
Research Article
Adaptive Neuro-Fuzzy Inference System for Classification of
Background EEG Signals from ESES Patients and Controls

Zhixian Yang,1 Yinghua Wang,2,3 and Gaoxiang Ouyang2,3

1 Department of Pediatrics, Peking University First Hospital, No. 1 of Xian Men Street, Xicheng District, Beijing 100034, China
2 State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research,
Beijing Normal University, Beijing 100875, China

3 Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing 100875, China

Correspondence should be addressed to Gaoxiang Ouyang; ouyang@bnu.edu.cn

Received 13 December 2013; Accepted 18 March 2014; Published 25 March 2014

Academic Editors: J. Tang and H. Zhou

Copyright © 2014 Zhixian Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background electroencephalography (EEG), recorded with scalp electrodes, in children with electrical status epilepticus during
slow-wave sleep (ESES) syndrome and control subjects has been analyzed. We considered 10 ESES patients, all right-handed and
aged 3–9 years. The 10 control individuals had the same characteristics of the ESES ones but presented a normal EEG. Recordings
were undertaken in the awake and relaxed states with their eyes open. The complexity of background EEG was evaluated using
the permutation entropy (PE) and sample entropy (SampEn) in combination with the ANOVA test. It can be seen that the entropy
measures of EEG are significantly different between the ESES patients and normal control subjects.Then, a classification framework
based on entropy measures and adaptive neuro-fuzzy inference system (ANFIS) classifier is proposed to distinguish ESES and
normal EEG signals. The results are promising and a classification accuracy of about 89% is achieved.

1. Introduction

Encephalopathy with electrical status epilepticus during
slow-wave sleep (ESES) syndrome is a condition charac-
terized by continuous spikes and waves occurring during
sleep [1]. The recent literature refers to it as “ESES syn-
drome,” which is an age-related reversible disorder with
onset at around 4-5 years of age and a generally favorable
course with disappearance at around 10–15 years of age [2],
usually associated with variable cognitive and behavioral
impairments [3, 4]. The pathophysiological mechanisms and
neuropsychological deficits associated with this condition
are still poorly understood [5]. Therefore, it is important to
identify the ESES patients as early as possible such that the
clinician can prescribe the necessary medication to stop its
progression.

The electroencephalograph (EEG) signal is a measure
of the summed activities of approximately 1–100 million
neurons lying in the vicinity of the recording electrode. Since
it may provide insight into the functional structure and

dynamics of the brain [6], exploration of hidden dynamical
structures within EEG signals is of both basic and clinical
interest andhas attractedmore andmore attention [7–9].One
can assume that the EEG is a signal containing information
about the condition of the brain. We can also accept as
working hypothesis that the EEG recorded under resting
conditions is representative of the global state of the brain [10,
11]. Then, a plausible working hypothesis is that background
EEG corresponding to healthy controls is different from
that corresponding to patients with pathologies (e.g., ESES).
However, it is currently accepted that a human observer
hardly discriminates EEG traces of healthy controls from
those of ESES subjects. Quantitative EEG analysis using
computational methods can therefore assist in the back-
ground EEG characterization.The EEG pattern classification
scheme usually includes two major parts: feature extraction
and classification.

