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The challenges of effective vaccination against influenza are gaining more mainstream 
attention, as recent influenza seasons have reported low efficacy in annual vaccination 
programs worldwide. Combined with the potential emergence of novel influenza viruses 
resulting in a pandemic, the need for effective alternatives to egg-produced conventional 
vaccines has been made increasingly clear. DNA vaccines against influenza have been 
in development since the 1990s, but the initial excitement over success in murine model 
trials has been tempered by comparatively poor performance in larger animal models. 
In the intervening years, much progress has been made to refine the DNA vaccine 
platform—the rational design of antigens and expression vectors, the development of 
novel vaccine adjuvants, and the employment of innovative gene delivery methods. This 
review discusses how these advances have been applied in recent efforts to develop an 
effective influenza DNA vaccine.
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inTRODUCTiOn

Seasonal influenza epidemics continue to challenge public health systems worldwide, causing 3–5 
million cases of severe respiratory disease and 290–650 thousand deaths annually (1). Despite annual 
updates to the seasonal vaccine, in 2017 overall vaccine effectiveness for Australia was estimated to 
be only 33% (2), and interim estimates from the United States were similarly low for the 2017–2018 
influenza seasons (36%) (3). In addition, current seasonal vaccines provide little or no protection 
against novel pandemic viruses of animal origin (4). Consequently, research efforts have increased 
to improve seasonal vaccines and develop new vaccine platforms to achieve better protection against 
both seasonal and potentially pandemic influenza A viruses.

DNA vaccines possess numerous properties ideal for influenza control and have been trialled for 
a range of diseases, including viral and bacterial infections, and some cancers (5–7). Whilst inacti-
vated influenza vaccines (IIVs) largely rely on antibody production to achieve effective protection 
(8), DNA vaccines can efficiently engage both humoral and cell-mediated immune responses (9). 
Their production does not require the growth of live virus and can be rapidly upscaled in response 
to emerging pandemic influenza (10, 11). Despite these advantages, promising immunogenic 
responses achieved in small animal models, predominantly mice, are rarely replicated in larger 
animals (12, 13). Murine model data are based on immune responses in highly inbred animals to 
mouse-adapted influenza viruses—an unreliable comparison to vaccination in the outbred human 
population against circulating influenza viruses (14, 15). Larger animal models susceptible to human 
influenza virus provide more relevant data—ferrets exhibit clinical signs, lung pathology, and trans-
mission similar to humans (16, 17), whist human-like immune responses to influenza in cynomolgus 
macaques are good predictors of vaccine efficacy in humans (15, 18). As such, achieving sufficient 
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FigURe 1 | Key factors considered in the design, formulation, and inoculation of DNA vaccines to improve in vivo transfection efficiency and antigen 
immunogenicity.
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immunogenicity in larger animals has required the development 
of potent delivery systems and adjuvants (19, 20). This review 
summarises innovations in the design, formulation, and delivery 
of DNA vaccines against influenza, and the major obstacles 
impeding their implementation (Figure 1).

inFLUenZA vACCineS: PRODUCTiOn 
AnD MeCHAniSMS OF PROTeCTiOn

Inactivated influenza vaccines and live attenuated influenza vac-
cines (LAIV) are the most widely used forms of influenza vaccine, 
and are generated by harvesting viruses grown in embryonated 
hen’s eggs (21). The delivery of viral antigens derived from this 
process induces the production of antigen-specific antibodies, 
particularly against the haemagglutinin (HA) surface glycopro-
tein, to protect against future infections (22). However, egg-based 
vaccine production is time-consuming and resource-intensive, 

and manufacturing delays have previously caused severe vac-
cine shortages (23, 24). The overall vaccine effectiveness against 
seasonal influenza ranges from 40 to 60% during typical seasons, 
but is significantly reduced when antigenic mismatch occurs  
(25, 26). Furthermore, antigenic mismatch can be exacerbated 
by mutations which allow vaccine viruses to grow in eggs, which 
may also alter antigenic sites (27).

DNA vaccines are able to avoid many issues associated with 
egg-based vaccine production by generating viral proteins within 
host cells. To create a DNA vaccine, an antigen-encoding gene is 
cloned into a non-replicative expression plasmid, which is deliv-
ered to the host by traditional vaccination routes (28). Host cells 
which take up the plasmid express the vaccine antigen which can 
be presented to immune cells via the major histocompatibility 
complex (MHC) pathways. CD4+ T helper cell activation follow-
ing MHC class II presentation of secreted DNA vaccine protein 
is critical for the production of antigen-specific antibodies (29), 
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whist CD8+ T  cell immunity, important for viral clearance, is 
predominantly activated by endogenously expressed antigens 
presented on MHC class I molecules (30).

