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Abstract: Segmenting vessels in brain images is a critical step for many medical interventions and
diagnoses of illnesses. Recent advances in artificial intelligence provide better models, achieving a
human-like level of expertise in many tasks. In this paper, we present a new approach to segment
Time-of-Flight Magnetic Resonance Angiography (TOF-MRA) images, relying on fewer training
samples than state-of-the-art methods. We propose a conditional generative adversarial network
with an adapted generator based on a concatenated U-Net with a residual U-Net architecture (UUr-
cGAN) to carry out blood vessel segmentation in TOF-MRA images, relying on data augmentation to
diminish the drawback of having few volumes at disposal for training the model, while preventing
overfitting by using regularization techniques. The proposed model achieves 89.52% precision
and 87.23% in Dice score on average from the cross-validated experiment for brain blood vessel
segmentation tasks, which is similar to other state-of-the-art methods while using considerably fewer
training samples. UUr-cGAN extracts important features from small datasets while preventing
overfitting compared to other CNN-based methods and still achieve a relatively good performance in
image segmentation tasks such as brain blood vessels from TOF-MRA.

Keywords: brain blood vessels segmentation; conditional generative adversarial network; MRI
segmentation; residual U-Net; time-of-flight magnetic resonance angiography

1. Introduction

Brain vessel segmentation locates blood vessels in brain image volumes that can be
processed to generate 3D models of the patient’s brain to visualize it for diagnosis or
before any intervention. Segmentation is usually performed by hand to each slice into
the volume, a task that is quite time-consuming and relies entirely on physician expertise,
where misclassification can lead to severe consequences for the patient. Given this situation,
it is important to develop intelligent systems that can perform vessel segmentation without
the drawbacks of time consumption of experts and human error.

Brain imaging and blood vessel segmentation help neuroradiologists in trajectory
planning for minimally invasive surgery [1] in detecting brain diseases, such as aneurysms,
strokes, and electrode trajectories for deep brain stimulation [2–5]. The main challenges
of segmenting MRI images are normally the size in memory they occupy, the complexity
and time in obtaining them, the absence of large labeled datasets for training machine
learning algorithms, and the high noise they present, making this a very challenging task
to carry out.

Convolutional Neural Networks are among the most successful methods for image
segmentation. They have gained popularity due to their advantages, such as higher Dice
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scores and increasing in the cloud training possibilities. They also provide an increasing
corpus of techniques that can be used for different applications. Different architectures of
deep convolutional neural networks, with a relatively small number of layers combined
with fully connected layers to classify each pixel in a 2D medical image between vessels
and non-vessels, have been proposed by [6,7]. Due to the nature of image acquisition
techniques, slices are commonly stacked into 3D volumes, where adjacent images share
some similarities. This property has been exploited by Chen et al. [8] to propagate in-
formation between layers of the stack for vessel segmentation, achieving a Dice score
of 73.71%. Teikari et al. [9] developed a hybrid 2D-3D convolutional neural network to
segment brain blood vessels from two-photon vasculature microscopy stacks using a CPU
as an accelerator framework, proving that deep neural networks can be optimized enough
to be trained without a GPU. Taking into consideration the signal variability given by blood
flow, Kandil et al. [10] divide their MRA volumes into two parts, above and below the
Circle of Willis (CoW), and both are fed into their 3D CNN architecture, with an 84.37%
Dice score as a result. Zhao et al. [11] developed a framework that extracts MRA volume
structures as a preprocessing step. A fully connected neural network acts as a classifier
that takes as input several properties of candidate structures and obtains the probability of
being a blood vessel.

Some of the most successful techniques in machine learning are Transfer Learning (TL),
Data Augmentation, and Generative Adversarial Neural Networks (GAN’s). Many authors
have tried to use those techniques looking for an improvement in TOC-MRI segmenting
tasks. The work presented by Tetteh et al. [12] relies on TL for three main tasks, location
of the centerline and bifurcation points in blood vessels, as well as segmentation, using a
synthetic dataset to pre-train their 3D CNN, validating on MRA images of human brains
and rats, where they achieved 86.68% Dice score. Using data augmentation, Zhang et al. [13]
apply a reflection transformation to the dataset to generate more samples needed, given
the disadvantage of not having the necessary amount of training data. In addition to
this, they add Gaussian noise to the samples to make the network invariant to absolute
intensities. They proposed a hybrid loss function to handle class imbalance between
vessels and non-vessels regions with dense connections to connect feature maps within
the CNN architecture. As a result, they present a 75.6% Dice score for vessel segmentation
in susceptibility-weighted images (SWIs). Image generation models such as generative
adversarial networks (GAN) [14] are gaining popularity for various tasks, where especially
conditional GANs [15] have been used to generate images from another one, adding
random noise, useful for style transfer. Image segmentation can be seen as a style transfer
problem. This point of view is used by some authors [16–21] for different applications,
including the segmentation of organs, blood vessels, and tumors.