Various methods have been widely used for feature
extraction ranging from traditional linear methods such
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as Fourier transforms and spectral analysis [12] to nonlin-
ear methods such as Lyapunov exponents [13], correlation
dimension [14], and similarity [15, 16]. Due to the complex
interconnections between billions of neurons, the recorded
EEG signals are complex, nonlinear, nonstationary, and
random in nature.Therefore, the classification of EEG signals
using nonlinear methods that detect and quantify nonlinear
mechanisms and thereby better reflect the characteristics of
the EEG signals. Nonlinear features may be able to unearth
the hidden complexities existing in the EEG time series. Ferri
et al. applied the nonlinear cross-prediction test to assess
the dynamic properties of the EEG and showed that ESES,
like other types of epileptic EEG activities, seems to reflect
highly nonlinear and possibly low-dimensional dynamics,
whereas non-ESES waking EEG seems to correspond with
linear stochastic dynamics [17]. In the recent years, a series
of entropy-based approaches have been widely used since
they can quantify the complexity (regularity) of an EEG
signal [18, 19]. The entropy of the EEG may act as a reliable
indicator of changes in cortical neuronal interactions and
truly reflect the intracortical information flow [20], and thus
the term “entropy” may be more than merely a statistical
measure of EEG patterns, which are well exploited using
entropies, and it helps in providing distinguishable variation
for normal and abnormal biomedical signals [21, 22]. Abásolo
et al. applied the approximate entropy (ApEn) to analyse
the EEG background activity of Alzheimer’s disease (AD)
patients and age-matched controls. They found that ApEn is
significantly lower in the AD patients at electrodes P3 and P4
[23].Then, the spectral entropy (SpecEn) and sample entropy
(SampEn) were used to analyse the EEG background activity
ofADpatients and showed thatADpatients have significantly
lower SampEn values than control subjects at electrodes P3,
P4, O1, and O2 but no differences between AD patients
and control subjects’ EEGs with SpecEn [24]. Burioka
et al. found that the ApEn values of EEG signals in absence
epilepsy during seizure-free intervals are very similar to those
of healthy subjects, but the EEG signals in absence epilepsy
during seizure intervals produce significant lower ApEn
values than healthy subjects [25]. In the study by Kannathal
et al., ApEn was used to investigate the epileptic seizure
detection, where three other entropy-based features were
extracted and combined with ApEn for studying normal and
epileptic EEG signals [26]. A novel feature extractionmethod
based on ApEn, SampEn, and phase entropy was proposed
for diagnosing the epileptic EEG signals and showed that the
extracted features with fuzzy classifier are able to differentiate
the EEGs with a high accuracy [27]. The high identification
accuracy was also reported in the study by Song et al. [28],
in which they developed a new scheme of automatic epileptic
seizure detection on the basis of SampEn feature extraction.

Recently, Bandt and Pompe proposed the permutation
entropy (PE) method to measure the irregularity (complex-
ity) of nonstationary time series [29]. The basic idea is to
consider order relations between the values of a time series
rather than the values themselves. Compared with ApEn
and SampEn [21, 22], the advantages of the PE method
are its simplicity, low complexity in computation without
further model assumptions, and robustness in the presence

of observational and dynamical noise [29–31]. Cao et al.
used PE to identify various phases of epileptic activity in
the intracranial EEG signals recorded from three patients
suffering from intractable epilepsy [32]. Li et al. used PE as
a feature to predict the absence seizures in genetic absence
epilepsy rats and showed a sharp PE drop after the seizures
[33]. It was also found that the PE can better extract the
pattern of EEG data for the prediction of absence seizure than
the SampEn measure. Nicolaou and Georgiou investigated
the use of PE as a feature for automated epileptic seizure
detection [34]. Bruzzo et al. applied PE to detect vigilance
changes and the preictal phase from scalp EEG in three
epileptic patients [35]. These results showed that the EEG
during epileptic seizures is characterized by a lower value of
PE than the normal EEG. It was found that there is a good
separability between the seizure-free phase and the preseizure
phase and the changes of PE values during the preseizure
phase and seizure onset coincide with changes in vigilance
state [35].

In terms of classifiers, lots of methodologies have been
proposed and applied to process and discriminate biomedical
signals [36–38], such as electromyography [39, 40] and EEG
signals [41, 42]. In particular, artificial neural networks have
been utilized as the most common method for classifying
the EEGs. Moreover, fuzzy set theory plays an important
role in dealing with uncertainty when making decisions in
medical applications. Therefore, fuzzy sets have attracted
the growing attention and interest in data analysis, decision
making, pattern recognition, diagnostics, and so forth [43,
44]. Neuro-fuzzy systems are fuzzy systems which use ANNs
theory in order to determine their properties (fuzzy sets
and fuzzy rules) by processing data samples [45]. A specific
approach in neuro-fuzzy development is the adaptive neuro-
fuzzy inference system (ANFIS), which has shown significant
results in classification of EEG signals. Kannathal et al.
proposed a novel classification framework based on entropy
measures and ANFIS classifier to distinguish normal and
epileptic EEG signals [26]. Güler and Übeyli proposed a
new scheme using ANFIS and wavelet transform as the
classifier, which can identify five types of EEG signals with
a recognition rate greater than 98% [45]. Übeyli proposed
a system using Lyapunov exponents of EEG signals and
ANFIS as the classifier, which can identify these five types of
EEG signals with a recognition rate greater than 99% [46].
In the study by Yildiz et al. [47], a wavelet entropy-ANFIS
framework is proposed for classifying a state of vigilance as
alert, drowsy, or sleep state on an ongoing EEG recording. A
classification accuracy of more than 98% is achieved. These
results show that ANFIS has potential in classifying the EEG
signals.

