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Abstract

Introduction: Increasing age is the number one risk factor for developing cognitive

decline and neurodegenerative disease. Aged humans and mice exhibit numerous

molecular changes that contribute to a decline in cognitive function and increased risk

of developing age-associated diseases. Here, we characterize multiple age-associated

changes in male C57BL/6Jmice to understand the translational utility of mouse aging.

Methods: Male C57BL/6J mice from various ages between 2 and 24 months of age

were used to assess behavioral, as well as, histological and molecular changes across

three modalities: neuronal, microgliosis/neuroinflammation, and the neurovascular

unit (NVU). Additionally, a cohort of 4- and 22-month-old mice was used to assess

blood-brain barrier (BBB) breakdown. Mice in this cohort were treated with a high,

acute dose of lipopolysaccharide (LPS, 10mg/kg) or saline control 6 h prior to sacrifice

followed by tail vein injection of 0.4 kDa sodium fluorescein (100mg/kg) 2 h later.

Results: Aged mice showed a decline in cognitive and motor abilities alongside

decreased neurogenesis, proliferation, and synapse density. Further, neuroinflam-

mation and circulating proinflammatory cytokines were increased in aged mice.

Additionally,we found changes at theBBB, including increasedT cell infiltration inmul-

tiple brain regions and an exacerbation in BBB leakiness following chemical insult with

age. There were also a number of readouts that were unchanged with age and have

limited utility as markers of aging in male C57BL/6Jmice.

Conclusions: Here we propose that these changes may be used as molecular and

histological readouts that correspond to aging-related behavioral decline. These

comprehensive findings, in the context of the published literature, are an impor-

tant resource toward deepening our understanding of normal aging and provide an

important tool for studying aging inmice.
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1 INTRODUCTION

Aging is associated with a progressive decline in numerous functions

and an increased incidence of frailty and disease (Heinze-Milne et al.,

2019; Hou et al., 2019; Kane et al., 2019; Lopez-Otinet al., 2013).

Specifically in the aged brain, there is a loss of synaptic connections

(Morrison&Baxter, 2012), increasedneurodegeneration (Wyss-Coray,

2016), heightened neuroinflammatory responses (Spencer et al., 2017)

frombothmicroglia (Niraulaet al., 2017) and astrocytes (Boisvert et al.,

2018), a greater number of infiltrating macrophages from the periph-

ery (Scheiblich et al., 2020), vascular dysfunction (Ungvari et al., 2018),

loss of blood-brain barrier (BBB) integrity (Benveniste et al., 2018;

Kress et al., 2014), and degeneration of the auditory system (Kob-

rina et al., 2020), which can each contribute to a decline in cognitive

function (Bettio et al., 2017; Weber et al., 2015). Research into aging-

related mechanisms has expanded rapidly over the past few years

leading to many potential therapeutics to treat aging-related diseases

in humans (Bakula et al., 2019; Hodgson et al., 2020). Studying behav-

ior in aged mice as a model for human cognitive decline is necessary

but remains challenging. Behavioral protocols need to be optimized for

each age, strain, and animal source (Ryman & Lamb, 2006; Scearce-

Levie, 2011; Sukoff Rizzo et al., 2018; Sukoff Rizzo & Silverman, 2016),

which is time-consuming and often requires specialized equipment.

Additionally, aged animals are sensitive to environmental changes,

and behavioral readouts can be variable within and between differ-

ent cohorts and experimenters. Furthermore, interpreting cognitive

decline in aged mice is complicated by the fact that aged animals also

have motor impairments, so the readouts for many cognitive tasks are

influenced by both cognition and ambulation. Here we aim to form a

comprehensive profile of the molecular and histological changes that

are robustly modulated with aging in male C57BL/6J mice, which is

the most common inbred mouse strain used in the neuroscience field.

These endpoints are typically more straightforward to implement and

do not suffer from the same variability issues as behavior. We propose

that histological and molecular changes therefore may provide more

granularity and be more consistent biomarkers of aging. While we will

not opine on which is more functionally relevant than the other, we

focus on three modalities: neuronal, microgliosis/neuroinflammation,

and the neurovascular unit (NVU).