Encoder-decoder architectures have shown increased performance in different seg-
mentation tasks. In medical imaging, the U-Net model proposed by Ronneberger et al. [22]
has established an inflection point in the medical community, demonstrating that a deep
convolutional neural network can be trained with small datasets, which is often neces-
sary given the time-demanding task of obtaining labeled images from specialists, and still
achieve competitive results. Several U-net-like architectures have been proposed to attend
to this issue for different tasks in various applications, including segmentation of cerebral
blood vessels, brain tumors, ischemic-stroke lesions, aneurysms, and skin lesions [23–29].
Concatenations of U-Nets have also been demonstrated to help improve the segmenting of
smaller blood vessels in retina fundus images [30].

In the present work, we will focus on brain vessel segmentation for Time-of-Flight
(TOF) MRA, using a conditional generative adversarial network with an adapted generator
based on the concatenation of a U-Net [22] and a residual U-Net [31] architecture. The
model is trained on a small set of samples compared to other state-of-the-art methods,
given the limited availability of labeled data, while achieving similar evaluation metrics
results. Manually annotated data is very time-consuming to elaborate on due to the number
of slices within each MRA volume. Additionally, an expert is required to perform such
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a task, as other cerebral regions may interfere, causing wrong-labeled regions that could
threaten the patient’s health. Therefore, approaches that rely on few volumes are essential
to solve a problem where a big challenge is the lack of available data while reducing the
time needed for an expert to visualize cerebral blood vessels’ segmentation.

2. Materials and Methods

A. Data

The 3D TOF-MRA images used in this work were provided by the Institute of Neurobi-
ology of the National Autonomous University of Mexico (UNAM), which are composed of
four volumes from four patients (3 females aged 55, 41, and 33 years old and a 23 year-old
male) obtained by a Phillips Achieva 3T system (Phillips Healthcare, Amsterdam, Nether-
lands). Each volume contains 200 slices with a resolution of 560 × 560 pixels, with a
separation of 0.5 mm between each one. Figure 1 shows an example of the dataset. Ad-
ditionally, a segmentation map for each slice is provided, annotated by hand, for model
training purposes.
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Figure 1. Axial view from a sample of the MRA dataset and its segmentation map.

B. Image preprocessing

To reduce the MRA volumes’ background noise, a mask is generated to preserve the Re-
gion of Interest (ROI) for each slice. First, all pixels with intensity below the threshold = 10
are reduced to 0, followed by a morphological closure with kernel size k = 9 for the mask
generation. After this, the mask is multiplied by the original image to obtain the ROI only,
without background noise, as shown in Figure 2.

C. Model Architecture

GANs are generative models that consist of a generator G and a discriminator D, with
parameters θ(G) and θ(D), respectively. G learns a mapping from a random noise vector z to
an output image x, represented by x = G

(
z; θ(G)

)
, whereas the task for D is to distinguish

between samples from the training data and samples obtained from the generator, denoted
by D(x; θ(D)) [14,32].
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Figure 2. Comparison for original and preprocessed images. (a) Sample image from an MRA volume.
(b) Generated mask from (a). (c) Output image from multiplying (a,b). (d) Sample volume without
preprocessing. (e) Output volume from applying the corresponding mask for each image within it.

The model function V(D, G) is represented by a min-max game, where D is trained
to maximize the probability of a correct label between real and fake samples, while G tries
to minimize it generating samples indistinguishable from the real ones, as follows:

minGmaxDV(D, G) = Ex∼Pdata(x)
[logD(x)] +Ez∼Pz(z)[log(1− D(G(z)))] (1)

The purpose of the model is that the discriminator learns the properties from training
samples, denoted as true examples, and the ones from the generator denoted as fake.
From the discriminator classification, the generator is forced to generate better samples
indistinguishable from the training data.

