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ABSTRACT: Whereas 400 million distinct compounds are
now purchasable within the span of a few weeks, the biological
activities of most are unknown. To facilitate access to new
chemistry for biology, we have combined the Similarity
Ensemble Approach (SEA) with the maximum Tanimoto
similarity to the nearest bioactive to predict activity for every
commercially available molecule in ZINC. This method, which
we label SEA+TC, outperforms both SEA and a naiv̈e-Bayesian
classifier via predictive performance on a 5-fold cross-
validation of ChEMBL’s bioactivity data set (version 21).
Using this method, predictions for over 40% of compounds (>160 million) have either high significance (pSEA ≥ 40), high
similarity (ECFP4MaxTc ≥ 0.4), or both, for one or more of 1382 targets well described by ligands in the literature. Using a
further 1347 less-well-described targets, we predict activities for an additional 11 million compounds. To gauge whether these
predictions are sensible, we investigate 75 predictions for 50 drugs lacking a binding affinity annotation in ChEMBL. The 535
million predictions for over 171 million compounds at 2629 targets are linked to purchasing information and evidence to support
each prediction and are freely available via https://zinc15.docking.org and https://files.docking.org.

■ INTRODUCTION

The purchasable chemical space has roughly doubled every two
and a half years since 1990, owing to steady progress in efficient
parallel synthesis1−8 and the synthesis of new building blocks.
There are now over 400 million compounds one can easily
purchase using ZINC,9 which covers 204 commercial catalogs
from 145 companies. Each catalog is categorized by ease of
purchase, and each compound in turn inherits a purchasability
level from its catalog membership. The growth in catalog size is
impressive, particularly among the make-on-demand catalogs.
Purchasable compounds in the favored lead-like10 and frag-
ment-like11 areas have grown from 3 million and a half million
in 2007 to 124 million and 9.2 million today, respectively.
Many vendors have incorporated the lessons of lead- and
fragment-likeness in library design,47 often filtering for
PAINS.48 About 340 million (85%) of these compounds are
affordable enough for the average academic lab to conduct a
ligand discovery project, retaining a price point around $100
per sample or less. A further 60 million compounds are
available at higher building-block prices, often $400 USD or
more and are included here for completeness. We find that
synthesis plus delivery of make-on-demand screening com-

pounds often takes little more than a month or so, just twice
the time to source many in-stock compounds.
The molecular targets (proteins) that these purchasable

compounds bind and modulateif anyare rarely known.
Fewer than 1 million compoundsless than 0.25%have
been reported active in a target-specific assay according to
public databases such as ChEMBL12 or other annotated
collections indexed by ZINC.13 Investigators searching for
testable ligands might not consider the remaining readily
available compounds, as they are not annotated for targets and
the sheer number of options can be daunting. In the absence of
target activity information, the process of selecting compounds
for general purpose screening will often be target-naiv̈e, relying
on chemical or physical-property diversity to sample chemical
and property space, respectively.14 If information on target
biasthe likelihood that a compound is more disposed to bind
to a particular target or class of targetswere readily available,
libraries more likely to cover biological targets of interest could
be designed.
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Systematically assaying every commercially available com-
pound against every target is experimentally impractical, so
prioritizing compounds through computational predictions is a
pragmatic alternative. There are many methods for predicting
biological activities by chemical similarity;15−36 here, we use
two. The Similarity Ensemble Approach (SEA)37,38 predicts
biological targets of a compound based on its resemblance to
ligands annotated in a reference database, such as ChEMBL.12

SEA relates proteins by their pharmacology by aggregating
chemical similarity among entire sets of ligands. By leveraging
extreme value statistics, SEA filters out unreliable signals and
normalizes the aggregate results against a random chemical
background to predict the significance of pharmacological
similarity. SEA has successfully predicted targets of marketed
drugs,37−39 toxicity targets,40 and mechanism of action targets
for hits in zebrafish41 and C. elegans42 phenotypic screens. We
also use the maximum Tanimoto coefficient43 at 0.4044 or
better based on ECFP4 fingerprints45 to inform predictions.
Neither method generates models incorporating discrete
chemotypes as do Naiv̈e Bayes classifiers, for instance, but
instead consider the molecule holistically. This is advantageous
because the method can suggest molecules that do not conform
to what has been highly weighted by precedent. Other methods
such as Naiv̈e Bayes46 can explicitly weight for chemical
substructures that are potentially important to bioactivity
(“warheads”), and thus a future version might use such an
approach to complement this work.
To be useful for research, predictions should be accessible,

searchable, and downloadable. An interface should allow access
to predictions for each compound, as well as for each target,
vendor, and gene. A mechanism to select more novel or more
conservative predictions would cater to a wide range of
requirements. And libraries should be downloadable in 2D
formats for chemoinformatics as well as in popular 3D formats
for docking screens.
The prospective user of such a resource expects some way to

evaluate the predictions. As one proxy to assess this data set, we
performed a retrospective 5-fold cross-validation on the
ChEMBL bioactivity data set for our method as compared to
SEA and a naiv̈e-Bayesian classifier, at a variety of threshold
parameters (Figure 1; Supporting Information Figures S1 and
S2). Second, in assessing performance, we reencountered the
observation that whereas the canonical targets of all but a few
drugs are known,47 hundreds of established drugs and
investigational compounds nonetheless lack their respective
target annotations in ChEMBL. We turned this deficit to our
advantage, by testing the method’s prediction of targets for
several such drugs, corroborating our predictions with the
literature when available. Finally, as these predictions are based
on protein−ligand annotations derived from ChEMBL, we
expect that this method will be silent about chemotypes and
targets not contained in this approximation of the public
pharmacopeia.

