b, hsa-miR-106a∗,
and hsa-miR-301b, were significantly increased in the SNpc
[73] (Figure 2).

,e possibility that miR-21 could reduce Lamp2a and
increase α-syn levels was confirmed by a second study using
SH-SY5Y cells and the MPTP-treated PDmouse model [74].
,is study also suggested that geniposide (GP) had a neu-
roprotective effect against MPP+ by reducing miR-21, in-
creasing Lamp2a, and thus decreasing α-syn [74]. GP is a
major iridoid glycoside extracted from the fruit of Gardenia
jasminoides, which is a widely used herb in traditional
Chinese medicine [75].,e study by Su et al. showed that the
miR-21/Lamp2a/α-syn axis was a promising target for PD
treatment [74].

Two additional miRNAs, miR-320a [76] and miR-16-1
[77], were reported to be direct regulators of Hsc70, pro-
moting α-syn aggregation in SH-SY5Y cells that overexpress
α-syn (Figure 2). However, whether these miRNAs can
directly target the 3′-UTR of Hsc70 needs to be confirmed,
as a luciferase reporter assay was not conducted in these two
studies [76, 77].

3.2.miRNAs that Regulate theClearance of α-Syn via theALN.
,e autophagy-lysosome network (ALN) is another pathway
that degrades α-syn under physiological conditions
[22, 78, 79]. miR-7 has been shown to facilitate the deg-
radation of α-syn and its aggregates by promoting auto-
phagy, but the detailed mechanism remains unclear [56].
Studies regarding other miRNAs have provided some in-
teresting information about how they affect α-syn degra-
dation via the ALN.

As amaster regulator of the ALN, transcription factor EB
(TFEB) is inhibited by mTOR signaling [80, 81, 82]. En-
hancement of TFEB function has been shown to stimulate
ALN function and promote protein clearance [80]. TFEB
function is impaired in the rat PD model, as well as in the
human PD midbrain, resulting in the accumulation of α-syn
oligomers, development of DAergic neuron pathology, and
cell death [83]. miR-128 has been shown to target TFEB [80].
In DAergic neurons, miR-128 repression of TFEB caused an
increase in vulnerability to α-syn toxicity [83] (Figure 2).

Let-7 is another miRNA reported to regulate α-syn
expression via alterations in ALN [84]. Let-7 is a highly
conserved miRNA that has been reported to repress several
oncogenes by affecting cell cycle, cell differentiation, and
apoptotic pathways [85]. Let-7 miRNA is increased in a C.
elegans model of PD, where the human α-syn protein is
expressed [84]. Knockdown of let-7 miRNA leads to reduced
expression of α-syn protein and increased levels of lgg-1 and
atg-13 [84]. Lgg-1 is an ortholog of Saccharomyces cerevisiae
Atg8p and mammalian MAP-LC3, which is required for the
degradation of cellular components [86, 87].,e autophagy-
related gene, aatg-13, is required for autophagosome for-
mation [88]. ,ese results indicated that the knockdown of
let-7 may reduce α-syn level via activation of ALN (Figure 2).

3.3. Controversial Roles of miR-133b and miR-433.
miR-133b has been shown to decrease α-syn expression and
ameliorate the MPP+ -induced increase of α-syn in vitro
[89]. ,e evidence that α-syn is a direct target of miR-133b
has not been reported. Niu et al. attributed α-syn
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Figure 2: miRNAs that indirectly impact α-syn without binding to its 3′-UTR. Several miRNAs cause impairment of the chaperone-
mediated autophagy (CMA) and autophagy-lysosome network (ALN) pathways, leading to α-syn accumulation. Lamp2a in the CMA
pathway is targeted bymiR-21∗, miR-224, miR-373∗, andmiR-379, while Hsc70 is targeted bymiR-26b, miR-106a∗, miR-301b, and probably
miR-320a and miR-16-1. In the ALN, TFEB, which is necessary for lysosomal biogenesis and function, is directly targeted and reduced by
miR-128. Let-7, on the other hand, can suppress lgg-1 and atg-13.,erefore, miR-128 and let-7 contribute to PD pathogenesis by impairing
the ALN. On the other hand, SIAH1, a monoubiquitylation modifier of α-syn, is inhibited by miR-15b-5p, leading to decreased α-syn
aggregation. Moreover, lncRNA SNHG1 could directly bind miR-15-5p and repress miR-15-5p expression.,e roles of miR-133b andmiR-
433 are controversial. miR-133b may inhibit α-syn expression via inhibition of RhoA, while miR-433 may suppress α-syn expression via
FGF20 inhibition.
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Figure 3: miRNAs that regulate α-syn-induced neuroinflammation. Nlrp3 is a key component of a cytoplasmic multiprotein called the
“inflammasome,” which can critically control the activity of IL-1β and IL-18. As mentioned in Figure 1, miR-7 alleviates neuroinflammation
through the α-syn/Nlrp3 axis. SNHG1 competes with Nlrp3 for miR-7 and aggravates neuroinflammation. miR-30e can also attenuate
inflammatory cytokines by directly targeting Nlrp3 and possibly inhibiting α-syn expression in an indirect way. miR-155 may also inhibit
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Parkinson’s Disease 5



downregulation to miR-133 inhibition of RhoA [89, 90], a
Rho family member that plays important roles in apoptosis
and suppresses neurite extension [91], but additional studies
are required to confirm this pathway’s involvement. In fact,
the role of miR-133b in PD is controversial. Kim et al. found
that miR-133b is specifically enriched in the midbrain under
healthy conditions and is deficient in both PD patient
samples (n � 3) and in mouse models, indicating that re-
duced miR-133b may be involved in the pathogenesis of PD
[92]. However, Heyer et al. failed to observe abnormal
DAergic neurons numbers or the expected general midbrain
or striatummorphology in the miR-133b null mouse [93]. In
another study, miR-133b levels were found unaltered in five
sporadic PD brains compared to eight healthy controls [94].