Conditional generative adversarial networks add the property to conventional GANs
of having a sample y alongside the input z as extra information to condition the model to
generate samples based on the input, a useful feature for image segmentation, where the
output sample is similar to the input, and a completely different image is not required to
be generated. The objective function for this model follows the next equation:

minGmaxDV(D, G) = Ex∼Pdata(x)
[logD(x|y)] +Ez∼Pz(z)[log(1− D(G(z|y)))] (2)

The proposed architecture is based on the Pix2Pix architecture [33] and shown in
Figure 3, which consists of two models. First, a generator model G with two stages similar
to [30]; an encoder and decoder sections to have a U-net- like architecture, concatenated
with a similar one, but adding residual blocks [30,31]. Second, a discriminator D model
based on the encoder section of the first part of the generator.
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Figure 3. UUr-cGAN architecture. The generator model predicts a segmentation map from an
input sample that is used to train the discriminator against fake samples. The discriminator model
also trains for real samples based on ground-truth segmentation maps to predict the class for a
given image.

The architecture takes a single-channel image or slice from the 3D MRA volume with
a resolution of 256 × 256 pixels and noise distribution function as dropout [34] that is fed
to the generator. The discriminator’s output is a 16 × 16 feature map, as [33] suggests.

For the encoder from the first section of G, four 3 × 3 convolutions are implemented
with the same padding, the first one with stride 2, following instance normalization and
leakyReLU activation functions. The decoder section performs four 3 × 3 transposed
convolutions to retrieve feature map size, followed by another 3 × 3 convolution, with
instance normalization and leakyReLU activation functions.

The second section of the generator is very similar to the one described before, with
the only difference of replacing the convolutions after the dimension reduction of the
feature map by a residual block. The same difference is noted in the decoder part after each
transposed convolution. Tanh is used as an activation function for the last convolutional
layer of the generator model.

The residual blocks are based on [30] and represented by Equation (3) and Figure 4,
where each one takes as input an n-dimensional feature map FM. First, a 3 × 3 convolution
is performed with the same padding, followed by instance normalization, LeakyReLU
activation function, another 3 × 3 convolution, and instance normalization. The output is
combined with the FM as a sum operation, and a final LeakyReLU activation function is
then used.

FM(x) = F(x) + x (3)
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The discriminator model is based on the first section of the encoder generator with
filters of size 4× 4, keeping the same operations and adding a final single-filter convolution,
with the same padding to generate a 16 × 16 output. LeakyReLU is used as an activation
function for all layers except for the last, which is replaced by a sigmoid function.

D. Training Strategy

The final architecture is assembled as Figure 5 shows for both models, G, and D,
within the cGAN model, a generator followed by a discriminator model, having as output
a binary array containing whether a generated image is classified as real or fake. Based
on this classification, the generator model is trained while the discriminator weights
remain non-trainable. Due to the concatenation of two U-Net-like models for G, the total
number of parameters is 65 million, which is almost equivalent to twice the parameters in
a conventional U-net, whereas the parameters for D are 6.9 million.
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Figure 5. Generator and discriminator models based on [22,30–33] for the proposed cGAN archi-
tecture. A concatenation of two U-Net-like models inspires the generator. The second one contains
residual blocks, which helps preserve and transfer information through deeper layers of smaller
details within the feature map.

The discriminator’s learning procedure trains on real and fake image batches without
affecting the generator weights.

Due to their nature, various medical images contain imbalanced classes. Training
machine learning algorithms with imbalanced classes is an area of research interest [35,36].
In this work, two loss functions are used, one for each model within the architecture. L1 loss
is used for the generator model altogether the cGAN loss, whereas binary cross-entropy
loss function is implemented for the discriminator model.

The procedure for training the models is based on [14], where a step for gradient
descent on the discriminator model is performed, followed by one for the generator. The
discriminator is trained as a conventional CNN model, while the generator makes use of
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the loss from the inference of the discriminator to be trained. The objective function is
shown in Equation (4). A combination of two-loss functions is implemented as in [33] for G,
with L1 loss as described by Equation (5). Initial hyper-parameter selection is based on [33]
as well.

g = argminGmaxDLcGAN(D, G) + λLL1(G) (4)

where:
LL1(G) = Ex,y,z‖y− G(x, z)‖ (5)

E. Implementation Details

Each slice in the MRA volumes is resized from 560 × 560 pixels to 256 × 256 pixels to
reduce the memory consumption while training the model.