■ RESULTS
The ZINC database contains 400 million commercially
available organic molecules with molecular weight between 50
and 1000 Da, sourced from 204 commercial catalogs published
by 145 companies. We have created a database of predicted
biological activities for the 171 million compounds that had
predictions and have made it freely accessible via ZINC
(https://zinc15.docking.org) and our file server (https://files.
docking.org). All predictions were computed using a

Figure 1. Comparative performance of SEA, SEA+TC, and a
multinomial naive-Bayesian classifier (NBC) on ChEMBL cross-
validation sets. (A) Receiver operating characteristic (ROC) curves
from independent 5-fold cross-validation runs for each method.
Methods are evaluated on independent cross-validation sets filtered for
>5 ligands per ChEMBL protein target (equivalent analyses at >50
ligands per target reported in Supporting Information Figure S2).
Overall performance is gauged by the area under the ROC curve
(AUROC). Note, for SEA+TC cross-validation sets, ROC curves are
the result of stepping a decision threshold across MaxTc values, while
holding a separate pSEA decision threshold at 40 (yellow curve) or 80
(cyan curve) (see Methods). Complementary curves stepping across
SEA p-values are available in Supporting Information Figures S1 and
S2. Dotted lines span the distance between a fully stratified classifier
(TPR = 0; FPR = 0) and the minimum point at which both SEA+TC
decision thresholds begin to affect performance. Pink and blue circles
indicate the recommended upper and lower bounds for MaxTc
thresholding on their respective pSEA-threshold curves, respectively
(upper = 0.80; lower = 0.40). (B) Corresponding precision-recall
curves (PRCs) for cross-validation runs described in part A. Positive-
class prevalence (dashed red line) indicates the chance of selecting a
positive association from the data set at random (0.0014). Perform-
ance is measured by the area under the PRC (AUPRC).
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combination of the Similarity Ensemble Approach (SEA)37 and
Tanimoto similarity calculations based on compound annota-
tions derived from ChEMBL Version 2112 (see Methods). We
refer to this combinatorial approach as SEA+TC throughout
the text.
To enhance this resource’s applicability to a broad audience,

we sought to increase the specificity of predictions by using
more stringent criteria for what constitutes an annotated ligand.
In prior work we had used a 10 μM affinity cutoff, but at this
scale, we encountered flawed predictions that appeared to arise
from similarity to weak binders, possible PAINS, or
promiscuous aggregator compounds. Based on our experience
with these encounters, we changed the baseline affinity
threshold to 1 μM and further required activities of at least
100 nM for compounds containing PAINS patterns or being Tc
0.70 to any compound observed to aggregate.48−50

We adopted a statistical significance threshold of negative log
SEA p-value54 (pSEA) ≥ 40 and a MaxTc cutoff ≥0.40 guided
by the work on belief theory from the Abbvie group.34 MaxTc
is complementary to pSEA as it provides a single-nearest-
neighbor-molecule view of similarity, compared to SEA’s global
view arising from the ensemble of annotated ligands. To
quantify how this bivariate threshold improves predictive
capability, we evaluated the performance of SEA, SEA+TC,
and a Naiv̈e-Bayesian classifier (NBC) via 5-fold cross-
validation of ChEMBL’s bioactivity data set (version 21; Figure
1). SEA+TC’s ability to correctly predict compound−target
interactions as either positive (does bind) or negative (does not
bind) outperformed both SEA and the NBC, as measured by
the area under the receiver operating characteristic (AUROC)
curve, (AUROC = 0.995, Figure 1A). Further, when predicting

a compound−target interaction as positive, SEA+TC was
correct in its prediction more often than SEA or the NBC, as
indicated by its area under the precision-recall (AUPRC) curve
(AUPRC = 0.684, Figure 1B). In performing this analysis, we
additionally identified a more stringent bivariate threshold,
which some users may wish to adopt. At a threshold of MaxTc
≥ 0.80 with pSEA ≥ 80, the retrospective analyses achieve
higher precision than the baseline threshold (Figure 1A and B,
blue circle) at acceptable recall (pink circle). Users of the ZINC
interface may choose thresholds to suit their needs.
In addition to controlling the sensitivity and specificity of

predictions, the significance threshold (i.e., pSEA and MaxTc
values)17 also influences the novelty of the predictions. Novel
compounds can be desirable because they likely have unrelated
off-target effects, which can help establish the signaling and
toxicity role of a receptor, as well as selectively activate
downstream signaling, which is important for many receptors
such as GPCRs.38 Accordingly, we designed the ZINC interface
to help users rapidly identify predictions with their desired
precision. The user can control the MaxTc and pSEA limits,
and each prediction can be compared with the most similar
annotated actives (Figure 2) allowing side-by-side comparison.
Each SEA prediction is accompanied by a pSEA to the set of
actives and MaxTc to the nearest active. Clicking on the MaxTc
value in the interface performs a real-time search for the most
similar ligands annotated at 10 μM or better for that target.
To find predictions for a given target using ZINC15

(zinc15.docking.org), the user may select Genes from the
Biological dropdown menu to browse a listing of all genes and
predictions (Figure 3A). In this work, we use genes and their
identifiers as convenient shorthand for their protein products

Figure 2. Predictions supported by evidence. (A) Here, Bucumolol (ZINC100) is shown with a SEA prediction for ADRB2 at a pSEA = 33 and
MaxTc to the nearest annotated compound of 0.44. The user may click on the “44” to go to the URL shown, which lists bucumolol’s closest-match
known ADRB2 ligands in decreasing order of similarity (the first four are shown). The user may also click on “Run SEA” to rerun a SEA calculation
on the molecule, providing comprehensive statistics.
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Figure 3. Tools to display predictions for a gene and filter and sort them by MaxTc and pSEA. (A) Gene page showing predictions, with search bar
to locate genes by name, top right. https://zinc15.docking.org/genes. (B) Gene listings for genes matching “SLC6” https://zinc15.docking.org/
genes/search?q=SLC6. (C) Strongly predicted ligands for SLC6A11, showing the popup for subset selections https://zinc15.docking.org/genes/
SLC6A11/predictions/subsets/strong. (D) Individual predictions, showing MaxTc and pSEA for each prediction, sorted by pSEA, with a MaxTc
(novelty/similarity) limit specified https://zinc15.docking.org/genes/SLC6A1/predictions/subsets/strong/table.html?sort=-pvalue&maxtc-
between=40+45.
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or molecular targets. To find a specific gene, the user may type
part of the gene name in the top right search bar, here SLC6,
and click the blue search button on the top right. To display
predictions for this gene, the user clicks on the link in the
predictions column, here for SLC6A1 (Figure 3B). The user
may for example use the subset selector to specify strong
predictions (which we chose to mean pSEA = 80) and
purchasability (Figure 3C). Some advanced features are
currently only accessible by hand-editing the URL. Here, the
user adds table.html?sort=-maxtc and &maxtc-between=40+45 to
display the information in a tabular format, to sort by
decreasing MaxTc, and to select only predictions between
MaxTc of 40 and 45, respectively (Figure 3D). We plan to
make these API-level features available via a point and click
interface soon. Documentation is available via the help pages
https://zinc15.docking.org/genes/help and https://zinc15.
docking.org/predictions/help.
Predictions are available for 2629 genes51 (Figure 4). The

