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Background. Pin1, as the peptidyl-prolyl isomerase, plays a vital role in cellular processes. However, whether it has a regulatory
effect on renal ischemia and reperfusion (I/R) injury still remains unknown. Methods. The hypoxia/reoxygenation (H/R) model
in human kidney (HK-2) cells and the I/R model in rats were assessed to investigate the role of Pin1 on I/R-induced acute
kidney injury. Male Sprague-Dawley rats were used to establish the I/R model for 15, 30, and 45min ischemia and then 24 h
reperfusion, with or without the Pin1 inhibitor, to demonstrate the role of Pin1 in acute kidney injury. HK-2 cells were cultured
and experienced the H/R model to identify the molecular mechanisms involved. Results. In this study, we found that Pin1 and
oxidative stress were obviously increased after renal I/R. Inhibition of Pin1 with juglone decreased renal structural and
functional injuries, as well as oxidative stress. Besides, Pin1 inhibition with the inhibitor, juglone, or the small interfering RNA
showed significant reduction on oxidative stress markers caused by the H/R process in vitro. Furthermore, the results indicated
that the expression of p38 MAPK was increased during H/R in vitro and Pin1 inhibition could reduce the increased expression
of p38 MAPK. Conclusion. Our results illustrated that Pin1 aggravated renal I/R injury via elevating oxidative stress through
activation of the p38 MAPK pathway. These findings indicated that Pin1 might become the potential treatment for renal I/R injury.

1. Introduction

Acute kidney injury (AKI), which is characterized by fast
deterioration of renal function, becomes a worldwide public
issue with high incidence and mortality [1]. Renal ische-
mia/reperfusion (I/R) injury, associated with partial nephrec-
tomy, transplantation, shock, and cardiac bypass surgery, is a
major risk for AKI and subsequent chronic kidney disease
[2]. The mechanism of renal I/R injury is complex and
involves a series of cellular processes, including oxidative
stress, inflammation, apoptosis, and endoplasmic reticulum
stress, which together lead to serious renal damage [3]. Previ-
ous research indicated that oxidative stress, characterized by

rapid overproduction of reactive oxygen species (ROS), was
considered one of the primary pathogeneses of I/R [4].
Therefore, it is urgent and beneficial for developing thera-
peutic strategy on reducing oxidative stress during renal I/R
and thus attenuating AKI.

The phosphorylation of Ser/Thr residues on protein is a
key mechanism to change their functional activity during
the cellular process [5]. Pin1, as the peptidyl-prolyl isomer-
ase, is an important regulator of phosphorylation-induced
protein activation [6, 7]. Pin1 has important effect on the reg-
ulation of organic I/R injury. A previous report found that at
early reperfusion times, Pin1 protein levels exhibited a rapid
decline after cardiac ischemia, which was with a pattern
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Figure 1: Continued.
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resembling that of AKT protein, indicating a relationship
between Pin1 loss and AKT stability decreased [8]. Another
study showed that Pin1, which regulated p53 transactivation
under stress, aggravated the pathogenesis via Notch signaling
during ischemic stroke [9]. However, the effect of Pin1 on
AKI induced by I/R injury remains unclear.

The mitogen-activated protein kinase (MAPK) pathway
participates in numerous biological processes, including cell
differentiation, cell proliferation, and adaptation to environ-
mental stress [10]. p38 MAPK is a subclass of MAPKs, which
is involved in the pathogenesis and progression of AKI [11].
Previous research indicated that the JNK/p38 MAPK path-
way was activated following renal I/R, which was accompa-
nied by the overproduction of ROS [12]. However, whether
pin1 regulated p38 MAPK expression during AKI induced
by I/R was still unclear. In the present study, we investigated
whether Pin1 played an important role on renal I/R injury.
Also, we tested the possible mechanisms that was involved
in Pin1 regulating on oxidative stress.

2. Material and Methods

2.1. Animal. Male adult Sprague-Dawley (SD) rats (200–
250 g) were provided by the center of experimental animals
in the Medical College of Wuhan University. The animals
were placed in a room with suitable temperature and humid-
ity and free access to rat edibles and tap water. This experi-
ment was authorized by the Ethics Committee of Renmin
Hospital of Wuhan University, and the procedures were car-
ried out in accordance with the principles of animal care of
our university.