DeSigning AnTigenS FOR inFLUenZA 
DnA vACCineS

The protection conferred by conventional IIV is based on the 
induction of HA-specific serum antibodies, which interfere with 
virus attachment to inhibit cell entry and limit infection (8, 31). 
Early mouse studies using DNA vaccines encoding H1 HA genes 
reported that protection against lethal homologous challenge 
correlated with increasing titres of HA-specific serum antibody 
(32, 33). As observed in LAIV, other correlates of immunity are 
less well defined, but the induction of local inflammation and 
cytotoxic T cell responses have been implicated as key mecha-
nisms to enhance vaccine cross-reactivity and reduce the severity 
of infections (34, 35). As such, the nature of the host response to 
influenza DNA vaccination can be manipulated by the encoded 
antigen.

“Universal” influenza vaccines are being developed to induce 
broadly protective responses against drifted variant viruses and 
animal-origin strains that may result in a pandemic. Protection 
induced by evolutionarily stable influenza antigens is associated 
with viral clearance mediated by broadly reactive cytotoxic CD8+ 
T cells, reducing the severity of clinical disease (36). Candidate 
universal influenza vaccine targets include the nucleoprotein (NP),  
matrix proteins (M1 and M2), and the RNA-directed RNA poly-
merase catalytic subunit (PB1). Individual plasmids encoding NP 
(37) and M2 (38) have each been reported to decrease viral load 
and enhance survival against lethal heterologous challenge viruses 
in BALB/c mice. Combined immunisation with matrix protein, 
NP, and PB1 plasmids has been reported to induce protection 
against heterologous challenge in mice (39), pigs (40), ferrets 
(41), and macaques (42). Chimeric protein antigens designed to 
increase the breadth of host responses can be delivered by DNA 
vaccines. Plasmid-encoded fusion proteins of H1N1 HA and the 
conserved M2-ectodomain improved the cross-reactivity of anti-
body responses to drifted H1N1 viruses compared to a plasmid 
encoding HA alone in mice (43).

Attempts to create HA-based universal influenza vaccines have 
targeted the conserved stem region of the HA protein (31). Mice 
vaccinated with plasmids encoding a PR8 “headless HA” antigen 
developed serum antibody responses to a greater range of influ-
enza viruses than wild-type HA DNA-vaccinated animals (44). 
The expression of consensus HA sequences has also increased the 
cross-reactivity of antibody responses (45–47). Chen et al. (48) 
constructed a plasmid encoding a consensus H5 HA generated 
from 467 HA sequences, which induced protection against a 
wide spectrum of lethal H5N1 reassortant challenge viruses in 
mice. Broadly reactive responses have also been induced using 
polyvalent formulations similar to currently available trivalent 
and quadrivalent IIVs (26). Huber et  al. (49) generated cross-
reactive antibodies against multiple H3 drift variants in mice by 
vaccinating with three different H3-expressing plasmids. Rao 
et al. (50) achieved similar success against several variant H5N1 

viruses in chickens using vaccines containing up to 10 different 
H5 HA plasmids.

Efficient antigen expression in situ is a key factor for DNA vac-
cine effectiveness which can be modulated by altering the antigen 
coding sequence. Encoding antigens using codons optimised for 
expressing within the host species is a commonly used strategy to 
enhance influenza DNA vaccine expression (51–53). Jiang et al. 
(54) used a lethal H5N1 challenge model in chickens to compare 
the protective efficacy of DNA vaccines encoding either the wild-
type HA or HA codon-optimised for chickens. Chickens receiving 
the codon-optimised HA plasmid demonstrated up to fourfold 
increases in antibody titre compared to animals inoculated with 
wild-type HA plasmids, resulting in greater survival rates during 
viral challenge.

DNA vaccine antigen design can direct the post-translational 
trafficking of expressed proteins to influence the development of  
host immunity. The human tissue plasminogen activator leader 
sequence promotes high levels of protein secretion and has imp-
roved antibody responses to an H5 HA DNA vaccine in rabbits 
(55). Grodeland et al. (29) encoded DNA vaccine antigens con-
sisting of H1 HA linked to MHC class II-targeting units which 
enhanced its delivery to antigen-presenting cells (APCs). Ferrets 
and pigs vaccinated with plasmids expressing the targeted H1 
fusion protein generated significant antibody titres, whereas H1  
DNA alone failed to cause seroconversion. A similar DNA vac-
cine strategy expressing APC-targeted H7 fusion proteins was 
found to improve anti-HA serum antibody and cytotoxic T cell 
responses to highly pathogenic avian influenza (56).