Data augmentation is implemented for each slice in the training set in order to generate
more samples by two different techniques. The first one consists of flipping each sample
with a mirror transformation, whereas the second one is patch extraction, which applies
random zoom (between the original and twice the size of the sample) into random areas of
the original data.

Different values for λ were tested. After several experiments, a proportion of 75
to 1 in favor of L1 loss was chosen, as the best results for segmentation from the model
were achieved. A random noise feature map is commonly added to the input map for the
generator model. As a replacement, dropout is implemented in the bottleneck section of
the model. Similarly, the discriminator also uses dropout at the final layer of the model.
For each model, the probability is equal to 0.1.

The generator model is trained using Adam optimizer [37], initial learning rate α = 0.0002
with an exponential decay rate of 0.9, β1 = 0.9 and β2 = 0.999, whereas the discriminator
uses RMSProp [38] for training, as it leads to better stability at minimizing its cost func-
tion, with the same learning rate as the generator and momentum = 0.9. Besides, the
optimization pace for D is divided by 2 with respect to G [33].

Instance normalization is implemented for better stability and improved performance
in the learning procedure, as [39] suggests for image generation models.

The proposed model is trained on a computer with Ubuntu 18.04, 56 GB of RAM, and
an Nvidia K80 GPU. Python 3.6, TensorFlow 2.3.0 with its Keras library, is used to build
the architecture.

3. Results

The similarity between segmented prediction and target is evaluated using different
metrics, such as Dice score (DSC), accuracy, precision, sensitivity, and specificity, given by
the following expressions, where true positive (TP) and true negative refer to the pixels
properly classified as blood vessel and background by the evaluated models, respectively,
whereas the false positive (FP) and false negative (FN) indicate misclassified pixels; back-
ground predicted as blood vessel and blood vessel predicted as background, respectively.

Dice Score =
2TP

2TP + FP + FN
(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
(8)

Speci f icity =
TN

TN + FP
(9)

A. MRA Images

The dataset is split into subsets, each used as validation data for a k-Fold validation,
with k = 4. Therefore, 4 models are trained using different validation subsets for each
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iteration, exactly 3 complete volumes for training and 1 for validation at each step. Table 1
summarizes the evaluation made for each model and the average for the metrics evaluated
on the validation volume for the corresponding iteration k of the k-Fold experiment, and
Figure 6 shows different slices from the MRA volumes, ground truth segmentation map,
segmentation prediction, and error map.

Table 1. Metrics evaluated from models obtained by each iteration of k-Fold.

k Dice Score Precision Sensitivity Specificity

1 0.8825 0.8789 0.8864 0.9996
2 0.8574 0.9064 0.8022 0.9997
3 0.8742 0.9141 0.8387 0.9997
4 0.8752 0.8817 0.8746 0.9996

Average 0.8723 0.8952 0.8504 0.9996
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Figure 6. Example of vessel segmentation performed to MRA images. (a) MRA slices, (b) Segmen-
tation target, (c) Prediction from the proposed model, and (d) Segmentation error (the difference
between segmentation target and prediction).
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In Table 2, metrics evaluated for different approaches are shown. U-Net, concatenated
U-Nets, and Pix2Pix, the models from the proposed one, follow the same methodology for k-
Fold. The CNN models were trained with a similar selection of hyper-parameters, based on
the work of [30,31], using dropout to diminish overfitting, with a probability of 0.2 between
layers, and early stop after training for 10 epochs with no Dice Score improvement for
the test set. Similarly, the Pix2Pix model trained for this work uses the hyper-parameter
selection proposed by the authors in [33]. For all methods, an exponential learning rate
schedule was added with a decay rate of 0.96 and a batch size of 10. A 3D visualization for
a test volume is shown in Figure 7 for each model, and in Figure 8, the error maps for each
of the evaluated models can be visualized, where the maps are obtained from the absolute
difference between the ground truth and the predicted volumes.

Table 2. Average k-Fold metrics for different methods and proposed model.