2.2. I/RModel Establishment. Rats were acclimated for a week
and the model of renal I/R injury in rats was performed as
previously reported [13]. After the rats were fully anesthe-
tized with pentobarbital sodium (50mg/kg, i.p.), they were
subjected to the midline laparotomy. And then, all the rats
experienced the right nephrectomy, followed by the left kid-
ney vessels being clamped for 15, 30, and 45min ischemia
and then unclamped for 24 h reperfusion.

2.3. Animal Treatment. Rats were treated with various doses
of the Pin1 inhibitor, juglone (2 or 10mg/kg, once a day),
three consecutive days before renal I/R injury establishment.
The dimethyl sulfoxide (DMSO) group was injected with the
equal DMSO solution as a control.

2.4. Serum Assays. Blood samples were collected to detect the
level of blood urea nitrogen (BUN) and serum creatinine (Cr)
through commercial kit instructions (Nanjing Jiancheng,
China). The results were calculated and indicated through
spectrophotometric methods.

2.5. Cell Treatment. The human kidney (HK-2) cells were
cultured in DMEM (Invitrogen, USA) supplemented with
10% fetal bovine serum under 5% CO2 and 21% O2 at 37

°C.
To establish the cell model, the H/R process was performed
as previously described [14]. Briefly, the HK-2 cells were
incubated in the hypoxic condition (1% O2, 94% N2, and
5% CO2) for 3, 6, and 12 hours with the nonnutrient medium
and then changed with normal medium and cultured in the
normoxic condition for 6 hours. The control group was incu-
bated in normal medium under normoxic condition.

2.6. Small Interfering RNA (siRNA) Transfection. For trans-
fection of si-Pin1, the cells were transfected with two differ-
ent si-RNA against Pin1 or si-NC for 48 h through
lipofectamine 3000. Western blot was used to assess the effect
of si-RNA against Pin1.

2.7. Histological Examinations. After the rats were sacrificed,
renal tissue samples were fixed in 4% paraformaldehyde,
embedded in paraffin, and incised with an average thickness
of 4μm. Then, the samples were experiencing being deparaf-
finized, hydrated, and stained with hematoxylin and eosin
(H&E). An established grading scale of 0–4, outlined by
Jablonski et al. [15], was used for the histopathological assess-
ment of I/R-induced damage.

2.8. RT-PCR. RNA was extracted with the RNAiso Plus
(TaKaRa Biotechnology). Reverse transcriptase reactions
were performed using a SuperScript First-strand Synthesis
System (Invitrogen). Real-time PCR reactions were
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Figure 1: Pin1 expression was increased during renal I/R injury in rats. The model was established with 15, 30, and 45min ischemia and 24 h
reperfusion. (a, b) The Cr and BUN levels in serum were detected. (c) The Pin1 mRNA level was increased in RT-PCR. (d, e) The Pin1 protein
level was increased in Western blot, and the quantification was performed. (f, g) The SOD activity and MDA content were detected after I/R
injury in rats. (h, i) The pathological change was examined by H&E staining and its quantification (×400). (j) The renal ROS level was
examined by DHE staining (×400) (n = 5). The values were presented as mean ± SEM. ∗P < 0:05 vs. the sham group.
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Figure 2: Continued.
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performed with β-actin as internal control. Gene levels were
shown as fold change relative to control. The primers were
included as follows:

R-Pin1: 5′-GCTCAGGCCGTGTCTACTACTTC-3′ (F);
5′-TCCGAGATTGGCTGTGCTTC-3′ (R); R-β-actin: 5′-
TGCTATGTTGCCCTAGACTTCG-3′ (F); 5′-GTTGGC
ATAGAGGTCTTTACGG-3′ (R); H-Pin1: 5′-TCAACC
ACATCACTAACGCCAG-3′ (F); 5′-GCAAACGAGGC
GTCTTCAAAT-3′ (R); H-β-actin: 5′-CACCCAGCACA
ATGAAGATCAAGAT-3′ (F); and 5′-CCAGTTTTTAA
ATCCTGAGTCAAGC-3′ (R).