In this study, a new approach based on ANFIS employing
PE and SampEn measures was presented for classification of
background EEG signals from ESES patients and controls.
The proposed technique involved training the two ANFIS
classifiers to classify the two classes of the EEG signals when
PE and SampEn of the EEG signals were used as inputs. The
goal was to find a clear differentiation between background
EEG corresponding to a sample set of ESES patients and that
corresponding to healthy control individuals. The paper is
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Table 1: Summary of the EEG data.

Set 1 Set 2
Subjects 10 healthy subjects 10 ESES patients

Age 3–9 years
4 males and 6 females

3–9 years
4 males and 6 females

Patient’s state Awake and eyes open
(normal)

Awake and eyes open
(no spikes)

Number of epochs 100 100
Epoch duration (s) 8 8

organized as follows. Section 2 presents a description of the
data used in this work and briefly describes the extracted
features and classifiers that were used. Section 3 presents the
results obtained. Finally, conclusions are given in Section 4.

2. Materials and Methods

2.1. EEG Data. The EEG data used in this study consists of
two different sets. The first set includes EEG recordings that
were collected from 10 right-handed healthy subjects. The
subjects were awake and relaxed with their eyes open. 100
16-channel EEG epochs of 8 s duration were selected and
cut out from each continuous EEG recording after visual
inspection for artifacts, for example, due to muscle activity
or eye movements. The second set was obtained from 10
patients with ESES, all right-handed. The data set consists of
EEG recordings during wakeful state. Similar to healthy data,
noise-free segments are selected from the EEG recordings
with ESES patients and used for the analysis. All EEG data
were recorded by theNihonKohdendigital videoEEG system
from a standard international 10–20-electrode placement
(Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5,
and T6). They were sampled at a frequency of 500Hz using
a 16-bit analogue-to-digital converter and filtered within a
frequency band from 0.5 to 35Hz.

The study protocol had previously been approved by the
Ethics Committee of Peking University First Hospital and
the patients had signed informed consent that their clinical
data might be used and published for research purposes. A
summary of the data set is given in Table 1. A sample of EEG
epochs from each of the two data sets is plotted in Figure 1.

2.2. Sample Entropy. Sample entropy (SampEn) is an algo-
rithm derived from approximate entropy (ApEn) [21]. Intro-
duced by Pincus et al. [48], ApEn is a technique that is
useful in determining changing system complexity and it
finds application in biomedical research [49].The first step in
computing ApEn of an EEG series {𝑥
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where 𝜃 is the standard Heaviside function and 𝜃(𝑥) = 1 for
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Then, we define 𝜙𝑚(𝑟) as
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For fixed𝑚 and 𝑟, ApEn is given by the following formula:

ApEn (𝑚, 𝑟,𝑁) = 𝜙𝑚 (𝑟) − 𝜙𝑚+1 (𝑟) (4)

which is basically the logarithmic likelihood that runs
of patterns of length 𝑚 that are close (within 𝑟) will remain
close on next incremental comparisons.Themore regular the
EEG is, the smaller the ApEn will be. The exact value of the
ApEn(𝑚, 𝑟,𝑁) will depend on three parameters:𝑁 (length of
the time series),𝑚 (length of sequences to be compared), and
𝑟 (tolerance threshold for accepting matches).

The ApEn specifies a tolerance threshold and so may
be better than spectral entropy in the quantification of
complexity of EEG recording [50].The disadvantage of ApEn
is that it is heavily dependent on the record length and is often
lower than expected for short records. Another disadvantage
is that ApEn lacks relative consistency [21]. To overcome
the disadvantages of ApEn, a sample entropy (SampEn)
was proposed to replace ApEn. By excluding self-matches
[21], SampEn reduces the computing time by one-half in
comparisonwithApEn. Another advantage of SampEn is that
it is largely independent of record length and displays relative
consistency [51]. The key idea that differentiates SampEn
from ApEn is using the correlation sum 𝐶𝑚(𝑟) in the entropy
definition instead of the 𝜙𝑚(𝑟) functions defined in (3)—
practically, the position of the log function changes. Thus,
Richman and Moorman defined sample entropy as

SampEn (𝑚, 𝑟,𝑁) = log 𝐶
𝑚
(𝑟)

𝐶𝑚+1 (𝑟)
. (5)

The choice of input parameters has been discussed by
Pincus and Goldberger in [52]. They concluded that, for𝑚 =
2, values of 𝑟 from 0.1 to 0.25 SD (the standard deviation of
the signal) produce good statistical validity of SampEn. In this
study, SampEn was estimated with𝑚 = 2 and 𝑟 = 0.2 × SD of
the EEG epoch.