Method Dice Score Precision Sensitivity Specificity

U-Net [22] 0.8371 0.7978 0.9384 0.9994
Concatenated U-Nets [30] 0.8613 0.8795 0.8633 0.9997

Pix2Pix [33] 0.8092 0.8362 0.7838 0.9996
UUr-cGAN (Proposed model) 0.8723 0.8952 0.8504 0.9996
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Figure 7. Segmentation map obtained from each one of the evaluated methods described in Table 2,
using data from the first fold of the cross-validated experiment. 3D Visualizations were generated by
the software Aliza Medical Imaging ©, Bonn, Germany, and DICOM Viewer for ground truth and
prediction volumes. (a) Ground truth, (b) U-Net [22], (c) Pix2Pix [33], (d) Concatenated U-Net and
residual U-Net [30], and (e) Proposed cGAN.
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Figure 8. Error maps obtained from the difference between the ground truth and the predicted
segmentation maps from each of the evaluated models, using the same volume shown in Figure 7.
Visualizations were generated by the software Aliza Medical Imaging ©, Bonn, Germany, and
DICOM Viewer. (a) U-Net [22], (b) Concatenated U-Net and residual U-Net [30], (c) Pix2Pix [33], and
(d) Proposed cGAN.

It is important to mention that a direct comparison cannot be made between methods
due to the variance of the datasets used for each one. However, a reference is useful, as
shown in Table 3.

Table 3. Dice score and data availability for different vessel segmentation in MRA images alongside
the proposed model.

Method Dice Score MRA Volumes
in Dataset

Chen et al. [8] 0.7371 10
Phellan et al. [7] 0.7740 5
Tetteh et al. [12] 0.8668 40
Kandil et al. [10] 0.8437 30
Zhao et al. [11] 0.8503 30
Livne et al. [23] 0.9210 66
Proposed model 0.8723 4

B. Additional Experiment Using Microscopy Images

In addition to the evaluated MRA dataset, we tested the same experiment as described
across this work but using an additional dataset publicly available, based on two-photon
microscopy cerebral images [9], with its corresponding segmentation map for blood vessels.
The objective for this is to prove that our model is able to work with relatively good
performance, in comparison to the other tested models, while being trained on a different
image modality aside from the MRA images.

Each slice for each volume was preprocessed to enhance the ROI. This was performed
following the CLAHE method, proposed by [40], where background vessels can be better
identified with a higher value, with the drawback of adding noise to the image, as shown
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in Figure 9. Nevertheless, this led to better performance for our experiments, with the aid
of data augmentation given the small number of samples available in the dataset.
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Figure 9. Comparison for a sample of the microscopy dataset [9] before and after histogram equal-
ization. Image (a) and its histogram (b) correspond to the original data, whereas image (c) and its
histogram (d) correspond to the enhanced by the CLAHE method [40]. Each histogram shows the
distribution and the cumulative distribution function for the pixel intensity values present in its
corresponding image. For the optimized image, the pixel values are slightly better distributed in
comparison with the original image, which leads to a better classification of the blood vessels.

For this experiment, a 4-Fold method was implemented in order to split the 12 volumes
in the dataset into 9 and 3 volumes for training and validation, respectively for each iteration
for the 4-Fold, cycling them each time, so each volume is used only once for validation.
The results for this experiment, evaluating the models presented in this work, are shown in
Table 4, and a sample of the segmentation maps in Figure 10. Also, the hyperparameter
selection for all models remains the same as described in Sections 2 and 3.

Table 4. Average k-Fold metrics for different methods and proposed model, for the multiphoton
microscopy dataset [9].

Method Dice Score Precision Sensitivity Specificity

U-Net [22] 0.7356 0.9720 0.5917 0.9957
Concatenated U-Nets [30] 0.7704 0.9624 0.6423 0.9936

Pix2Pix [33] 0.8187 0.9772 0.7288 0.9986
UUr-cGAN (Proposed model) 0.8288 0.9567 0.7246 0.999
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on the microscopy dataset. (a) Input image. (b) Ground truth segmentation. (c) U-Net prediction.
(d) Concatenated U-Nets. (e) Pix2Pix. (f) UUr-cGAN (proposed method).

The evaluation of this dataset is useful to provide additional information on how our
proposed model behaves while not using MRA images, which is our main goal, for blood
vessel segmentation and to demonstrate that it could be helpful in a variety of segmentation
tasks. Further hyper-parameter tuning can be applied to the models tested, but we followed
the same training approach discussed in this work to make a fair comparison for all data
and models.