2.9. Western Blotting. Kidney tissue was collected and then
protein was extracted and quantified. Briefly, the sample
was separated and then transferred to the polyvinylidene
difluoride membrane. Subsequently, it was blocked with 5%
nonfat milk and then incubated at 4°C overnight with
primary antibodies against Pin1 (#192036, Abcam), 4-
hydroxynonenal (4-HNE) (#46545, Abcam), COX2 (cyclo-
oxygenase 2) (#179800, Abcam), myeloperoxidase (MPO)
(#208670, Abcam), p38 (#31828, Abcam), p-p38(#4822,
Abcam), and β-actin (#BA2305, Boster Biological Technol-
ogy). Then, it was washed and incubated with secondary
antibody. Specific bands were detected and the densities were
quantified using ImageJ software.

2.10. Measurement of Malondialdehyde (MDA) and
Superoxide Dismutase (SOD). The detection of SOD activity
and MDA content were performed through the instructions
of the Nanjing Jiancheng Bioengineering Institute. Cell
lysates from in vivo and in vitro experiments were collected
and detected the level of SOD and MDA. The specific proce-
dures were according with the manufacturer’s direction.

2.11. ROS Production Detection. The ROS levels were deter-
mined based on our previous study [16] through the
commercial kit instruction (Nanjing Jiancheng, China). The
samples were incubated with dichloro-dihydro-fluorescein

diacetate (20μM) at room temperature for 30min, and the
result of the ROS level was quantified through flow
cytometry.

2.12. Detection for the Production of Hydrogen Peroxide
(H2O2). The renal tissue and HK-2 cells were perfused and
homogenized. And then, hydrogen peroxide was detected
through the commercial kit instruction (Nanjing Jiancheng,
China). The results were shown as fold change relative to
the control group.

2.13. DHE Staining. Frozen kidney sections (4μM) were
stained with dihydroethidium (DHE) (2μmol/L, Sigma) in
a light-protected humidified chamber at 37°C for 15min.
The images were visualized using a fluorescence microscope
(Olympus IX51).

2.14. Statistical Analysis. All data was expressed as mean ±
standard error of the mean (SEM). Statistical analyses
included two-way analysis of variance and the Student–New-
man–Keuls test. Statistically significant differences were con-
sidered when p < 0:05.

3. Results

3.1. Pin1 Expression Was Elevated during Renal I/R. The
levels of Bun and Cr were continuing to increase as the ische-
mic time extended (Figures 1(a) and 1(b)). Also, the levels of
Pin1 were examined by RT-PCR and Western blot and the
results showed that Pin1 mRNA and the protein level were
continuing to increase as the extension of ischemic time,
especially at 45min ischemia (Figures 1(c)–1(e)). Then, we
found that oxidative stress was increased during renal I/R.
The results showed that SOD activity (Figure 1(f)) continued
to decrease and MDA content (Figure 1(g)) continued to
increase in the course of I/R progress, especially at 45min
ischemia. H&E staining (Figures 1(h) and 1(i)) and DHE
staining (Figure 1(j)) indicated that renal I/R injury exhibited
acute tubular damage and increased ROS level at ischemia

Sham DMSO 2 10

I/R+Juglone (mg/kg)
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Figure 2: The Pin1 inhibitor, juglone, prevented renal tissue against I/R injury in rats. The model was established with 45min ischemia and
then 24 h reperfusion. (a, b) The effect of juglone at different concentrations (2mg/kg, 10mg/kg) on the Cr and BUN levels in the sham group.
(c, d) The effect of juglone at different concentrations (2mg/kg, 10mg/kg) on the Cr and BUN levels in the I/R group. (e, f) The effect of
juglone at different concentrations (2mg/kg, 10mg/kg) on Pin1 expression in rats and the quantification. (g, h) The effect of juglone at
different concentrations (2mg/kg, 10mg/kg) on the structure change was examined by H&E staining and its quantification (×400). (i) The
effect of juglone on oxidative stress was examined by DHE staining (×400) (n = 5). The values were presented as mean ± SEM. ∗P < 0:05
vs. the sham group and #P < 0:05 vs. the I/R group.
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45min. Therefore, we chose ischemia 45min and reperfusion
24 h in the following experiments.