2.3. Permutation Entropy. Bandt and Pompe proposed a new
permutation method to map a continuous time series onto a
symbolic sequence [29], where the statistics of the symbolic
sequences was called permutation entropy (PE). PE refers
to the local order structure of the time series, which can
give a quantitative complexity measure for a dynamical time
series [53]. Given a time series {𝑥
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Figure 1: Sample EEG epochs from both ESES patient (a) and control subject (b).

with the embedding dimension 𝑚 and the lag 𝑙. The vector
𝑋
𝑡
can be rearranged in an ascending order as [𝑥
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1
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will be 𝑚! possible order patterns 𝜋, which are also called
permutations. Then, we can count the occurrences of the
order pattern 𝜋

𝑖
, which is denoted as 𝐶(𝜋

𝑖
), 𝑖 = 1, 2, . . . 𝑚!. Its

relative frequency is calculated by𝑝(𝜋) = 𝐶(𝜋)/(𝑁−(𝑚−1)𝑙).
The PE is defined as

PE = −
𝑚!

∑
𝑚=1

𝑝 (𝜋) ln𝑝 (𝜋) . (6)

The largest value of PE is log(𝑚!), which means that the
time series is completely random; the smallest value of PE
is zero, indicating that the time series is very regular. More
details can be found in [29].

PE calculation depends on the selection of dimension 𝑚
and lag 𝑙. When 𝑚 is too small (less than 3), the scheme
will not work well since there are only a few distinct states
for EEG recordings. On the other hand, the length of EEG
recording should be larger than 𝑚 in order to achieve a
proper differentiation between stochastic and deterministic
dynamics [31]. In order to allow every possible order pattern
of dimension 𝑚 to occur in a time series of length 𝑁, the
condition 𝑚! ≤ 𝑁 − (𝑚 − 1)𝑙 must hold. Moreover, 𝑁 ≫

𝑚! + (𝑚 − 1)𝑙 is required to avoid undersampling [54]. In
this study, we therefore choose the dimension 𝑚 = 5 when
calculating PE.The lag 𝑙 is referred to as the number of sample
points spanned by each section of the vector.The importance
of the lag is that it gives the resultant fraction characteristics
of the vector. In practice, an autocorrelation function (ACF)
of a signal can be employed to automated determination of
the lag 𝑙. An optimal lag can be found at the point where the
ACF has firstly decayed to 𝑒−1 of its peak value [55].

2.4. Adaptive Neuro-Fuzzy Inference System. The ANFIS
described by Jang [56] is adopted to evaluate the ability
and effectiveness of the above entropy measures in classify-
ing the EEG from the ESES patients and control subjects.
The ANFIS learns features in the data set and adjusts the
system parameters according to a given error criterion. It
has been widely used in analysing the biological signals. In
order to improve the generalization, ANFIS classifiers are
trained with the backpropagation gradient descent method
in combination with the least squares method. In this study,
two ANFIS classifiers are trained with the backpropagation
gradient descent method in combination with the least
squares method when 16 features (dimension of the extracted
feature vectors; entropy measures from 16-channel EEG) are
used as inputs.The samples with target outputs ESES patients
and control subjects are given the binary target values of (1,
0) and (0, 1), respectively. The fuzzy rule architecture of the
ANFIS classifiers was designed by using a generalized bell-
shaped membership function defined as follows:

𝜇
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Next, two first-order Sugeno-type ANFIS models with
16 inputs and one output are implemented. The first-order
Sugeno fuzzy models have rules of the following form:
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where 𝑅
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is the 𝑖th rule of the fuzzy system, 𝑥

𝑖
(𝑖 = 1, . . . , 𝑚)

are the inputs to the fuzzy system, and 𝑦 is the output of the
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Figure 2: The averaged PE on channel of all EEG recordings,
grouped by ESES patients and normal control subjects. Symbols
represent the mean values of PE for each group and bars represent
the standard error.

fuzzy system; 𝑏
𝑖
(𝑖 = 0, 1, . . . , 𝑚) are adaptable parameters.

