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Abstract

The genome-wide association study (GWAS) has become a routine approach for mapping disease risk loci with the advent
of large-scale genotyping technologies. Multi-allelic haplotype markers can provide superior power compared with single-
SNP markers in mapping disease loci. However, the application of haplotype-based analysis to GWAS is usually bottlenecked
by prohibitive time cost for haplotype inference, also known as phasing. In this study, we developed an efficient approach
to haplotype-based analysis in GWAS. By using a reference panel, our method accelerated the phasing process and reduced
the potential bias generated by unrealistic assumptions in phasing process. The haplotype-based approach delivers great
power and no type I error inflation for association studies. With only a medium-size reference panel, phasing error in our
method is comparable to the genotyping error afforded by commercial genotyping solutions.
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Introduction

The availability of inexpensive platforms for performing dense

single nucleotide polymorphism (SNP) analysis makes it possible

and affordable to conduct GWAS of complex diseases. Nearly 800

risk SNPs have been reported from over 600 genome-wide

association studies in the past years [1].

Power to detect disease susceptibility loci is an essential

consideration in the design of GWAS. Researchers have compared

the power of single-SNP and haplotype-based association analysis in

different genetic scenarios. The benefit of including haplotype-

tagging SNPs, especially those based on a cluster of 2–3 SNP

markers, has been well recognized after the discovery of ‘‘block-like’’

linkage disequilibrium (LD) pattern in human genome [2].

Theoretical studies demonstrated that the use of multi-allelic

haplotypes significantly improved the power and robustness of

association studies [3]. This theoretical analysis has been well

supported by association studies for many different traits. Haplotypes

conferring high susceptibility were identified for schizophrenia,

nicotine dependence and macular degeneration for example [4–6].

However, two technical issues may hinder the implementation of

multi-allelic haplotype-based analysis in GWAS. On the one hand,

the inference of haplotypes, also known as phasing, is time-consuming

given the huge number of genetic markers in GWAS. Numerous

efforts have gone into developing time-saving algorithms, such as

fastPHASE, Haplotyper, Hap, Beagle, MACH and 2SNP etc., for

example [7–12]. Most of these programs are still difficult to apply for

routine use in GWAS, although Beagle has shown preliminary success

[13]. PLINK implemented a standard expectation maximization

algorithm to conduct haplotype-based analysis but phasing quality of

the standard EM algorithm is still unknown when applied to GWAS

data [14]. On the other hand, HWE and other assumptions in

phasing process may lead to problems in GWAS such as decreased

phasing quality and statistical bias although some phasing algorithms

showed robustness to departures from the assumptions [12,15,16].

Due to the nature of the sampling strategy in case-control studies, the

problems that result from such assumptions may emerge with the

markers surrounding high-risk loci. Permutation supplies a possible

solution to eliminate bias in statistical tests but it entails an even more

prohibitive time cost. The development of a fast algorithm with

robustness to the departure from assumptions would greatly benefit

statistical test and data mining in GWAS.

In this report, we present an efficient method utilizing pre-

selected SNP clusters and reference phylogeny to improve data
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analysis in GWAS. This efficient approach delivers a great power

than single-SNP analysis and introduces little bias to the statistical

analysis.

Results

Accuracy of haplotype reconstruction from phase-known
reference panel

We proposed a sampling model to study sampling process of a

phase-known reference panel. The reference panel included

haplotype information from dozens or hundreds of individuals.

As the haplotypes observed in the reference panel is a subset of all

the existing haplotypes of a natural population due to limited

samples in the reference panel, we classify all the existing

haplotypes into two groups, named ‘‘observed’’ and ‘‘unobserved’’

groups. The haplotypes presented in the reference panel are

‘‘observed’’ haplotypes and the absent haplotypes are ‘‘unob-

served’’ haplotypes.

Given p as overall frequency of the ‘‘unobserved’’ haplotypes in

a natural population, a two-step sampling process can generate a

subpopulation (size n) with or without the ‘‘unobserved’’

haplotypes. In the first step, n random number {f1, f2, …fi,

…fn} are generated with uniform distribution in the range from 0

to 1. In the second step, chromosomes are sampled sequentially

from the population following the rules below.

a. When fi.p, a chromosome carrying ‘‘observed’’ haplotype

was added to the sample set.

b. If fi#p, a chromosome carrying ‘‘unobserved’’ haplotype was

added.