3.2. Pin1 Inhibition Protected against Renal Injury Induced by
I/R. Firstly, different concentrations of the Pin1 inhibitor,
juglone, were applied in the sham group. The results indi-
cated that juglone did not affect renal function, as BUN and
Cr levels did not have difference between groups
(Figures 2(a) and 2(b)). Then, we found that the increased
BUN and Cr levels induced by I/R obviously decreased after
juglone treatment (Figures 2(c) and 2(d)). The results of
Western blot showed that the treatment of juglone could
inhibit the elevated expression of Pin1 caused by renal I/R
(Figures 2(e) and 2(f)). Besides, H&E staining showed that
renal I/R injury exhibited acute tubular damage, including
the loss of the brush border and tubular dilatation in the prox-
imal tubules (Figures 2(g) and 2(h)). However, the different

concentration of juglone protected renal tissue from acute
tubular damage, with better effects at 10mg/kg. The DHE
staining also showed that juglone could reduce the elevated
ROS levels induced by I/R (Figure 2(i)).

3.3. Pin1 Inhibition Attenuated Oxidative Stress Caused by
Renal I/R. Next, we investigated the relationship of Pin1
and oxidative stress induced by renal I/R injury. Western blot
results showed that the 4-HNE, COX2, and MPO expression
was elevated after renal I/R injury and Pin1 inhibition could
alleviate their expression (Figures 3(a)–3(d)). Also, the
results indicated that the reduced SOD level (Figure 3(e))
and the elevated MDA content (Figure 3(f)) induced by renal
I/R were reversed by the Pin1 inhibitor. Therefore, it indi-
cated that Pin1 inhibition might alleviate oxidative stress
induced by renal I/R.
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Figure 3: The Pin1 inhibitor, Juglone, reduced oxidative stress induced by renal I/R in rats. The model was established with 45min ischemia
and then 24 h reperfusion. (a–d) The regulatory effect of the Pin1 inhibitor on 4-HNE, COX2, and MPO expression after renal I/R, and
quantification was performed. (e) The effect of the Pin1 inhibitor on the SOD activity after renal I/R. (f) The effect of the Pin1 inhibitor on
MDA content after renal I/R (n = 5). The values were presented asmean ± SEM. ∗P < 0:05 vs. the sham group and #P < 0:05 vs. the I/R group.
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3.4. Pin1 Level and Oxidative Stress Were Elevated during
H/R In Vitro. RT-PCR and Western blot results indicated
that the Pin1 mRNA and protein levels were increased after
different hypoxia time and reoxygenation 6h in HK-2 cells,

especially at hypoxia 12h (Figures 4(a)–4(c)). We also found
that the SOD activity (Figure 4(d)) continued to decrease
during the H/R course in HK-2 cells. However, the MDA
content (Figure 4(e)), ROS (Figure 4(f)), and H2O2
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Figure 4: Pin1 expression and oxidative stress were elevated during the H/R process in vitro. The model was established with 3, 6, and 12 h
hypoxia and 6 h reoxygenation. (a) The mRNA was detected by RT-PCR after the H/R process. (b, c) Western blot was used to detect Pin1
expression and the quantification was analyzed. (d–g) The SOD, MDA, ROS, and H2O2 levels were detected after H/R injury in vitro (n = 5).
The values were presented as mean ± SEM. ∗P < 0:05 vs. the control group.
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production (Figure 4(g)) were increased in response to H/R.
So, we chose 12 h hypoxia and 6h reoxygenation in the
following experiments.

3.5. Juglone Decreased Oxidative Stress Caused by H/R In
Vitro. Firstly, the different concentration of juglone was used
in the control group and the CCK-8 results showed that cell
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Figure 5: The Pin1 inhibitor, Juglone, regulated oxidative stress caused by H/R injury in vitro. The model was established with 12 h
hypoxia and 6 h reoxygenation. HK-2 cells were treated with the Pin1 inhibitor (0.1,1, and 10μM) for 1 h and then experienced the
H/R process. (a) The effect of different concentrations of juglone on the control group. (b–f) Western blot was used to detect the
expression of Pin1, 4-HNE, COX2, and MPO and quantification was performed. (g–j) The SOD, MDA, ROS, and H2O2 levels were
detected after the H/R process in vitro (n = 5). The values were presented as mean ± SEM. ∗P < 0:05 vs. the control group and #P <
0:05 vs. the H/R group.
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viability had no differences between groups (Figure 5(a)).
Western blot results showed that Pin1, 4-HNE, COX2, and
MPO expression was increased after H/R and the different
concentration of juglone could decrease their expression in
HK-2 cells (Figures 5(b)–5(f)), especially at 10μM. Next,
the results indicated that the reduced SOD level
(Figure 5(g)) and the elevated MDA content (Figure 5(h)),
ROS (Figure 5(i)), and H2O2 production (Figure 5(j))
induced by H/R were reversed by inhibition of Pin1 in HK-
2 cells. Therefore, we chose juglone 10μM in the following
experiments.