4. Discussion

According to our experiments, the U-Net model tends to overfit easily, given the
small number of training samples available. Even with the implementation of different
regularization techniques, it generates noise in locations around vessel structures, while
some areas with similar pixel intensities are misclassified as vessels. The concatenated
U-Nets model generates a segmentation volume with less noise overall but with a higher
false-negative rate, therefore, showing a lower sensitivity than the single U-Net. How-
ever, it obtains higher precision and a better similarity, and therefore a higher Dice score.
The addition of the second residual U-Net provides a better identification and posterior
segmentation of small regions of interest for such a task, preserving key elements like the
thinnest blood vessels.

The Pix2Pix model addresses the overfitting problem improving the generalization
performance. Therefore, we considered deploying the concatenated U-Nets, which per-
forms a higher classification accuracy of small vessels in high unbalance classes with less
training time into a cGAN model; instead of using a single U-Net as the Pix2Pix does. We
show that, utilizing the concatenated U-Nets as the cGAN generator, it is possible to achieve
the advantages of both architectures, eliminating the overfitting problem and improving
the Dice score for unbalanced classes. Furthermore, if we compare the ground truth of
small vessel segmentation, Figure 7a, we can easily see that the proposed model achieves
better definition and less noise to each of the models.

cGAN models tend to perform well in image generation tasks, such as image segmen-
tation, due to the combination of two-loss functions to minimize within the model. First,
the G model loss is similar to any other CNN-based model loss, like the distance between
prediction and target segmentation, for instance. Second, the D model’s objective is to
distinguish key elements within both the real samples and the segmentation predictions
to detect errors made by G. This, later on, translates into the second loss that is used, in
addition to the first mentioned, to penalize prediction errors.
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In Table 3, we can see that the proposed UUr-cGAN model achieves a higher Dice
score than all the state-of-the-art TOF-MRA segmentation models, but the one proposed by
Livne et al. [23] (which is based on a single U-Net model). It is worth mentioning that in
their study, they used 66 volumes compared to the 4 volumes used in ours.

One limitation of the proposed method, as is common with deep learning models, is
the high number of trainable parameters of the cGAN architecture. The whole model needs
to be trained, and as discussed in Section 2C, the architecture is equivalent to having two
different convolutional models (generator and discriminator) for which their respective
parameters have to be trained, one step at a time for one and the other in the direction
of the gradient descent for a high number of epochs, resulting in a higher requirement
of resources in comparison to training a conventional convolutional network and thus,
in our experiments, the associated training time can take more than 6 h for each k-fold
for our dataset. The advantage is that for inference, only the trained generator model is
required and the discriminator can be dismissed, as it is only required in order to update
the parameters of the generator at the training stage.

5. Conclusions

Since the concatenation of U-Nets proved to be effective in other imaging modalities
to segment blood vessels, including the thinnest ones, our hypothesis that their use as a
generator in a cGAN was positively tested. As we can see, our method achieves better
performance than most approaches in TOF-MRI segmentation. It is important to mention
that our model can consistently segment small vessels better than other approaches, as
we can see in Figure 7. Our proposed UUr-cGAN model reaches 87.23 in Dice score for
blood vessel segmentation of TOF-MR Angiographies, a score superior to most approaches,
with the additional advantage of obtaining this result with a considerably smaller amount
of training volumes. Even though it is not directly comparable to other approaches, due
to different training data, it is a good approximation because most successful models are
based on the U-Net architecture.

An additional analysis of the architecture for the generator model of our proposed
method might be useful to improve even further our results for this kind of segmentation,
like the integration of modern techniques for more efficient training in the deep learning
field, such as attention gates and deep supervision [41]. Also, the pre-processing and
data augmentation strategy can be optimized using other convolutional models as sample
generators [42], which might lead to a wider variety of generated samples available for
training without affecting the correct distribution of the data, while preventing overfitting
more efficiently.

Small datasets are a limitation for many applications across different fields where
segmentation is needed. The presented work is a plausible approximation to solve many
segmentation problems in the lack of large datasets while detecting small features on
the images.

Author Contributions: Conceptualization, O.J.Q.-Q. and S.T.-A.; investigation and methodology
O.J.Q.-Q.; funding acquisition, S.T.-A. and A.G.-G.; validation, S.T.-A., E.G.-H. and A.D.L.-C.; writing—
original draft preparation O.J.Q.-Q. and S.T.-A.; writing—review and editing, A.D.L.-C., E.G.-H. and
A.G.-G.; visualization O.J.Q.-Q. and A.D.L.-C. All authors have read and agreed to the published
version of the manuscript.