Under the rules, none of the ‘‘unobserved’’ haplotypes appears

in the sample set when min{fi}.p.

Overall frequency of ‘‘unobserved’’ haplotypes in natural

population is unknown. Given 1-p..p, we treat E(fmin) as an

upper bound of p when size of the phase-known reference panel

(n) is large.

The cumulative distribution function (CDF) of min{fi} is

Pr jminƒxð Þ~1{ 1{xð Þn:

The expectation of min{fi} can be calculated in

E jminð Þ~
ð1

0

xd 1{ 1{xð Þn½ �~ 1

nz1
: ð1Þ

Using the E(fmin), phasing performance of our method could be

explored in general scenarios for GWAS. In the investigation, for

each SNP cluster in our phasing process (see method section for

details), we define that a genotype is ‘‘permitted’’ genotype if it is a

combination of two ‘‘observed’’ haplotypes.

We grouped all genotypes in GWAS study into three categories.

The ‘‘permitted’’ genotype was considered as ‘‘phase-known

genotype’’ because their haplotypes were fully determined by

perfect phylogeny of the observed haplotypes. Most of the rest

genotypes in GWAS data were a combination of one observed

haplotype and one unknown haplotype. They are considered as

‘‘predictable genotype’’ in our study because we have introduced a

phasing rule to handle this situation (see method for details). Only

a small proportion of the genotypes in GWAS data are the

combination of two unknown haplotypes. We considered those

genotypes as ‘‘phase-unknown genotypes’’.

When chromosome number (size n) of the reference panel is

large, the E(fmin) is close to p. Proportions of the three genotype

categories in GWAS data thus could be estimated in E(fmin)2,

2E(fmin)(12E(fmin)) and (12E(fmin))2 with the assumption of

Hardy-Weinberg equilibrium, respectively. In nature of our

approach, correct haplotype identifications in our phasing process

must be greater than the number of ‘‘phase-known genotypes’’

and slightly less than the sum number of ‘‘phase-known

genotypes’’ and ‘‘predictable genotypes’’.

Proportion of the genotype categories changed with the change

of reference population size because upper bound of unobserved

haplotype proportion E(fmin) is determined by the reference panel

size in Equation 1 (Figure 1). The result has indicated that the

performance of our method continuously improves with an

increase of reference panel size. The performance could fully

satisfy the needs of haplotype-based association studies with only a

middle-size reference panel.

To evaluate our method in real-world data, we checked phasing

errors in a 6-fold cross-validation using the phase-known CEU

dataset of HapMap Project (see method for details). Proportions of

correct phasing ranges from 99.61% to 99.63% in the validations

using reference panel with 50 unrelated individuals (Table 1). The

proportions are concordant with the above analysis upon the

proposed sampling model. This result has confirmed the above

conclusion that our method is accurate in haplotype reconstruc-

tion with a middle-size reference panel.

Proportion of unknown haplotypes (about 0.25%) in the

assessment is less than that was expected, E(fmin)<0.9% when

50 individuals were involved in reference panel (Equation 1). This

could be due to phasing error on the predictable genotypes. In this

scenario, one genotype has two (or more) possible explanations for

its haplotypes. For example, the genotype could be explained as

either combination of two observed haplotypes or one observed

haplotype with one unknown haplotype. In our method, we always

chose the first solution (two observed haplotypes) even if the later

one is actually correct (see method section for details). Most of the

phasing errors from our method were because of the incorrect

choices.

Performance in association study with simulation data
Recent progress in algorithm development has greatly improved

the performance of haplotype inference. MACH, Beagle and

2SNP etc. declared high efficiency and haplotype inference in

‘‘PHASE quality’’. We tested all the three representative

algorithms on ten simulation data sets (see method for details).

Beagle finished each of the data sets in ,2.5 hour in a single IntelH
Xeon 2.5 GHz processor core and 1.5G RAM, whereas MACH

and 2SNP finished phasing process for one data set on the same

computational platform in 68 and 75 hours, respectively. Due to

their large timing cost, MACH and 2SNPs were not considered in

following comparison because they are unlikely to be more

competitive in GWAS than Beagle. Considering GWAS involves

markers ,25–50 times greater than the simulation data sets,

Beagle is the appropriate phasing solution for GWAS among the

three candidates.