DnA vACCine DeLiveRY PLATFORMS

For influenza DNA vaccines, the route of administration is criti-
cal to vaccine effectiveness as it dictates the cell types that will be 
transfected. DNA vaccines were initially tested in the murine 
model using intramuscular injection of naked plasmids to pro-
duce antigens in passively transfected myocytes (muscle cells) 
(57). This method relies on the influx of leucocytes following local 
inflammation to expose the immune system to DNA vaccine anti-
gens (58). Outside of the murine model, effective intramuscular 
administration of plasmids depends on adjuvants and delivery 
systems to achieve sufficient immunogenicity (59). More recently, 
cutaneous delivery has become a highly desirable route for DNA 
vaccines, as the epidermis is abundant in Langerhans cells, which 
can efficiently transport and present DNA vaccine-encoded 
antigens in the lymph node (58).

Alternative delivery devices have been developed to improve 
upon traditional needle and syringe inoculation for parenteral 
administration. In small animal models, the gene gun induces 
immune responses successfully with low doses of DNA by 
delivering gas-propelled plasmid-coated gold microparticles 
directly into epidermal cells (60, 61). Human clinical trials of 
influenza DNA vaccines have successfully employed the Biojector 
system (iHealthNet, GA, USA), which uses pressurised CO2 to 
transport a liquid inoculum to the intradermal or intramuscular 
layer (62–64). Recently, the development of patches composed 
of micron-length needles has enabled the dermal delivery of 
lyophilised DNA vaccine (65–67). HA DNA vaccination in mice 
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using dry-coated microneedle patches were reported to induce 
antibody titres and T cell responses up to five times higher than 
an equivalent intramuscular dose (68).

Parenteral gene delivery has been further enhanced by electro-
poration, which temporarily increases the permeability of local cell 
membranes with electrical pulses (69). Its early use alongside 
intramuscular delivery required highly invasive electrodes associ-
ated with excessive inflammation and the production of lesions 
(70). Updated devices such as the CELLECTRA system (Inovio, 
PA, USA) can target the dermal and subcutaneous layers and 
are optimised to be minimally invasive for clinical use (71). 
Electroporation has been reported to enable influenza DNA vac-
cines to generate robust antibody titres and T cell responses in 
guinea pigs (72), swine (73), and macaques (47, 74).

The mucosa is an appealing site of inoculation for influenza 
vaccines as it is easily accessible and is the clinical site of entry for 
influenza viruses (75). Existing mucosal influenza vaccines such 
as FluMist (MedImmune, MD, USA) mediate protection through 
local mucosal inflammation and the production of secretory 
IgA (34, 76). The enrichment of dendritic cells and M cells at 
mucosal surfaces is ideal for the immune presentation of DNA 
vaccine antigens (77, 78). However, successful mucosal delivery 
of plasmids in large animal models requires specialised adjuvants 
or highly optimised delivery systems (79, 80). Torrieri-Dramard 
et  al. (81) reported that an intranasal HA DNA vaccine failed 
to elicit detectable IgA titres unless the plasmid was complexed 
with a polyethylenimine nanocarrier. To induce detectable sero-
conversion in sheep, Rajapaksa et al. (82) used a novel acoustic 
nebuliser to produce aerosols of an optimal size to deliver HA 
plasmids to deep lung tissue.

ADJUvAnTS

The co-administration of adjuvants with influenza DNA vaccines 
is a common strategy to elicit adequate levels of protection in vivo. 
The mechanisms of action for licensed conventional adjuvants 
include the formation of antigen depot at the inoculation site, 
the activation of inflammatory pathways, and the recruitment of 
APCs (83).

The goal of adjuvant design is to increase the immune res-
ponse to vaccine antigens, a critical hurdle in the DNA vaccine 
field. Mineral salts such as alum are widely used in human vac-
cines and have resulted in up to fivefold increase in HA DNA 
vaccine-induced antibody titres (84). Cytokine expression vectors  
exploit host signalling pathways to heighten immune stimulation 
(85). IL-6 is an important inflammatory mediator involved in 
B  cell stimulation and the recruitment of leucocytes (86, 87). 
Co-administration of an IL-6-expressing plasmid in HA DNA-
vaccinated mice has been reported to reduce the duration of 
influenza illness (88). Lee et al. (60) reported that only 50% of 
HA and NP DNA-vaccinated mice survived a lethal homo logous 
challenge, whereas mice receiving the additional IL-6-expressing 
plasmid were fully protected. The cytokine activity of high mobi-
lity group box 1 protein has been shown to increase the survival  
of mice vaccinated with NP DNA in a homologous viral challenge, 
and has been found to enhance antibody production induced 
by HA DNA vaccines by twofold (89). Cytokine adjuvants have 

also demonstrated effectiveness in large animal models such as  
macaques, where the use of adjuvant plasmids encoding GM-CSF, 
a potent immune cell proliferation and differentiation factor, 
resulted in up to fivefold increases in the serum antibody titre 
compared to a HA DNA vaccine delivered alone (90).