3.6. Pin1 Inhibition Reduced Oxidative Stress Caused by H/R
In Vitro. Two different siRNAs against Pin1 were performed
to demonstrate the role of Pin1 in oxidative stress induced by
H/R in vitro. The results of Western blot showed that si-RNA
against Pin1 could obviously alleviate the expression of Pin1,
4-HNE, COX2, and MPO, which was elevated after H/R in
HK-2 cells (Figures 6(a)–6(e)). Also, the results indicated
that compared with the si-NC group, the SOD level
(Figure 6(f)) was obviously increased and the MDA content
(Figure 6(g)), ROS (Figure 6(h)), and H2O2 production
(Figure 6(i)) were decreased by si-RNA against Pin1 in HK-
2 cells.

3.7. p38 MAPK Involved in the Regulation of Pin1 on
Oxidative Stress Caused by H/R In Vitro. It was reported that
p38 MAPK was activated in renal I/R injury. In the present
study, we found that phosphorylated p38 (p-p38) was largely
inhibited by si-Pin1 compared with si-NC (Figures 7(a) and
7(b)). Next, we applied the p38 MAPK activator, U-46619,
to investigate the association between Pin1 and p38 MAPK.
Western blot results indicated that the inhibited p-p38 by
two different si-Pin1 could be reversed by U-46619
(Figures 7(c) and 7(d)). Next, we found that the expression
of Pin1 did not have a difference after treatment with U-
46619; however, the inhibited expression of 4-HNE, COX2,
and MPO by si-Pin1 was reversed by U-46619 treatment
(Figures 7(e)–7(i)). Also, compared with two different si-

Pin1 groups, the changed levels of the SOD activity
(Figure 7(j)), MDA content (Figure 7(k)), ROS
(Figure 7(l)), and H2O2 production (Figure 7(m)) were
reversed after U-46619 treatment. These results suggested
that Pin1 regulated oxidative stress during H/R in HK-2 cells
that depended on the p38 MAPK pathway.

3.8. Inhibition of Pin1 Attenuated p38 MAPK Activation
Induced by Renal I/R. Western blot results showed that p-
p38 MAPK was increased after renal I/R in rats; however,
the expression was inhibited by treatment with juglone, a
Pin1 inhibitor (Figures 8(a) and 8(b)).

4. Discussion

In this study, we investigated the role of Pin1 in renal I/R
injury and the possible mechanism. The results showed that
Pin1 had important effects on the regulation of renal I/R
in vivo. Firstly, we found that the inhibition of Pin1 could
alleviate renal injury induced by I/R in vivo and in vitro.
Besides, oxidative stress induced by H/R depended on Pin1
levels in HK-2 cells and inhibition of Pin1 using siRNA or
the specific inhibitor blocked oxidative stress caused by
H/R in vitro. Furthermore, we also found that ROS genera-
tion was modulated by Pin1 through p38 MAPK activation.
So, our study demonstrated that Pin1 might become a target
for treatment of renal I/R injury.

I/R is the common pathophysiological process that leads
to renal tubular epithelial cell death and subsequently rapid
deterioration of renal function [17]. Experimental renal I/R
models are critical for the researchers to investigate the patho-
genesis and explore the development of effective therapeutics.
The in vivo models of renal I/R included both renal pedicle
clamping (bilateral I/R) and one renal pedicle clamping (uni-
lateral I/R) or unilateral I/R with contralateral nephrectomy
[18]. Also, the ischemic time and reperfusion period were
different which depended on the species or experimental pur-
pose. In our research, the renal I/R model on rats was estab-
lished, with ischemic time ranging from 15min to 45min
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Figure 6: Pin1 silence decreased oxidative stress induced by H/R in vitro. The H/R model was established with 12 h hypoxia and 6 h
reoxygenation. The cells were transfected with si-NC or two different si-Pin1 for 24 h and then experienced H/R. (a–e) Western blot was
used to detect the expression of Pin1, 4-HNE, COX2, and MPO and quantification was performed. (f–i) The SOD, MDA, ROS, and H2O2
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and 24h reperfusion. The results showed that oxidative stress
became more serious as the ischemic time prolonged, espe-
cially at 45min ischemia, which was consistent with a previous
study, demonstrating that oxidative stress might be important
in renal I/R injury.