Compared to the total timing cost in Beagle (25 hours for 10

data sets), Haplominer, the program implemented our algorithm,

took only 2.6 hours to finish both the phasing process and

association analysis on all 10 data sets. The analysis is almost 10

times faster than that of Beagle.

We compared accordant rate of p-values between different

approaches using standard haplotypes and reconstructed haplo-

An Efficient Method for Haplotype-Based GWAS
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types (see method for details). Given p-value from the standard

haplotypes as a reference, higher accordant rate indicates more

reliable performance. Our method outperformed Beagle in the

evaluation. The accordant rate in Haplominer approach is 2%

higher than that in Beagle approach (Figure 2a). More

importantly, the accordant rate in the Haplominer approach held

constant for markers with different significance levels, while the

performance of Beagle decreased with the p-values of markers. Its

contribution increases from 59.0% to 70.5% to the total

discordant p-values (pooling all discordant results from both the

approaches) when significant level of the markers decreases from

above 0.05 to below 0.001 (Figure 2b). It was noticed that the

overlap of discordant results from different methods is relatively

small (from 4.6% to 11.8%, Figure 2b). It is therefore possible to

minimize power loss due to the phasing errors by conducting

analysis using both approaches.

Bivariate correlation analysis shows that p-values from both

Haplominer and Beagle approaches are well correlated with p-

values from the standard haplotype sets. Pearson’s coefficient is

0.999 between Beagle approach and the approach with standard

haplotypes. It is slightly higher than the coefficient (0.998) between

Haplominer approach and the standard haplotype approach.

Beagle tends to make errors on fewer individuals than Haplominer

does though Haplominer makes errors on fewer SNP clusters than

Beagle.

The other major concern is potential bias in statistical test of

GWAS, which can be conveniently examined using QQ-plot. We

plotted quantiles of p values from our method against the quantiles

of p values from standard haplotypes (Figure 3). The quantiles fit

each other well. No obvious statistical bias was observed in the

results from our method.

Application to real GWAS data
Power of multi-allelic haplotype in association study has been

well investigated in both theoretical analysis and computer

simulation [3,17]. In this report, we evaluated overall performance

of our method on both phasing and statistical test in a GWAS data

set from a rheumatoid arthritis (RA) study [18]. After initial

screen, 485,841 SNPs and 354,010 SNPs clusters were used as

single-SNP and haplotype markers in statistical test for association,

respectively. To account for multiple testing, P,1.061027 was

used as a universal threshold for declaring significance in both

single-SNP and haplotype-based analysis.

In the female only GWAS (with 633 cases and 846 controls),

234 single-SNP markers and 482 SNP clusters showed significant

association with RA in single-marker analysis and haplotype-based

analysis, respectively. In the male only GWAS (with 226 cases and

339 controls), the numbers of associated single-SNP markers and

SNP clusters are 84 and 148, respectively. It is obvious that

haplotype-based association analysis in our approach revealed

more significant associations with rheumatoid arthritis than single

SNP-based association analysis in both studies (Figure 4A). A large

proportion of the significant loci in haplotype-based association

studies (25.5% for females and 16.2% for male; Figure 4B) were

missed by single-SNP analyses (no SNPs from the clusters were

significant in the single-SNP analysis). In contrast, only 4.3% and

0.0% of the single SNP findings were missed in the haplotype-

based analyses (Figure 4B).

171 single SNPs and 628 SNP clusters on Chromosome 6

yielded positive associations with RA in analysis for full RA data

set (without considering gender). Given the fixed rejection

threshold, disease prevalence, effect size of disease allele, LD

Figure 1. Proportion of ‘‘phase-known genotypes’’ and ‘‘predictable genotypes’’ growths with the increase of reference panel size.
The y-axis show proportion of different genotype categories in GWAS data; number of individuals involved in reference panel was shown on x-axis.
‘‘unknown genotype’’ is only a very small proportion.
doi:10.1371/journal.pone.0022097.g001

Table 1. Performance in 6-fold cross-validation (CV) using
phased CEU data of HapMap Project.