The ANFIS output is given by

𝐹 =
∑
𝑗
𝑔
𝑗
(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑚
)Π
𝑖
𝜇
𝑈𝑗𝑖
(𝑎
𝑖
)

∑
𝑗
Π
𝑖
𝜇
𝑈𝑗𝑖
(𝑎
𝑖
)

, (9)

where 𝜇
𝑈𝑗𝑖
(𝑎
𝑖
) is the degree of membership of 𝑎

𝑖
(𝑖 =

1, 2, . . . , 𝑚) to the antecedent linguistic term 𝑈
𝑗𝑖
for the 𝑖th

rule of the fuzzy system. Each ANFIS classifier is imple-
mented by using the MATLAB software package (MATLAB
version 7.0 with fuzzy logic toolbox).

3. Results

3.1. Entropy Measures of EEG. EEG epochs from both ESES
patients and normal control subjects are investigated in this
study. First, PE is applied to analyse the EEG recordings, with
𝑚 = 5, for channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2,
F7, F8, T3, T4, T5, and T6. The results have been averaged
based on all the artefact-free 8 s epochs for each channel.The
averaged PEs of all channels are shown in Figure 2. Symbols
represent the mean values of PE for each group and bars
represent the standard error. It can be found that the PE
values of EEG epochs in normal control subjects are much
larger than those in ESES patients. The PE values (mean ±
SD) for the control subjects and ESES patients and the 𝑃
values of the one-way ANOVA test performed to examine the
differences between both groups are summarized in Table 2.
It can be seen that ESES patients have significant lower PE
values at all 16 electrodes. These results suggest that EEG
activity of ESES patients is less complex (more regular) than
in a normal control subject. This result supports the view
that ESES, like other types of epileptic EEG activity, would
reflect low complex and high nonlinear dynamics, whereas
non-ESES waking EEGwould correspond with high complex
dynamics.

To compare the extracted entropy information of EEG
between PE and SampEn methods, SampEn is estimated for

Table 2: The average PE values (mean ± SD) of the EEGs for the
normal control subjects and ESES patients for all channels.

Electrode Normal subjects ESES patients 𝑃 value
Fp1 4.563 ± 0.088 4.304 ± 0.224 𝑃 < 0.05

Fp2 4.555 ± 0.089 4.349 ± 0.184 𝑃 < 0.05

F3 4.606 ± 0.055 4.292 ± 0.240 𝑃 < 0.05

F4 4.600 ± 0.060 4.286 ± 0.206 𝑃 < 0.05

C3 4.550 ± 0.116 4.341 ± 0.192 𝑃 < 0.05

C4 4.579 ± 0.092 4.381 ± 0.190 𝑃 < 0.05

P3 4.556 ± 0.117 4.311 ± 0.212 𝑃 < 0.05

P4 4.539 ± 0.116 4.343 ± 0.183 𝑃 < 0.05

O1 4.454 ± 0.204 4.272 ± 0.273 𝑃 < 0.05

O2 4.402 ± 0.278 4.308 ± 0.237 𝑃 < 0.05

F7 4.595 ± 0.064 4.321 ± 0.215 𝑃 < 0.05

F8 4.585 ± 0.067 4.382 ± 0.168 𝑃 < 0.05

T3 4.598 ± 0.072 4.331 ± 0.220 𝑃 < 0.05

T4 4.588 ± 0.090 4.402 ± 0.135 𝑃 < 0.05

T5 4.571 ± 0.135 4.289 ± 0.248 𝑃 < 0.05

T6 4.529 ± 0.167 4.374 ± 0.195 𝑃 < 0.05
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Figure 3: The averaged SampEn on channel of all EEG recordings,
grouped by ESES patients and normal control subjects. Symbols
represent the mean values of SampEn for each group and bars
represent the standard error.

channels Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8,
T3, T4, T5, and T6 with 𝑚 = 2 and 𝑟 = 0.2 × SD of the
original data sequence.The averaged SampEns of all channels
are shown in Figure 3. It can be found that the SampEn values
of EEG epochs in normal control subjects are also larger
than those in ESES patients. However, the SampEn values
in control subjects and ESES patients are more overlapped
than those of the PE values. Then, the SampEn values (mean
± SD) for the control subjects and ESES patients and the 𝑃
values of the one-way ANOVA test performed to examine the
differences between both groups are summarized in Table 3.
It can be seen that ESES patients have significant lower
SampEn values at all 16 electrodes.
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Table 3: The average SampEn values (mean ± SD) of the EEGs for
the normal control subjects and ESES patients for all channels.