number of predictions per gene varies substantially, reflecting

both the diversity of annotated ligands for the target as well as
how well these chemotypes are represented in current vendor
catalogs. For example, natural products and their analogs are
often difficult to access synthetically and are therefore generally
sparsely represented. At the high end of predictions per gene,
the eukaryotic GPCRs D4 dopamine receptor (DRD4), C−C
chemokine receptor type 3 (CCR3), and the voltage gated ion
channels KCNK3 and KCNK9 each have over 4.8 million
purchasable predicted ligands. The number of strong
predictions (pSEA ≥ 80) varies from over 500 000 for
KCNK3 to as few as 9181 for DRD4. Filtering at MaxTc ≥
0.60 instead, corresponding to a precision exceeding 0.334
using ECFP4 fingerprints,44 the predictions for these four genes
varied from as many as 25 728 for DRD4 to as few as 8912 for
KCNK9. At the other extreme of predictions per gene, fungal
laccase-2 precursor (LCC2), human C−C chemokine receptor
type 6 (CCR6), voltage-gated sodium channel Nav1.9
(SCN11A), and fruit fly DNA topoisomerase 2 (TOP2) each
had fewer than 50 predicted commercially available ligands.

Figure 4. Predictions available for 2629 genes. (A) The web interface allows genes and their predictions to be found by name or gene symbol:
https://zinc15.docking.org/genes. Enter the gene name in the search field (1). Click on the predictions link (2) to display the predicted ligands. (B)
Predictions and purchasable compounds for 2629 genes. The horizontal axis is genes, sorted by number of predictions. The vertical axis is number of
compounds, log scale, labeled by exponent. Dark gray circles indicate the number of predicted purchasable compounds for a gene. Green triangles
represent the number of purchasable annotated compounds for the same gene.
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Figure 5. continued
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The small number of predicted ligands can often be explained
by a paucity of reference ligands; here, SCN11A and CCR6
have only 1 ligand each at 10 μM or better. Another reason for
the lack of ligands is that the knowns are in an area of chemical
space that is difficult to access synthetically, such as natural
products for both SCN11A and CCR6.
Access by Gene Groupings. In addition to individual

genes, predictions may also be accessed by groups of genes.
This could be helpful if the investigator is looking for new
aminergic GPCR ligands or ligands for voltage gated ion
channels or simply wishes to ensure balanced coverage of major
target classes in a library. The interface offers convenient ways
to access gene groupings based on a protein classification
scheme inherited from ChEMBL. There are 15 major target
classes (Figure 5A) further organized into 42 target subclasses
(Figure 5B). Thus, there are 67 million predictions for
membrane proteins, of which 1 million are strong (pSEA ≥
80). Considered separately, there are 873,000 less chemically
novel predictions having a Tanimoto coefficient ≥0.60 to an
annotated active. At a higher level of granularity, there are 4.7
million predictions for epigenetic reader proteins, of which 2.4
million are strong predictions (pSEA ≥ 80) and 38 000 are
highly similar (Tc ≥ 0.60). At the organism level (Figure 5C),
18 million ligands are predicted for specific bacterial targets, 1.0
million of which are stronger (pSEA ≥ 80) and 92 000 of which
are highly similar (Tc ≥ 0.60). The user may select purchasable
compounds based on this classification. These compounds will
resemble precedented bacterial protein inhibitors far more
strongly than compounds selected at random. Ligands
predicted for specific bacterial targets are available to browse
interactively at https://zinc15.docking.org/organisms/bacteria/

genes/ or to download by gene at https://files.docking.org/
predictions/current/. A plot of predictions per gene vs
annotated ligands per gene shows a general trend toward
more predicted ligands when more known ligands are available
(see Supporting Information Figure S3).

Benchmarks. We predicted the targets of established drugs
that nonetheless lack a protein binding affinity annotation in
ChEMBL to benchmark our approach. We found hundreds of
drugs, withdrawn drugs, and investigational compounds with
target predictions that agreed with the literature. Fifty of these
were selected and tabulated as illustration of our predictions
(Table 1). Thus, the beta blocker bufetolol52 (ZINC101) is
predicted to be a β2 adrenergic receptor ligand with pSEA = 47
and MaxTc = 0.46 and to be a β1 adrenergic receptor ligand
with pSEA = 51and MaxTc = 0.44. Aranidipine53

(ZINC600803) is predicted for the calcium voltage-gated ion
channel CACNA1C with pSEA = 121 and MaxTc = 0.75.
Ancarolol (ZINC39) illustrates the discriminatory value of the
SEA prediction, with pSEA = 59 and MaxTc = 0.43 for ADRB1:
255 656 purchasable ligands have higher MaxTc than ancarolol
to this target while only 46 753 have a higher pSEA score.
Among the 535 million predictions of protein−ligand affinity

we expect numerous false positives and false negatives. These
errors stem from three major classes of problem. (1) Issues
with target annotation: annotated ligands may not be
r ep r e s en t a t i v e f o r a g ene , s u ch a s cu r cum in
(ZINC100067274), which is annotated for 32 genes and is
probably artifactual for many of them.54 Annotated ligands may
also be mis-annotations in ChEMBL, leading to false positives.
For instance, nicotinamide (CHEMBL1140) is annotated for
fatty-acid amide hydrolase 1 (FAAH), because it shares an