cv1 cv2 cv3 cv4 cv5 cv6

Total haplotypes 6115180 6118780 6112460 6115120 6115720 6113780

Wrong haplotypes 23656 23104 23495 22888 23347 22751

Unknown haplotypes 14532 14849 14979 14455 14148 14867

Phasing error (%) 0.39 0.38 0.38 0.37 0.38 0.37

Unknown haplotype
(%)

0.24 0.24 0.25 0.24 0.23 0.24

Correct phasing (%) 99.61 99.62 99.62 99.63 99.62 99.63

doi:10.1371/journal.pone.0022097.t001

An Efficient Method for Haplotype-Based GWAS
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and allele frequencies etc., our approach detected more markers in

association with disease status around known disease loci

(Chromosome 6p near the HLA region) in statistical tests,

indicating that haplotype-based association studies have greater

power than single SNP-based association studies (Figure 5). Our

haplotype-based analysis outperformed the single-SNP-based

analysis in the real GWAS data set.

In efficiency, Haplominer, the C++ program implementing our

method, finished the above analysis in 5.5 hours (on a single IntelH
Xeon 2.5 GHz processor core and 2G RAM, Windows XP 64bit

OS). It took Beagle 84 hours to finish only the phasing jobs for the

same data sets on the same platform.

To evaluate false positive discovery in our findings, we used

WTCCC RA data with imputed genotypes as an independent

replication for the genetic associations on Chromosome 6. Results

showed that 90.4% of the declared associations (568 in 628 SNP

clusters) were successfully replicated in WTCCC data set by

haplotype-based analysis while only 83.0% of the declared

associations (142 in 171 SNPs) were replicated by single-SNP

analysis. This finding indicated that haplotype-based study is more

robust than single-marker analysis. This is a favorable feature since

poor replication can be a serious problem in GWAS.

Discussion

Models describing genotyping errors have been well established,

but models of phasing error remain relatively scarce. For case-

control studies of genetic association, researchers have found that,

for a particular error model, known as model GLHO (Gordon,

Liu, Heath and Ott presented), there is no increase in type I error

due to errors in genotyping [19]. Study of the GLHO model

benefits our understanding to phasing error. In our method,

phasing errors are introduced to different haplotypes of different

SNP clusters in the similar manner of genotyping errors in the

model GLHO under the assumptions of random mating and

sampling. Phasing errors in our method, therefore, do not increase

type I error in GWAS when haplotypes are treated as alleles of

multi-allele markers. The conclusion is concordant with our

observation in QQ plot (Figure 3).

Both genotyping error and phasing error impact GWAS.

Comparison of identical SNPs genotyped by different platforms

provides an approximation of genotyping errors in GWAS. It has

been reported that accordant rate of genotypes between Illumina

and Affymetrix arrays is as high as 99.22–99.73% [20]. Rate of

correct phasing is 99.61–99.63% in our method with only a

middle-size reference panel (table 1). The rate will continuously

improve with increasing size of phase-known reference panel in

our approach. The phasing accuracy of our method is the same

good as genotyping accuracy of current genotyping platforms. The

phasing error is not a technical lesion in the haplotype-based

GWAS.

Some sophistic methods have been developed to use haplotypes

in association study, such as Blossoc, CLADHC, Margarita and

AncesHC etc. [21–24]. However, most of the complicate methods

would demand a noticeable CPU times for computation when the

methods worked on a huge amount of data. The methods are

therefore less efficient than our method in GWAS. Haplominer,

the same as Beagle and PLINK, directly used SNP clusters as

multi-allelic pseudo markers in association studies. Statistical tests

(Fisher’s exact test or Pearson’s chi-square test etc.) in those

methods are easy to compute and powers of the classic statistical

tests are well known in statistical theory and disease models.