Funding: The project was funded indirectly for a scholarship of a graduate student.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The python implementation for the proposed model in this work
can be found in the following public repository https://github.com/oliverquintana/UUr-cGAN
(accessed on 17 May 2022).

Acknowledgments: We are grateful to Luis Aguilar, Carlos Flores, and Jair Garcia from the National
Laboratory of Advanced Scientific Visualization of the National Autonomous University of Mexico

https://github.com/oliverquintana/UUr-cGAN


Micromachines 2022, 13, 823 14 of 15

(UNAM) campus Juriquilla for their support and provision of supplementary material. To Erick
Humberto Pasaye Alcaraz from the National Magnetic Resonance Imaging Laboratory of the Institute
of Neurobiology of the National Autonomous University of Mexico (UNAM) campus Juriquilla for
providing the images.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Neumann, J.O.; Campos, B.; Younes, B.; Jakobs, M.; Unterberg, A.; Kiening, K.; Hubert, A. Evaluation of three automatic

brain vessel segmentation methods for stereotactical trajectory planning. Comput. Methods Programs Biomed. 2019, 182, 105037.
[CrossRef] [PubMed]

2. Hernández-Pérez, M.; Puig, J.; Blasco, G.; de la Ossa, N.P.; Dorado, L.; Dávalos, A.; Munuera, J. Dynamic Magnetic Resonance
Angiography Provides Collateral Circulation and Hemodynamic Information in Acute Ischemic Stroke. Stroke 2016, 47, 531–534.
[CrossRef] [PubMed]

3. Arimura, H.; Magome, T.; Yamashita, Y.; Yamamoto, D. Computer-aided diagnosis systems for brain diseases in magnetic
resonance images. Algorithms 2009, 2, 925–952. [CrossRef]

4. Law, M.W.K.; Chung, A.C.S. Segmentation of intracranial vessels and aneurysms in phase contrast magnetic resonance angiogra-
phy using multirange filters and local variances. IEEE Trans. Image Process. 2013, 22, 845–859. [CrossRef] [PubMed]

5. Rashed, E.A.; Gomez-Tames, J.; Hirata, A. End-to-end semantic segmentation of personalized deep brain structures for non-
invasive brain stimulation. Neural Netw. 2020, 125, 233–244. [CrossRef] [PubMed]

6. Hu, C.; Hui, H.; Wang, S.; Dong, D.; Liu, X.; Yang, X.; Tian, J. Cerebral vessels segmentation for light-sheet microscopy image
using convolutional neural networks. Biomed. Appl. Mol. Struct. Funct. Imaging 2017, 10137, 101370K.

7. Phellan, R.; Peixinho, A.; Falcão, A.; Forkert, N.D. Vascular Segmentation in TOF MRA Images of the Brain Using a Deep
Convolutional Neural Network. Lect. Notes Comput. Sci. 2017, 10552, 39–46.

8. Chen, L.; Xie, Y.; Sun, J.; Balu, N.; Mossa-Basha, M.; Pimentel, K.; Hatsukami, T.S.; Hwang, J.-N.; Yuan, C. 3D intracranial artery
segmentation using a convolutional autoencoder. In Proceedings of the 2017 IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), Kansas City, MO, USA, 13–16 November 2017; pp. 714–717.

9. Teikari, P.; Santos, M.; Poon, C.; Hynynen, K. Deep Learning Convolutional Networks for Multiphoton Microscopy Vasculature
Segmentation. arXiv 2016, arXiv:1606.02382.

10. Kandil, H.; Soliman, A.; Taher, F.; Mahmoud, A.; Elmaghraby, A.; El-Baz, A. Using 3-D CNNs and Local Blood Flow Information
to Segment Cerebral Vasculature. In Proceedings of the 2018 IEEE International Symposium on Signal Processing and Information
Technology (ISSPIT), Louisville, KY, USA, 6–8 December 2018; pp. 701–705.