Figure 5. Prediction counts and purchasable compounds. The gray line indicates the number of predictions, and the green line represents the
number of annotated compounds. (A) By major target class. Data from https://zinc15.docking.org/majorclasses. (B) By target subclass. Most target
predictions have a maximum tanimoto coefficient between 0.30 and 0.39 and 0.40−0.49. Percent of predictions for each target subclass relative to
MaxTc are plotted in the inset to show the full spread of prediction across bins. (C) By Kingdom, called organism class in ChEMBL and ZINC. Data
from https://zinc15.docking.org/organisms.
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abbreviation (NAM) with the actual ligand, N-arachidonyl-
maleimide.55 (2) Errors with the SEA method: We use ECFP4
fingerprints, which have little specificity for certain classes of
molecules, such as peptides and sterols, which share many
common features and thus are not well discriminated using this
fingerprint. SEA also has high variance for small ligand sets and
low sensitivity for large, diverse ligand sets. For instance, SEA
fails to predict the well-known antihistamine drugs chlorcycli-

zine and propiomazine for histamine H1 receptor (HRH1),
despite their having Tc values of 0.79 and 0.69, respectively, to
the most similar HRH1 ligands. The pSEA values of 11 in each
case have been diluted by the 9000 diverse ligands annotated to
this target. A remedy might be to split targets with large
number of ligands, perhaps by chemical clusters, mode of
action, or binding site, if known. Note that Naiv̈e Baysian
classifiers can be trained to correctly predict these activities, as

Table 1. Drugs with No Binding Data in ChEMBL, Predicted by SEA or MaxTc, Corroborated by the Literature

drug(ref) ZINC ID target pSEA MaxTc

Acemetacin63 601272 PTGS2 40 0.76
Afeletecan64 150339966 TOP1 69 0.41
Alclometasone65 4172330 NR3C1 15 0.58
Alminoprofen66 22 PTGS2 0.47
Amisulpride67 1846088 DRD3 22 0.66
Ancarolol68 39 ADRB2 42 0.44

ADRB1 59 0.43
ADRB3 29 0.44

Aranidipine53 600803 CACNA1C 121 0.75
CACNA1D 132 0.51

Azasetron69 4132 HTR3A 25 0.61
Azelnidipine70 38141706 CACNA1C 91 0.56

CACNA1D 124 0.57
Azetirelin71 3804057 TRHR 95 0.59

TRHR2 0.61
Besifloxacin72 3787097 PARC 0.46
Bevantolol73 1542891 ADRB1 89 0.51

ADRB2 73 0.58
ADRB3 73 0.53

Bilastine74 3822702 HRH1 48 0.51
Binospirone75 1999423 HTR1A 0.48
Bufetolol52 101 ADRB1 51 0.44

ADRB2 47 0.46
Bunazosin76 601249 ADRA1B 52 0.61
Bupranolol77 106 ADRB2 45 0.44

ADRB1 19 0.45
Butofilolol78 112 ADRB1 50 0.40

ADRB2 34 0.46
Calcifediol79 12484926 VDRA 0.79

GC 0.79
Camazepam80 2008504 GABARA5 25 0.53

GABARA2 15 0.53
Cellcept81 21297660 IMPDH1 0.70

IMPDH2 0.70
Ciprokiren82 8214528 REN 178 0.68
Dasotraline83 2510873 SLC6A3 25 0.63

SLC6A2 29 0.63
Demecarium84 3875376 ACHE 0.71
Dienesterol85 4742540 ESR1 26 0.46

ESR2 15 0.46
Edaglitazone86 1483899 PPARG 83 0.66

PPARA 83 0.65
Efonidipine87 38139973 CACNA1C 81 0.51

CACNA1D 118 0.51
Eptazocine88 1846076 OPRD1 30 0.42

OPRK1 30 0.46
OPRM1 32 0.46

Etanterol89 263 ADRB1 23 0.47
ADRB2 47 0.40

Ethylmorphine90 3629718 OPRD1 28 0.62
OPRK1 24 0.62

drug(ref) ZINC ID target pSEA MaxTc

OPRM1 32 0.75
OPRL1 0.57

Etomoxir91 1851171 CPT1 0.47
Fiduxosin92 29747110 ADRA1A 30 0.53

ADRA1B 45 0.53
ADRA1D 38 0.46

Floxacillin93 4102187 BLAACC-4 0.80
Flurazepam94 537752 GABARA5 28 0.50

GABARA1 17 0.49
Granisetron95 347 HTR3A 25 0.75
Halobetasol96 4214603 NR3C2 20 0.60
Hexoprenaline97 3872806 ADRB2 77 0.52
Ketobemidone98 1600 OPRD1 49 0.46

OPRK1 45 0.48
OPRM1 44 0.55

Lercanidipine99 19685790 CACNA1B 0.49
CACNA1C 107 0.70
CACNA1D 146 0.63

Lexacalcitol100 4474609 VDR 144 0.62
Meptazinol101 854 OPRD1 44 0.48

OPRK1 39 0.60
OPRM1 38 0.55

Metipranolol102 494 ADRB1 27 0.45
ADRB2 31 0.52

Ormeloxifene103 5104028 ESR1 86 0.51
ESR2 58 0.44

Paroxypropione104 1890 ESR1 38 0.58
ESR2 30 0.58

Pipenzolate105 601314 CHRM1 0.47
CHRM2 30 0.43
CHRM3 57 0.53
CHRM4 35 0.53
CHRM5 40 0.53