Figure 2. Performance of Haplominer and Beagle-based approach in association study with simulated data. A. Percentage of
accordant p-values in the valuation with simulation data. B. Contributions of different approaches to the total discordant p-values.
doi:10.1371/journal.pone.0022097.g002

Figure 3. Q-Q plot of p-values in 2log10 scale. Quartile of p-
values from our approach was shown on y-axis and x-axis presented
quantile of p-values from analysis on raw haplotype data.
doi:10.1371/journal.pone.0022097.g003

An Efficient Method for Haplotype-Based GWAS

PLoS ONE | www.plosone.org 4 July 2011 | Volume 6 | Issue 7 | e22097



Figure 4. Comparison of results from single-SNP and Haplotype-based analysis. A. Histograms of single SNPs and SNP clusters with p-value
less than 1.061027 in analyses for male and female data sets, respectively. B. Venn Diagrams showed the sharing of significant single SNPs and SNP
clusters in association studies for male and female data sets, respectively. A single-SNP or haplotype finding was shared with the other approach when
the significant SNP appeared in any of the significant SNP clusters or any SNP of the cluster appeared in findings of single-SNP analysis, respectively.
doi:10.1371/journal.pone.0022097.g004

Figure 5. Haplotype-based analysis is more powerful than single-SNP analysis. Upper panel shows results from single-SNP analysis; lower
panel presents results of haplotype-based analysis.
doi:10.1371/journal.pone.0022097.g005

An Efficient Method for Haplotype-Based GWAS
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Algorithms for haplotype reconstruction were developed for a

variety of purposes in the past two decades though tasks of the

algorithms look like similar. In 1990s, both numbers of individuals

and genetic markers are generally limited in works of haplotype

reconstruction. Efforts for algorithm development focused on

improving accuracy in phasing task with limited data size. In 2002,

the partition and ligation strategy was introduced to phasing

algorithms to handle large amount of genetic markers [12]. Soon

after that, with progresses in GWAS, efficiency as well as accuracy

became a focus for algorithm development. MACH is one of the

algorithms with high efficiency and accuracy when working on

large data set [11]. However, only Beagle was developed

specifically to handle GWAS data and had higher efficiency than

other algorithms in many scenarios [10]. Most of the aforemen-

tioned methods paid more attention on haplotype inference than

that on association study. In this report, we introduced an efficient

method for haplotype-based GWAS. Our purpose is to supply the

most efficient solution for haplotype-based association study with

thousands of individuals and millions of markers rather than

providing a method for haplotype reconstruction. Therefore, our

approach and the aforementioned phasing algorithms are running

on different tracks with different purposes. In particular, the

algorithm we developed will work best in areas of high linkage

disequilibrium.

A phase-known reference panel was utilized in our method.

Published phasing algorithm, such as PHASE, produced reliable

haplotypes for family data with error rate 0.16% or smaller [25].

Haplotype information from trios of HapMap project would serve

well as haplotype references in our method. However, phasing

errors increased when the existing algorithms worked on

genotypes of independent individuals [25]. The increase of

phasing errors may be critical when statistically phased haplotypes

of independent individuals are used as haplotype references. We

therefore examined the possibility of using statistically phased

haplotypes of independent individuals as a phase-known reference

panel. Utilizing the simulation data and evaluation methods that

were used to evaluate performance of our method above (results

presented in Figure 2 & 3), our analysis showed statistically phased

haplotypes (from Beagle) had performance very similar with the

standard haplotypes. 98.54% of total results (223634 of 226958 p-

values) are identical to the above results in association studies yield

by using standard haplotypes as references. Statistically phased

haplotypes could serve well as haplotype references in our

approach.

In summary, we supplied an efficient approach to haplotype-

based GWAS. The approach delivers great power and no type I

error inflation to association studies. To the best our knowledge, it

is one of the most efficient approaches that have been published.

Materials and Methods

Approach to haplotype-based GWAS
The objective of the proposed method is to replace single SNP

marker with haplotypes of multiple SNPs for GWAS analysis. This

method involves three steps: SNP selection, phasing and statistical

test. The method was implemented in a C++ program, Haplominer.

Source codes of the program and related files could be

downloaded from website of sourceforge.net (http://haplominer.

sourceforge.net) or authors’ website (http://www.picb.ac.cn/

,yunganghe/haplominer). Details of the method were addressed

blow.