11. Zhao, S.; Tian, Y.U.N.; Wang, X.; Xie, L.; Sun, L. Intracranial Vascular Structure Extraction: A Machine Learning Approach. IEEE
Access 2019, 7, 100933–100942. [CrossRef]

12. Tetteh, G.; Efremov, V.; Forkert, N.D.; Schneider, M.; Kirschke, J.; Weber, B.; Zimmer, C.; Piraud, M.; Menze, B.H. DeepVesselNet:
Vessel Segmentation, Centerline Prediction, and Bifurcation Detection in 3-D Angiographic Volumes. Front. Neurosci. 2020,
14, 592352. [CrossRef]

13. Zhang, X.; Zhang, Y.; Hu, Q. Deep learning based vein segmentation from susceptibility-weighted images. Computing 2019,
101, 637–652. [CrossRef]

14. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. Adv. Neural Inf. Process. Syst. 2014, 3, 2672–2680.

15. Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784.
16. Cirillo, M.D.; Abramian, D.; Eklund, A. Vox2Vox: 3D-GAN for Brain Tumour Segmentation. arXiv 2020, arXiv:2003.13653.
17. Chen, Z.; Xie, L.; Chen, Y.; Zeng, Q.; ZhuGe, Q.; Shen, J.; Wen, C.; Feng, Y. Generative adversarial network based cerebrovascular

segmentation for time-of-flight magnetic resonance angiography image. Neurocomputing 2021, 488, 657–668. [CrossRef]
18. Nema, S.; Dudhane, A.; Murala, S.; Naidu, S. RescueNet: An unpaired GAN for brain tumor segmentation. Biomed. Signal Process.

Control 2020, 55, 101641. [CrossRef]
19. Park, K.B.; Choi, S.H.; Lee, J.Y. M-GAN: Retinal Blood Vessel Segmentation by Balancing Losses through Stacked Deep Fully

Convolutional Networks. IEEE Access 2020, 8, 146308–146322. [CrossRef]
20. Wu, C.; Zou, Y.; Yang, Z. U-GAN: Generative adversarial networks with u-net for retinal vessel segmentation. In Proceedings of

the 2019 14th International Conference on Computer Science & Education (ICCSE), Toronto, ON, Canada, 19–21 August 2019;
pp. 642–646.

21. Dong, X.; Lei, Y.; Liu, Y.; Tian, S.; Higgins, K.; Beitler, J.J.; Yu, D.S.; Jiang, X.; Liu, T.; Curran, W.J.; et al. Automatic multiorgan
segmentation in thorax CT images using U-net-GAN. Med. Phys. 2019, 46, 2157–2168. [CrossRef]

22. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. Lect. Notes Comput. Sci.
2015, 9351, 234–241.

23. Livne, M.; Rieger, J.; Aydin, O.U.; Taha, A.A.; Akay, E.M.; Kossen, T.; Sobesky, J.; Kelleher, J.D.; Hildebrand, K.; Frey, D.; et al.
A U-net deep learning framework for high performance vessel segmentation in patients with cerebrovascular disease. Front.
Neurosci. 2019, 13, 97. [CrossRef]

http://doi.org/10.1016/j.cmpb.2019.105037
http://www.ncbi.nlm.nih.gov/pubmed/31445207
http://doi.org/10.1161/STROKEAHA.115.010748
http://www.ncbi.nlm.nih.gov/pubmed/26658445
http://doi.org/10.3390/a2030925
http://doi.org/10.1109/TIP.2012.2216274
http://www.ncbi.nlm.nih.gov/pubmed/22955902
http://doi.org/10.1016/j.neunet.2020.02.006
http://www.ncbi.nlm.nih.gov/pubmed/32151914
http://doi.org/10.1109/ACCESS.2019.2931359
http://doi.org/10.3389/fnins.2020.592352
http://doi.org/10.1007/s00607-018-0677-7
http://doi.org/10.1016/j.neucom.2021.11.075
http://doi.org/10.1016/j.bspc.2019.101641
http://doi.org/10.1109/ACCESS.2020.3015108
http://doi.org/10.1002/mp.13458
http://doi.org/10.3389/fnins.2019.00097


Micromachines 2022, 13, 823 15 of 15

24. Maqsood, S.; Damasevicius, R.; Shah, F.M. An efficient approach for the detection of brain tumor using fuzzy logic and U-NET
CNN classification. In International Conference on Computational Science and Its Applications; Springer: Cham, Switzerland, 2021.

25. Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor
Segmentation from CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [CrossRef] [PubMed]
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