Pozanicline106 6562 CHRNA2 33 0.57
CHRNA4 0.57
CHRNA10 53 0.55

Propiverine107 1530934 CHRM2 24 0.42
CHRM3 50 0.57

Revatropate108 4214265 CHRM1 55 0.53
CHRM2 33 0.53
CHRM3 59 0.57
GPM3 0.57

Temazepam109 740 GABA5 28 0.59
Udenafil110 13916432 PDE5A 74 0.61
Unoprostone111 8214703 PTGER1 45 0.57

PTGER2 30 0.40
PTGER3 0.57
PTGDR 52 0.40
PTGFR 85 0.51

Valategrast112 72190226 ITGA4 60 0.32
Verubulin113 35978229 TUBB3 62 0.51
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can be seen on ChEMBL’s ligand detail pages for these
compounds. (3) No explicit model of promiscuity for SEA: We
have made some progress here by stringent filtering of ligands
we suspect are promiscuous (both PAINS and aggregator-like),
but we fail to handle frequent hitters such as staurosporine
(ZINC3814434, hits 365 targets in ChEMBL) and its ilk. Our
current approach also performs poorly on sigma nonopioid
intracellular receptor 1 (SIGMAR1) and cytochromes P450
3A4 (CYP3A4), because the ligands annotated to it are highly
diverse. To remedy this problem for targets with many ligands,
we could cluster by chemotype.
Genes Lacking Commercially Available Ligands. When

a target has purchasable ligands, they can be used to rapidly
probe its biological function without requiring synthetic
chemistry expertise. Yet there are 69 targets with 20 or more
annotated ligands in ChEMBL where none is readily
purchasable (Table 2). To fill these holes in “target space”,
we have identified purchasable compounds that are predicted to
be active. In one example, voltage dependent calcium channel
subunit alpha-2/delta-2 (CACNA2D2) has 26 ligands in
ChEMBL, none of which is for sale, such as CHEMBL1801206
with a pKi of 7.7. The compound ZINC36664273, however, is
sold by Specs as AO-476/43421055 and has a pSEA of 132 and
a MaxTc of 0.72. Looking at these compounds side by side
(Table 2) and without detailed experimental knowledge of this
target, the Specs compound may be reasonable to try against
this target. If successful, such compounds could become a
purchasable control for these targets.
Dark Chemical Matter. Intriguingly, 229 million purchas-

able compounds have no prediction at all by either pSEA ≥ 40
or Tanimoto similarity Tc ≥ 0.40. Some of these will have just
missed our cutoffs, wherever the cutoffs may be drawn. A few
will be known actives, or analogs of actives, that simply lack a
direct binding annotation in ChEMBL. Still, these compounds
are generally interesting because they do not much resemble
any direct binding actives in ChEMBL. Should they be found to
be active in an assay, they are more likely to have fewer off-
targets, at least against well-studied targets, and are less likely to
be encumbered by patents. A substantial body of literature
explores the strengths and pitfalls of dark chemical matter.56−59

To illustrate what a user of this resource can expect to find in
this underexploited yet commercially available space, we have
highlighted ten compounds (Table 3). For each commercially
available molecule, we show the nearest precedented bioactive
from public sources available to ZINC, which may also include
compounds not in ChEMBL. Dark chemical matter56−59 may
be browsed online at zinc15.docking.org/substances/having/
no-predictions and downloaded at scale by physical property
tranches (https://files.docking.org/dark-matter/current), by
vendor catalogs (e.g., for ChemBridge at https://files.docking.
org/catalogs/50/chbr/chbr.predict.txt.gz) and by the genes
they are predicted to bind (https://files.docking.org/genes/
<genesymbol>/<genesymbol>.predictions.txt.gz).
A new research tool is now available within ZINC15 for

public use. We demonstrate the use of these new tools in four
use cases, which illustrate how to access predictions both
interactively and via static downloads, below.
Use Case One. The user is interested in a well-studied

target such as the serotonin 2A receptor (HTR2A) and seeks
compounds to purchase that are likely to work but have not
been reported active in ChEMBL21. The user first checks how
many ligands are annotated active at 10 μM or better (5031,
interactively at https://zinc15.docking.org/genes/HTR2A/

substances or statically downloaded at https://files.docking.
org/genes/current/HTR2A/HTR2A.smi). The user then
queries how many commercially available ligands have SEA
predictions at an exceptionally strong statistical significance,
with pSEA = 80 (30 952 at https://zinc15.docking.org/genes/
HTR2A/predictions/subsets/strong+purchasable). For in-
stance, ZINC462039162 available from Enamine, catalog
number Z1269906839, with a pSEA = 82 and MaxTc = 0.63
(https://zinc15.docking.org/substances/ZINC000462039162/

Table 2. Selected Plausible Predictions of Purchasable
Compounds for Genes with No Purchasable Ligands in
ChEMBL
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predictions/table.html). Millions of other commercially avail-
able molecules can be obtained in a similar way. All predictions
are downloaded immediately using https://files.docking.org/
genes/current/HTR2A/HTR2A.predictions.txt.gz, from which
compounds may be selected.

Use Case Two. The user wishes to obtain a screening
library for projects involving several voltage-gated ions
channels. The user wishes to find purchasable compounds
that do not seem too similar, yet are more likely to be ligands
than purely random compounds, i.e., having a high MaxTc
between 0.65 and 0.70, corresponding to an expected precision
of 0.35−0.40. The library should be downloaded in 2D for
chemoinformatics and 3D for docking. In ZINC, there are
14 849 already annotated ligands for any such channel in
ChEMBL21 at 10 μM or better (https://zinc15.docking.org/
subclasses/vgic/substances). Of these, 1108 (7.5%) are
purchasable and may be a good starting point for the library.
A further 21 242 purchasable predicted ligands also are
available, such as ZINC629100 (https://zinc15.docking.org/
substances/ZINC000000629100/predictions/table.html),
which is Tc 0.69 to the nearest annotated active
CHEMBL1097858, active at pKi of 7.7. To obtain the first
1000 ZINC codes for these molecules, the user accesses:
https://zinc15.docking.org/subclasses/vgic/predictions/
subsets/purchasable.txt?maxtc-between=65+70&count=1000.
To download 3D models of these compounds, please see
Obtaining 3D Models, below. A second approach to download
predicted compounds for voltage gated ion channels would be
to first obtain the names of all the genes: https://zinc15.
docking.org/subclasses/vgic/genes.txt:name. Then, the user
would use this list to download the static predictions by
gene. For example, for the sodium channel protein type 5
subunit alpha (SCN5A), the predictions are in https://files.
docking.org/genes/SCN5A/SCN5A.predictions.txt.gz.