It was reported that a single-nucleotide polymorphism
(SNP), rs12720208, in the 3′-UTR of fibroblast growth factor
20 (FGF20) mRNA, a member of the FGF family [95],
disrupts a binding site for miRNA-433, increasing the level
of FGF20 in vitro and in vivo [96]. In both SH-SY5Y cells
and PD brains, this FGF20 increase is correlated with in-
creased α-syn levels [96]. However, these results need further
validation since subsequent reports found no evidence of an
association between FGF20 variability and PD risk [97, 98].
Also, no relationship could connect the rs12720208 geno-
type, FGF20, and α-syn protein levels [97] (Figure 2).

3.4.miR-15b-5p Inhibitsα-SynAggregation. miR-15b-5p was
reported to regulate α-syn aggregation and toxicity rather
than expression levels [99] (Figure 2). Seven in absentia
homolog 1 (SIAH1) is an E3 ubiquitin ligase, which plays an
important role in promoting α-syn monoubiquitylation and
aggregation, contributing to the formation of Lewy bodies
[100]. SIAH1 was found to be a direct target of miR-15b-5p.
Overexpression of miR-15b-5p alleviates α-syn aggregation
and cell apoptosis in SH-SY5Y neurons overexpressing
α-syn [99]. In addition, the long noncoding RNA (lnRNA)
and small nucleolar RNA host gene 1 (SNHG1) directly bind
to miR-15-5p and repress its expression [99]. It would be
interesting to study the role of the SNHG1/miR-15b-5p/
SIAH1 axis in PD.

3.5. miRNAs that Regulate α-syn-induced Inflammation.
miR-155, which is significantly upregulated in an in vivo
model of PD, was reported to regulate α-syn-induced in-
flammation [101]. In a miR-155 null mouse model, proin-
flammatory responses to α-syn were reduced and α-syn-
induced neurodegeneration was blocked [101]. In primary
microglia frommiR-155-/- mice, there is a markedly reduced
inflammatory response to α-syn fibrils, which is restored
following the treatment with a synthetic mimic of miR-155
[101]. ,ese data suggest that miR-155 is involved in the PD
pathogenesis, in part due to its role in the regulation of
microglial responses to α-syn (Figure 3).

As we discussed above, miR-7 can directly target α-syn
and thus protect neurons [35, 59]. It has recently been found
that miR-7 has a protective role in PD mice by inhibiting
neuroinflammation [57]. Nod-like receptor protein 3
(Nlrp3) is one component of a cytoplasmic multiprotein

called the “inflammasome”, which can critically control the
activity of IL-1β and IL-18 [102]. α-Syn activates the Nlrp3
inflammasome through microglial endocytosis and sub-
sequent lysosomal cathepsin B release [57]. miR-7 can target
Nlrp3 directly, inhibiting α-syn/Nlrp3 axis neuro-
inflammation [57] (Figure 3).

Another miRNA, miR-30e, has recently been found to
directly target Nlrp3 [103]. miR-30e agomir administration
attenuates the marked increase of inflammatory cytokines,
such as TNF-α, COX-2, and iNOS in the SNpc of MPTP-
induced PD mice. miR-30e also alleviates the upregulation of
α-syn, but not by directly targeting it [103]. In addition, Cao
et al. proved that SNHG1 can compete with Nlrp3 for miR-7
(Figure 3). Upregulation of SNHG1 leads to activation of the
Nlrp3 inflammasome [58]. ,ese findings suggest that
miRNAs are involved in the regulation of inflammation in PD.

4. Conclusions

PD is the second most common neurodegenerative disease.
,e pathogenesis of PD is not fully understood. Currently,
there is no effective etiological treatment for PD. Epigenetics
alterations, including miRNAs, play important roles in
neurological disorders. Abnormal α-syn expression levels
and aggregates contribute to the neurodegeneration in PD,
but the molecular mechanism remains unclear. Several
miRNAs can directly target α-syn and exert their neuro-
protective effects. Some of them, such as miR-7, can also
regulate pathways independent of α-syn. Additionally,
several miRNAs indirectly impact α-syn levels without
binding to the α-syn 3′-UTR, via impact on the CMA
pathway or the ALN. Some miRNAs participate in PD
pathogenesis by regulating α-syn-mediated toxicity or
neuroinflammation. Further studies are required to un-
derstand the complete network between miRNAs, α-syn,
and PD, in order to develop effective miRNA-based
therapies.
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