Select SNP clusters using a reference population. We

first identify SNPs with criteria of perfect phylogeny whose

haplotypes can be determined for association studies without

invoking recombination [26]. These SNPs are close to each other

but not necessarily contiguous. To boost speed of the identification

and avoid the complications involved in haplotype inference, SNP

selection is therefore suggested to be done using a reference

population with available haplotype information. For a proper

application of the method, it is important to ensure the ethnicity of

the population for SNP selection should match that of case-control

samples in an association study. In this report, we used CEU data

set from the International HapMap Project for SNP selection as an

example, in which highly reliable haplotypes were inferred from

trio samples.

For each given SNP, additional SNPs were selected based on

haplotypes of the reference population, to form a SNP cluster

whose haplotypes could be inferred without invoking recombina-

tion [26]. The SNP selection requires a given size of genomic

region (typically 5–30 kb) and a predetermined maximum number

of SNPs (typically 2–4 SNPs). An excessive number of SNPs may

result in a reduction of statistical power [3]. The additional SNPs

can be achieved by searching exhaustively all allowed SNP clusters

in the working region with the reference population, and the

cluster, therefore SNPs, yielding maximum entropy was selected.

It is of course important to select only the SNPs that are shared

between the reference population and the samples (including both

cases and controls) for GWAS analysis.

This exercise would yield a cluster of selected SNPs (or a SNP

combination) for each given SNP. Each SNP, which could now be

replaced by the haplotypes of the corresponding SNP cluster,

would be interrogated individually in the GWAS analysis. In this

report, the haplotypes observed in the reference population are

also referred to as ‘‘observed’’ haplotypes, otherwise ‘‘unobserved’’

haplotypes.

Haplotype identification in GWAS samples. For a SNP

cluster associated a given SNP, genotypes of a GWAS sample have

only one permitted solution (consisting of two observed haplotypes)

in the inference of haplotypes, theoretically. In other words, all

GWAS genotypes, including cases and controls, can be

deconvoluted uniquely into the observed haplotypes if the

reference population carries all the haplotypes in the GWAS

samples, typically when the reference population is large enough.

However, when the reference population is not sufficiently large, in

reality, we may encounter unpermitted genotypes (consisting at least

one unobserved haplotypes) in GWAS samples, though rarely [27].

Most of the GWAS samples can be deconvoluted into observed

haplotypes (Figure 6). When this cannot be achieved, two

scenarios may arise. (1) The unpermitted genotypes can be

dissected into one observed haplotype and its’ complementary

haplotype. However, when multiple solutions are possible, the

observed haplotype with higher frequency in the reference

population is chosen. (2) The unpermitted genotypes can only be

explained by two unknown haplotypes. The unknown haplotypes

in both the scenarios do not damage further analysis because all

the unknown haplotypes will be pooled together for Pearson’s chi-

square test upon contingency table.

The phasing procedure could be presented below in pseudo

code.

#DEFINE an observed haplotype is a haplotype that

was observed in the reference panel for a given SNP

cluster

#DEFINE a permitted genotype is a genotype that

could be explained as a combination of two observed

haplotypes

#DEFINE unknown haplotypes are a group of

haplotypes which could not be identified in our phasing

An Efficient Method for Haplotype-Based GWAS
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process. They were pooled together in statistical test as

one of the haplotype category.

IF the genotype of an individual for a given SNP cluster is a

permitted genotype

Unravel the genotype into two observed haplotypes

ELSE

IF the genotype could be explained as a combination of one

observed haplotype and its’ complementary haplotype

Unravel the genotype to one observed haplotype and its’

complementary haplotype

ELSE

Explain the genotype as the combination of two unknown

haplotypes

END

END
Statistical test. Pearson’s chi-square test is performed on a

contingency table with haplotype data in association study. In the

test, for each cluster with n SNP markers, counts of haplotypes in

case and control groups were organized into a m by 2 contingency

table (for example, m = n+2 or m = n+1 for scenarios with or

without unobserved haplotype). For each haplotype marker, all

unobserved haplotypes were pooled together to reduce degree of

freedom in the Pearson’s chi-square test.

Phasing performance
Evaluation with HapMap data. In order to evaluate

phasing performance of our method in real genotyping data, we

conducted cross-validations in the phase-known CEU data set

from HapMap Phase II. 60 unrelated individuals of the CEU

panel were randomly permutated and then assigned into 6 groups

with 10 individuals each. In each validation, haplotypes of 10

individuals in one of the groups were used as standard to evaluate

phasing quality while haplotypes of other 50 individuals served as

the reference panel. The validation began by selecting a set of SNP

clusters from the reference panel in the same manner described

above with a maximum cluster size of 3 and a window size of

20 kb. In our method, we reconstructed haplotypes for genotypes

of SNP clusters of the 10 individuals then compared to the

standard haplotypes.