Use Case Three. The user would like to know all
predictions for a particular vendor catalog. Vendors may be
interested to know possible targets of their compounds for
marketing purposes. Vendors may also wish to know which of
their make-on-demand compounds might be prioritized for
synthesis based on possible activity. Academic centers that
screen vendor libraries may be interested in individual vendors
because they have negotiated special pricing, or because the
vendor makes plates available at a discount to facilitate the
mechanics of screening. We have been precomputed searches
to enable such investigations to save time. To access them, the
user would complete the following steps:

Table 3. Compounds with No Predictions “Chemical Dark
Matter”a

aTo browse, use: https://zinc15.docking.org/substances/having/no-
predictions. To download: https://files.docking.org/special/dark-
matter. To browse annotated compounds similar to any compound
(e.g., at least 0.30 similar to ZINC compound 14). https://zinc15.

Table 3. continued

docking.org/substances/having/genes?ecfp4_fp-tanimoto-30=14 or
0.30 similar to SMILES https://zinc15.docking.org/substances/
having/genes?ecfp4_fp-tanimoto-30=c1ccccc1NOCOCN. Also try
https://zinc15.docking.org/substances/subsets/in-vitro?ecfp4_fp-
tanimoto-30={zincorsmiles}. For similarity to natural products, try,
https://zinc15.docking.org/substances/subsets/biogenic?ecfp4_fp-
tanimoto-30=<zincorsmiles>. Please note: these queries are efficient if
there are few matches, but will time out if too many hits are found. As
a general rule, use tanimoto-50 first, which will be fast, and decrease
progressively to −40 and then −30 only if no matches are found. This
calculation is intensive, and we may limit usage if there are too many
queries that return multiple thousands of hits to allow us to keep this
service freely available.
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1. Browse to https://files.docking.org/catalogs to select the
catalog of interest.

2. Download the file of predictions. For instance, for
ChemBridge, the code is chbr and the URL is https://
files.docking.org/catalogs/50/chbr/chbr.predict.txt.gz.
Each row contains the vendor code, ZINC ID, InChIKey,
predicted gene, MaxTc, and pSEA: one molecule per
row.

3. Break the downloaded files into subsets using Unix
command-line tools to filter by MaxTc, pSEA, and
predicted gene.

To download these in 3D for docking, please see Obtaining
3D Models, below.
Use Case Four. The user wishes to download dark chemical

matter screening libraries in 2D or 3D formats. To do so, the
user browses to https://files.docking.org/dark-matter. The
compounds have been binned into tranches by physical
property using our standard scheme (http://wiki.docking.org/
index.php/Physical_property_space). The 2D files are available
as compressed text files organized by purchasability. Each row
contains one molecule with its SMILES, ZINC ID, physical
property tranche, purchasability, and reactivity. The 3D files
will likewise be prepared in future but are meanwhile available
as described in Obtaining 3D Models, below.
Obtaining 3D Models. To download 3D models for a set

of molecules in bulk for one of the above use cases, here is a
general approach that will work for any arbitrary set of ZINC
IDs:

1. Obtain the codes of the molecules to download using the
previous use cases or otherwise and store the codes in
zinc-codes.txt.

2. Select mol2, db, or db2 file formats. mol2 may be
converted to other formats as required. The latter two
are used by the UCSF DOCK 3.x programs only.

3. Download the script getf iles.csh from https://files.
docking.org/catalogs/getfiles.csh.

4. Edit the file by hand following the instructions within.
5. Run the script, with the list of ZINC codes in the same

directory. The 3D files will be downloaded.

Please note that 3D models are currently available for about
120 million of the 400 million compounds in ZINC. We are
continually building and rebuilding them, prioritizing the
popular lead-like and fragment-like areas best suited to docking.
If a 3D model is not available, the molecule detail page contains
a “Request Generation” button in the 3D representations
section. If a 3D model does not exist, it is either because it fails
to build or because it is still on our action list.

■ DISCUSSION
Four major results emerge in this work. First, using ZINC and
ChEMBL, we predict molecular target activities for 171 million
commercially available compounds at 2629 targets and store
them in an accessible database. Second, we create an interface
to search, access, and download the predictions (https://
zinc15.docking.org and https://files.docking.org). Predictions
can be accessed individually or downloaded in bulk, and are
available in a range of formats ready for both docking and
chemoinformatics, or for purchase. To demonstrate the utility
of these predictions, we perform a retrospective 5-fold cross-
validation of the ChEMBL bioactivity data set. Further, we
identify likely targets of drugs known in the literature where
direct binding annotations are not available in ChEMBL.