Adjuvant compounds developed as delivery reagents aim to 
improve the transfection efficiency of DNA vaccine plasmids. The 
efficiency of the cellular uptake of DNA vaccines is determined  
by cell membrane permeability and the susceptibility of foreign 
DNA to host enzymes. It is estimated that only 1% of a naked 
plasmid inoculation is able to reach the nuclei of target cells for 
protein expression—most plasmids remain in the extracellular 
space to be cleared by host processes (91). Synthetic nanocar-
riers form structures that protect DNA from host enzymes and 
facilitate its entry through the cell membrane lipid bilayer (85). 
Cationic lipids form vesicles known as liposomes, which interact 
electrostatically with negatively charged DNA to form lipop-
lexes that efficiently enter host cells through endocytosis (92). 
Vaxfectin (Vical, San Diego) is a cationic lipid-based system that 
has boosted influenza DNA vaccine immunogenicity in numer-
ous large animal models (93–95). Other nanoparticle-forming 
polymers have been reported to enhance influenza DNA vaccine 
formulation including poly(lactic-co-glycolic) acid (96, 97), chito-
san (98), and polyethylenimine (81).

PRiMe-BOOST STRATegieS

The administration of novel vaccine types including adenovirus 
vectors (99, 100), subviral particles (101), and recombinant protein 
antigens (102) in combination with conventional influenza vac-
cines has been reported to enhance seroconversion and antibody 
cross-reactivity. Wang et al. (103) demonstrated that a primary 
HA DNA vaccine followed by a seasonal trivalent inactivated 
vaccine (TIV) boost induced significantly higher antibody titres 
compared to two doses of either DNA vaccine or TIV in rabbits. 
Similar results have reported using DNA vaccines to prime LAIV 
in ferrets (104) and recombinant HA-protein vaccine in chickens 
(105). However, human trials applying this strategy against cir-
culating seasonal influenza failed to significantly improve sero-
conversion compared to TIV alone (106, 107).

Despite this, studies have indicated that DNA vaccines may 
have a clinical application in pandemic settings. Chang et al. (108) 
demonstrated that mice which had been pre-exposed to H1N1 
were significantly protected from lethal H5N1 challenge after 
DNA vaccination with H5N1 NP- and M1-expressing plasmids. 
Given the commonality of H1N1 exposure amongst the public, 
this suggests DNA vaccines could be rapidly deployed to protect 
a large susceptible population against H5N1 outbreaks. During 
the 2009 pandemic, a Phase 1 human clinical trial was conducted 
using an A(H1N1)pdm09 DNA vaccine produced 2  months 
before the licensed monovalent inactivated vaccine (MIV) (64). 
Seroconversion was observed in 30% of recipients after three 
doses of DNA vaccine delivered by Biojector, and the response 
rate rose to 72% after a booster dose of MIV. Similar human  
trials of DNA prime-MIV boost vaccines against H5N1 (109) and 
H7N9 (110) have reported significant improvements in antibody 
responses compared to MIV alone, indicating that DNA vaccines 
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can effectively prime the immune system against viruses where 
there is low pre-existing immunity in the population. These 
recent developments indicate the potential for further research 
into combined DNA vaccine/IIV strategies as viable control 
measures against novel influenza outbreaks.

FUTURe PROSPeCTS

After two decades of research, DNA vaccine technology is 
gaining maturity—several veterinary DNA vaccines are cur-
rently licensed for West Nile virus and melanoma (111), and 
significantly, the first commercial DNA vaccine against H5N1 in 
chickens has recently been conditionally approved by the USDA 
(112). In addition, ongoing large animal trials of DNA vaccines 
against other diseases such as against HIV (6, 113, 114), hepatitis  
(115, 116), and Zika virus (117, 118) offer valuable insights that 
can be applied to influenza DNA vaccine design. Promising 
approaches have arisen from the numerous studies evaluating 
different DNA vaccine formulations and delivery systems, but a 
strategy that consistently elicits protection against influenza in 
large animal models has not yet emerged. Successful plasmid 

delivery and the use of appropriate adjuvants remain key chal-
lenges that need to be addressed before influenza DNA vaccines 
become effective for human use.
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