Performance of our method on GWAS data
Performance on simulation data. In the evaluation, ten data

sets were generated in MaCS (http://www-hsc.usc.edu/,garykche/)

under the frame of coalescent theory [28]. We assumed Ne = 5,000,

m= 261028 per bp, and r = 1.261028 per bp. This translates to a

scaled mutation rate and recombination rate (scaled in units of 4Ne

generations) of 10,000 and 6000 for a 25-Mb region.

Each data set contains 2,200 chromosomes, 200 of which were

used as a phase-known reference panel. The rest 2,000

chromosomes were randomly assigned into case or control group

with 1,000 chromosomes each. In each group, genotypes of one

individual were determined by joining two randomly chosen

chromosomes. Only SNPs with minor allele frequency (MAF)

larger than or equal to 0.05 were used in further evaluation.

Our method and three representative phasing algorithms

(MACH: http://www.sph.umich.edu/csg/abecasis/MACH/, Bea-

gle: http://www.stat.auckland.ac.nz/,bbrowning/beagle/beagle.

html and 2SNP: http://alla.cs.gsu.edu/,software/2SNP/) were

evaluated in the simulation data set. For a high phasing quality, the

simulated genome fragments were phased as a whole (without

cutting to pieces) in the three representative phasing algorithms.

MACH and 2SNP did not show competitive efficiency in the initial

evaluation for timing cost. Only Beagle and our method were

included in further comparisons.

Using the simulation data, we selected SNP clusters and

calculated p-values for each of the SNP clusters in our method.

Figure 6. An example for haplotype identification with selected SNP cluster and phase-known reference population.
doi:10.1371/journal.pone.0022097.g006
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Each of the clusters includes 3 SNPs from a working window of

5,000 bp in size. Raw haplotypes or Beagle-generated haplotypes

for the selected SNP clusters were used to organize the simulated

case-control data into cross tables. Pearson’s chi-square test was

performed on the cross tables from a different approach to

corresponding p-values.

To rate performances in association study directly, we

compared accordant rate of p-values between our method and

Beagle-based approach. In this report, the accordant rate of a

specific approach is a proportion of its statistical tests that gave the

same p-value as the corresponding tests using raw haplotypes.
Performance on real data. A GWAS data set for

rheumatoid arthritis (RA) from the North American

Rheumatoid Arthritis Consortium (NARAC) was used to

evaluate our method [18]. SNP clusters were selected in the

phase-known CEU data set from HapMap Phase II with a given

maximum cluster size of 3 and a window size of 20 kb. Before any

further analysis, we conducted a multi-level data clean in PLINK

[14]. Individuals having cryptic family relationships or a rate of

genotype missing larger than 5% were excluded from association

analysis. SNP markers having minor allele frequency less than 1%

or missing data more than 5% were excluded. Furthermore, all

involving loci passed a statistical test for HWE with p-value larger

than or equal to 161025. After the data cleaning, 502,763 SNPs

remained from 859 cases and 1185 controls. The data set included

565 males and 1479 females. Both standard single-marker analysis

and our haplotype-based analysis were performed on the data set.

Positive findings on Chromosome 6 were visualized in

WGAViewer to present the power difference between the two

approaches [29].

We also validate the positive findings on Chromosome 6 using

WTCCC RA data sets [24]. About 80% of SNP markers on

Chromosome 6 from above RA genotyping data cannot be found

in WTCCC RA data due to the using of different genotyping

platforms. Genotype imputation was carried out in Beagle to fill

the missing genotypes in WTCCC RA data with HapMap CEU

data as a reference. We conducted association analysis on the

WTCCC RA data with both real and imputed genotypes using the

same approach that has been used for NARAC data analysis. The

positive findings from the above NARAC data analysis were

checked carefully using the WTCCC RA data for rate of

replication.

The institutional review board reviewed and approved the study

in accordance with the code of ethics of the World Medical

Association (Declaration of Helsinki).
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