Finally, this new tool allows us to quantify predicted target
biases of purchasable chemical space. Target bias predicted by
this model is substantialsome genes are represented by
millions of purchasable compounds, others have very few.
Nearly 60% of purchasable compounds in ZINC have no
prediction at all, allowing us to offer purchasable “dark chemical
matter”. We take up each of these results in turn.
We predict targets for over 40% of the 400 million

compounds currently for sale in ZINC. The number is
admittedly arbitrary, as we were obliged to choose pSEA and
Tanimoto similarity cutoffs. Knowing that this approach would
produce false positives and false negatives, we attempted to
strike a useful balance, and equip the user to apply further
constraints. Many compounds with MaxTc as low as 0.40 to the
nearest active may not bind the predicted target−previous work
suggests 18% precision might be a good estimate44 and this is
consistent with the results we found in Figure 1 (blue circle).
Likewise, those with a pSEA near our chosen threshold of pSEA
= 40 may not be active against the predicted target. Should such
chemically novel predictions be confirmed experimentally, they
may represent new starting points for optimization and could
lead to new biology. If the user wishes higher confidence hits,
more stringent cutoffs in pSEA or MaxTc are easily applied. We
refer the reader to the set of thresholds examined in our cross-
validation of the ChEMBL bioactivity data set (Supporting
Information Figure S1) for guidance in choosing pSEA and
MaxTc values to optimize the desired output. For the highest
rates of precision at an acceptable recall, we recommend
threshold values at pSEA ≥ 80 and MaxTc ≥ 80 (Figure 1, pink
circle), noting this may reduce the number of novel
compound−target associations that pass the cutoff.
For those wishing to buy a compound that works, the user

might only consider the most similar compounds, having high
Tc to a precedented bioactive. For those seeking chemical
novelty against a target, where testing 10 or even 50 more novel
compounds to find new chemical matter is acceptable, more
novel compounds may be sought. Users of virtual screening
methods such as docking may want particularly novel (low
MaxTc) compounds, because their screening method makes an
independent assessment of each prediction. Some will prefer to
pursue the most noveland potentially most interestingthe
purchasable chemical dark matter, those compounds that do
not seem similar to any of the annotated compounds used to
make these predictions. Whatever the appetite for risk,
investigators are empowered by these tools to select predictions
that are right for their project.
Interfacing the prediction database through ZINC allows

predictions to be searched, grouped, filtered, compared, and
downloaded using the extensive ZINC machinery. Thus 3D
models of predicted compounds may be accessed for molecular
docking screens, while SMILES strings or molecular properties
may be downloaded for ligand-based methods. Predicted
compounds for any of 2629 genes may be accessed and
downloaded in any of eight formats. Results may be filtered by
prediction statistics (pSEA, MaxTc), molecular properties (e.g.,
molecular weight, calculated logP, polar surface area, fraction
sp3) and purchasability (in stock, make-on-demand, or by
vendor). Both 2D and 3D results can be organized by gene
(e.g., ADRB2, SRC), minor class (e.g., GPCR Class B, voltage-
gated ion channel), major class (e.g., transcription factor or
membrane protein), Kingdom (bacterial, eukaryotic, viral),
vendor, and physical property tranche. Attributes of predictions
may be downloaded in tabular form for analysis. A REST API,
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exemplified in this work, described previously9 and docu-
mented online,60 allows automated queries and machine-
readable results, so that this database may be incorporated
into third-party software applications.
We examined drugs and investigational compounds without

an established molecular target annotation in ChEMBL to
assess the relevance of the predictions. The 50 we highlighted
exemplify typical results that can be expected using our
approach for the millions of molecules that have never been
assayed (Table 1). Whereas an exhaustive analysis is
impractical, this result supports the view that our predictions
are often consistent with experimentally observed binding.
A global picture of target bias in commercially available

libraries emerges. Of the 535 million compound−target
predictions, over 500 000 predictions on 400 000 compounds
have a MaxTc better than 0.60 (ECFP4) to a ligand annotated
for that target; a level of similarity that suggests 35%
precision.44 A further 1.6 million predictions on 1.4 million
compounds with MaxTc between 50 and 59 are also strong
candidates for experimental testing. Many of these two million
compounds could have been predicted by pairwise Tanimoto
similarity alone, without the help of SEA. The pSEA adds most
value below MaxTc 0.50, where it provides a global similarity
measure to the set of annotated ligands as a group instead of a
single pairwise one. This becomes even more acute below
MaxTc of 0.40, where we only retain predictions with pSEA ≥
40 as the Tanimoto coefficient alone becomes too untrustwor-
thy, with precision falling rapidly below 10%.
Our analysis provides additional resources. We have

predicted compounds for 69 targets61 for which none of the
20 or more actives is commercially available (Table 2). If
confirmed experimentally, these genes could now be
represented in screening panels of commercially available
compounds, and these new ligands used as controls or perhaps
even starting points for design. For each of 2629 genes, a range
of commercially available compounds from high-confidence,
having high MaxTc, to more-novel-yet-intriguing at lower
MaxTc are now available. For the most studied targets, there is
a deep bench of predictions running into the millions of
compounds each. Massive biases for some targets, such as the
dopamine D2 (DRD2) and beta-2 adrenergic (ADRB2)
receptors for instance, echoes our earlier work62 that
commercial libraries are heavily biased toward long-studied,
important biological targets. Correspondingly, less-well-studied
targets with few ligands often have sparse representation in
commercial libraries, which can occur when the known actives
are natural products or their derivatives. We have also
assembled a database of “dark chemical matter”, 229 million
purchasable compounds that received no target prediction and
that generally do not resemble known bioactives, which is
available from our website in 2D and 3D formats. If these
compounds were active in a screen, they would likely represent
new starting points for optimization.
Our approach has other liabilities. Our cutoffs in MaxTc and

pSEA inevitably exclude sensible predictions. Some classes of
compounds such as sterols, peptides, and nucleotides suffer
from higher mis-prediction rates, a subject of continuing
research. pKa and explicit charge are poorly treated in our
current protocol based on stereochemistry-naiv̈e ECFP4
fingerprints, making amide nitrogens and basic amines too
much alike, for instance, leading to some obviously wrong
predictions. Massive turnover in the chemical marketplace
means stored predictions may lag the appearance of new

compounds in ZINC. ChEMBL contains artifacts and errors,
which this approach can magnify. The SEA and MaxTc
approaches quantify whole-molecule similarities and are
thereby naiv̈e of critical chemical moieties (often called
warheads).
Notwithstanding these limitations, our database of predicted

biological activities for purchasable chemical space is a
pragmatic tool that should be useful to a broad audience. It
affords both a retail viewbuy this compound for this target
as well as a wholesale onethis target is well represented, and
here are some compounds for it. Our predictions can be rapidly
tested because the compounds are purchasable. We intend to
continue to update the database as purchasable chemical space
evolves and ChEMBL is enhanced. This database is provided in
the hope that it will be useful, but you must use it at your own
risk.