Electrode Normal subjects ESES patients 𝑃 value
Fp1 2.147 ± 0.045 2.055 ± 0.111 𝑃 < 0.05

Fp2 2.144 ± 0.048 2.077 ± 0.101 𝑃 < 0.05

F3 2.171 ± 0.026 2.078 ± 0.101 𝑃 < 0.05

F4 2.163 ± 0.029 2.082 ± 0.118 𝑃 < 0.05

C3 2.166 ± 0.032 2.098 ± 0.095 𝑃 < 0.05

C4 2.166 ± 0.031 2.107 ± 0.088 𝑃 < 0.05

P3 2.166 ± 0.034 2.098 ± 0.100 𝑃 < 0.05

P4 2.165 ± 0.025 2.081 ± 0.111 𝑃 < 0.05

O1 2.163 ± 0.027 2.103 ± 0.087 𝑃 < 0.05

O2 2.165 ± 0.025 2.119 ± 0.101 𝑃 < 0.05

F7 2.165 ± 0.026 2.081 ± 0.106 𝑃 < 0.05

F8 2.161 ± 0.031 2.099 ± 0.088 𝑃 < 0.05

T3 2.165 ± 0.032 2.083 ± 0.098 𝑃 < 0.05

T4 2.166 ± 0.030 2.102 ± 0.085 𝑃 < 0.05

T5 2.164 ± 0.032 2.109 ± 0.083 𝑃 < 0.05

T6 2.166 ± 0.029 2.107 ± 0.077 𝑃 < 0.05

Table 4: Classification results with PE measure.

Desired result Output result
ESES patients Normal subjects

ESES patients 96 4
Normal subjects 18 82

3.2. Classification. As shown above, both PE and SampEn
values of EEG were significantly different between ESES
patients and normal control subjects. The performance of
the above measures to discriminate among groups is also
evaluated by means of ANFIS classifier, and 10-fold cross-
validations are employed to demonstrate the accuracy of
classification. First, the ability of the PE in classifying different
EEG epochs is evaluated using the ANFIS. Two ANFIS clas-
sifiers are trained with the backpropagation gradient descent
method in combination with the least squares method when
the calculated PE values are used as input. Each of the ANFIS
classifiers is trained so that they are likely to bemore accurate
for one state of EEG signals than the other state. Samples with
target outputs sets are given the binary target values of (1, 0)
and (0, 1), respectively. Each ANFIS classifier is implemented
by using the MATLAB software package (MATLAB version
7.0 with fuzzy logic toolbox). The classification results are
illustrated in Table 4. Of 200 EEG epochs in two groups,
178 are classified correctly. Only 4 normal EEG epochs are
classified incorrectly by ANFIS as ESES EEG epochs and
18 ESES EEG epochs are classified as normal EEG epochs.
The classification accuracy was 89.0%, which is defined as the
percentage ratio of the number of epochs correctly classified
to the total number of epochs considered for classification.

Then, in order to compare the classification accuracy of
PE method with that of the SampEn method, the calculated
SampEn values were used as the input data in the ANFIS
classifiers, and 10-fold cross-validations were employed to

Table 5: Classification results with SampEn measure.

Desired result Output result
ESES patients Normal subjects

ESES patients 92 8
Normal subjects 28 72

demonstrate the performance of classification.The classifica-
tion results are listed in Table 5. Of 200 EEG epochs in two
groups, 164 were classified correctly. The total classification
accuracy was 82.0%. Therefore, it is found that the PE mea-
sures can provide a better separability between ESES patients
and normal control subjects than the SampEn measures.

4. Conclusions

In this study, we have analysed the complexity characteristics
in background EEG signals from ESES patients and controls
using the entropy measures. Although the background EEG
marked was indeed “normal” to standard visual inspection,
the proposed methodology based on entropy measures, plus
ANOVA statistical test, demonstrates that the background
EEG in ESES patients does differ from that in controls. It can
be seen that there is a significant increase of the calculated PE
and SampEn values of the EEG epochs from ESES patients
to control subjects. Then, a new approach based on ANFIS
employing entropy measures was presented for classification
of background EEG signals from ESES patients and controls.
The two ANFIS classifiers were used to classify two classes of
EEG epochs when the PE and SampEn of the EEG epochs
were used as inputs. The experimental results showed that
the classification accuracy, 89%, based on the PE measures
is much higher than that with the SampEn measures, 82%.
These results suggest that the proposed ANFIS combined
with PE measures might be a potential tool to classify the
background EEG from ESES patients and normal control
subjects. Our next goal is to confirm the results presented
here in a much larger clinical cohort of ESES patients.
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