Pin1, a key regulatory mediator, is involved in various cel-
lular processes through specifically recognizing pSer/pThr-Pro

motifs and inducing conformational changes to control pro-
tein function [19]. Previous studies focused more on the effect
of Pin1 on tumorigenesis and progression; however, it also
played an important role in organic ischemic injury, including
cardiac, hepatic, cerebral, and intestinal I/R [8, 19–21]. In the
present study, it indicated that Pin1 expression continued to
increase as the ischemic time extended, especially at 45min
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Figure 7: Pin1 aggravates oxidative stress caused by H/R injury via activation of p38 MAPK. The H/R model was established with 12 h
hypoxia and 6 h reoxygenation. The cells were transfected with si-NC or two different si-Pin1 for 24 h and then experienced the H/R
process, with or without treatment with the p38 MAPK activator (5 μM). (a, b) Western blot was used to detect the expression of p-
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with or without treatment with the p38 MAPK activator. (e–i) Western blot was used to detect the expression of Pin1, 4-HNE, COX2, and
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ischemia. The H/R process was performed to mimic the
in vitro model and the results indicated that Pin1 expression
was elevated as hypoxia time prolonged, especially at hypoxia
12h, which was consistent with our in vivo results. The inhibi-
tion of Pin1 could protect renal tissue and function against I/R
injury.

ROS, at low concentrations, serves to regulate various cel-
lular signaling pathways and modulate cell fate and prolifer-
ation, thus maintaining cellular and tissue homeostases.
However, the high ROS level is also detrimental to physiolog-
ical function. Oxidative stress results from the accumulation
of high levels of ROS and plays the vital role during the
organic I/R injury [22]. A previous study indicated that tre-
halose could protect the kidney against I/R injury through
blocking oxidative stress [23]. In our research, the results
indicated that inhibition of Pin1 could reverse the elevated
4-HNE, COX2, and MPO expression induced by renal I/R,
as well as the reduced SOD activity and elevated MDA con-
tent. To demonstrated the results in vivo, we also used si-
RNA against Pin1 and juglone, a Pin1-specific inhibitor,
through the H/R model in vitro. The results in vitro were
consistent with those in vivo that inhibition of Pin1 could
alleviate the expression of 4-HNE, COX2, and MPO; MDA
content; ROS; and H2O2 production and increased SOD
activity after H/R in HK-2 cells. Our results indicated that
Pin1 inhibition could alleviate renal I/R injury through the
regulation of oxidative stress.

P38-MAP kinase, a critical component of MAPK sys-
tems, is involved in the modulation of cellular function
[24]. Different stimuli could activate p38-MAPK and aggra-
vate I/R injury [25]. A recent study indicated that p38-
MAPK caused kidney I/R injury through regulation of redox
stress and cell apoptosis, which suggested that it might be a
potential target of AKI [26]. The relationship of Pin1 and
p-p38 had already been reported and the mechanism was
complex. Coimmunoprecipitation analysis showed that
Pin1 could bind to p-p38, which implied that the p-p38
MAPK might be a substrate of Pin1. Then, with GST pull-
down experiment, it showed that Pin1 could not directly bind
to p-p38 MAPK in vitro, suggesting that Pin1 might affect
p38 MAPK through kinases or other proteins [27]. In this

study, we found that the activation of p38 MAPK was
induced by I/R injury and inhibition of Pin1 could suppress
p38 MAPK activation in vivo and in vitro. Besides, with the
p38 MAPK activator, we further demonstrated that the
decreased p-p38 level was elevated in response to U-46619,
compared with si-Pin1 only. In addition, the results also indi-
cated that the changed expression of 4-HNE, COX2, and
MPO induced by two different si-Pin1, as well as the changed
levels of SOD activity, MDA content, ROS, and H2O2 pro-
duction, could be reversed by U-46619, which demonstrate
that Pin1 regulated oxidative stress through p38 MAPK.
The mechanism of Pin1 regulating on the activation of p38
MAPK might be through modulation of protein kinases.

5. Conclusion

In summary, we found that Pin1 inhibition could protect the
renal tissue against I/R injury and prevent kidney tissue
through modulating p38 MAPK-mediated ROS production.
Overall, the present study indicated that Pin1 might become
a potential treatment for renal I/R injury.
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