■ METHODS
Library Preparation. We used CHEMBL21 compounds

annotated for targets better than 10 μM and grouped by
Uniprot gene symbol across eukaryotes, as previously described
in ZINC15.9 Thus in this scheme, DRD2_HUMAN,
DRD2_RAT, and DRD2_MOUSE are all grouped into a
single gene annotation DRD2, and predictions are made against
the unified collection for the gene and not the individual
orthologs. In situations where the target is composed of several
gene products, as in some ion channels for instance, we used
the ChEMBL name. When no gene has been formally assigned
by Uniprot, we use the Uniprot accession code itself as the gene
name, as in ZINC15.

SEA Reference Library Construction. We grouped
ligands by affinity. We computed an affinity bin as the negative
log of the molar affinity, which is variously expressed as Ki, IC50,
and EC50 among others in ChEMBL21 and which we refer to as
pKi in this work for simplicity. Thus in this scheme, bin 6
contains all compounds with 1 μM affinity or better. Lower
affinity bins were inclusive of compounds from all higher
affinity bins. We built three SEA libraries as follows. In the first
library, we only proceed if there are at least five distinct
compounds active against a single gene, we only accept
activities of 1 μM or better. We found 1382 such genes, which
we defined as being well described by their ligands. In the
second library, we only predict for those single gene targets that
did not qualify for the first pass, accepting activities as weak as
10 μM, and as few as one good ligand. We found 1347 of these
less-well-described genes. The third library was an attempt to
overcome a statistical weakness, which diluted the signal of
genes having many diverse ligands. We clustered ligands to
describe individual chemotypes of 302 genes having 300 ligands
or more each. For each library we computed a statistical
background for SEA based on the 410 624 annotated
compounds. We computed the pSEA based on an extreme
value distribution and the maximum Tanimoto similarity of the
prediction to the annotated compounds (MaxTc). Throughout
we suppressed from the libraries compounds with PAINS
patterns or similarity to a precedented aggregator by 0.70
(ECFP4) having an affinity worse than 100 nM.48 This was
likely too conservative, but earlier, more permissive attempts at
this library often suffered from excessive erroneous predictions,
likely owing to these fraught compounds.

Database Loading. Predictions were loaded into ZINC.
To minimize ligands whose charge differed sharply from
precedent, we computed the mean and the standard deviation
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of the average microspecies charge using ChemAxon’s
CXCALC program for each gene. When loading each
prediction, if the charge of a 3D representation at pH 7.4
(reference model) was available, we suppressed loading if the
charge on the molecule fell outside 1.5 standard deviations
from the mean charge for ligands annotated to that gene. This
remains an area of ongoing research. The result was to suppress
predictions that we likely would have thrown out on inspection,
in a scalable if incomplete and imperfect way.
ChEMBL Cross-Validation. We evaluated the predictive

performance of SEA+TC using ChEMBL’s bioactivity data set
(version 21). Receiver operating characteristic curves were
generated from independent 5-fold cross-validation runs for
each method examined (SEA, SEA+TC, NBC). For SEA and
NBC cross-validation sets, each point on the curve represents
the average true-positive rate (TPR) and false-positive rate
(FPR) from all 5 folds. TPRs and FPRs along the curve were
determined by stepping a decision threshold across the range of
possible SEA p-values (0.0−1.0), for all predicted compound-
target interactions. To examine the sensitivity of these results to
how well the target is described by ligands, we ran the analysis
using targets with a minimum of 5 ligands and also with 50
ligands.
For SEA+TC cross-validation sets, TPRs and FPRs along the

curve were determined by two separate decision thresholds;
one for the SEA p-value and another for the maximum
Tanimoto coefficient (MaxTc). As ROC curves evaluate a
binary classifier using a single discrimination threshold,
assessing performance by simultaneously stepping across both
metrics was not ideal. To account for this, we generated ROC
curves by stepping across all possible values of MaxTc, while
holding the pSEA decision threshold constant (Figure 1).
Predicted compound−target associations are therefore positive
if their pSEA or MaxTc passes either of the respective cutoffs. A
consequence of this bivariate thresholding is that the static
pSEA threshold prevents the TPR and FPR from ever reaching
zero. To highlight this, the distance between a fully stratified
classifier (TPR = 0; FPR = 0) and the minimum point at which
both decision thresholds begin to affect performance is shown
in dashed lines (Figure 1). Performance metrics for a range of
pSEA decision thresholds are shown in Supporting Information
Figure S1A and B. Complementary curves stepping across
pSEA while holding a separate MaxTc decision threshold
constant are shown in Supporting Information Figure S1C and
D.
Interface. We added support for SEA predictions to the

user interface on the Molecule Detail, Target Detail and Gene
Detail pages of ZINC. The interface classifies each gene by one
of 15 major target classes (e.g., membrane receptor, ion
channel, transporter) and by one of 42 subclasses (e.g., Class A
GPCR, voltage gated ion channel, etc) whose pages also allow
access to the SEA predictions. The results are downloadable in
eight formats: SMILES, mol2, SDF, pdbqt, json, xml, txt, and
xls. The predictions may be accessed visually via a web browser
or programmatically using an application program interface,
both located at https://zinc15.docking.org/predictions/home.
Static files are accessible via https://files.docking.org/
predictions, https://files.docking.org/genes, https://files.
docking.org/catalogs, and https://files.docking.org/dark-
matter.
Caveats. Vendors often advertise stereochemically ambig-

uous molecular descriptions and thus the number of
compounds and predictions strongly depends on how these

are treated. Since ZINC is a 3D focused database, we are
obliged to commit to a 3D representation. Where there is
ambiguity, we enumerate up to a maximum of four possible
stereoisomers (R/S and E/Z) and readily admit that this
inflates the numbers in this work.
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