2 MATERIALS AND METHODS

2.1 Animals

All animal handling and use was in accordance with Institutional Ani-

mal Care and Use Committee approved standard guidelines, protocol

ALK-005.Male C57BL/6Jmicewere ordered from Jackson Laboratory

(Sacramento, CA) and shipped to Alkahest prior to the start of each

study. All animals were acclimated in house for at least 2 weeks prior

to the start of the experiments. Upon arrival, all micewere housedwith

aunique identificationnumber at standard temperature (22±1◦C) and

in a light-controlled environment (lights on from 7 am to 7 pm) with ad

libitum access to food andwater.

Cohort

Young

Age Old Age

Other Ages

Used Figures

Cohort 1 3months 20months – Figure 1A

(Y-maze)

Cohort 2 2months 22months – Figure 1A

(Y-maze), 1B

(Barnesmaze)

Cohort 3 3months 20months – Figure 1C,D

(Y-maze)

Cohort 4 6.5

months

22.5

months

– Figure 1E,F (Grip

strength)

Cohort 5 3months 24months 6, 12, 18

months

Figure 2A,B (DCX)

Cohort 6 2months 24months – Figure 2C,D

(Ki67),

Supplementary

Figure 1B,1C

(BrdU)

Cohort 7 3months 24months 12, 18months Figure 2E,F

(Synapses);

Figure 3

(Microglia);

Figure 4D–G

(GFAP); Figure 5

(T cells);

Supplementary

Figure 1A, 1D–F

(Gene

expression);

Supplementary

Figure 2

(Microglia/

Inflammation);

Supplementary

Figure 3 (Gene

expression)

Cohort 8 3months 22.5

months

– Figure 4A–C

(GFAP), 4H–J

(Western blots)

Cohort 9 4months 22months – Figure 6 (LPS)

To minimize the number of animals used per experiment, brains

from cohorts 5–8 were sub-dissected and collected for 3 separate
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techniques. One hemibrain was used for histology, while the other

hemibrainwas further dissected into hippocampus, used for qPCR, and

cortex, used for western blots.

Cohort 6 was used for proliferation experiments in Figure 2C,D

and Supplementary Fig. 1B,C. The 2- and 24-month-old mice were

dosed daily for 7 days IP with saturating amounts of 5-bromo-

2’-deoxyuridine (BrdU, B5002-5G, Sigma Aldrich, St. Louis, MO)

for each age. The 2-month-old mice were dosed with 500 mg/kg

BrdU while the 24-month-old mice were dosed with 150 mg/kg

BrdU. Mice were then sacrificed 24 h following the last dose of

BrdU.

Cohort 9 was used for BBB breakdown experiments as given in

Figure6. The4- and22-month-oldmice received10mg/kg lipopolysac-

charide (LPS serotypeO55:B5, L4005, SigmaAldrich) IP to induce BBB

breakdown 6 h prior to sacrifice or saline IP as a control. Additionally,

all animals received 100mg/kg tail vein injection of 0.4 kDa sodium flu-

orescein (NaF, F6377, Sigma Aldrich) to assess BBB integrity 4 h prior

to sacrifice.

Key resources table

Reagent type

(species) or

resource Designation Source or reference Identifiers Additional information

Strain, strain

background (Mus

musculus)

C57BL/6J Jackson Laboratory Stock #: 000664

RRID: IMSR_JAX:000664

Male

Antibody Anti-DCX (guinea pig

polyclonal)

Millipore Cat #AB2253

RRID: AB_1586992

IHC 1:2000

Antibody Anti-Ki67 (rabbit polyclonal) Abcam Cat #ab15580

RRID: AB_443209

IHC 1:500

Antibody Anti-BrdU, clone BU1/75

(ICR1) (rat monoclonal)

Abcam Cat #ab6326

RRID: AB_305426

IHC 1:500

Antibody Anti-Synapsin1/2 (chicken

polyclonal)

Synaptic Systems Cat # 106006

RRID: AB_262240

IHC 1:750

Antibody Anti-PSD-95 (rabbit

monoclonal)

Cell Signaling

Technology

Cat # 3450

RRID: AB_2292883

IHC 1:250

Antibody Anti-CD68, clone FA-11 (rat

monoclonal)

Bio-Rad Cat #MCA1957

RRID: AB_322219

IHC 1:1000

Antibody Anti-Iba1 (rabbit polyclonal) FUJIFILMWako Pure

Chemical

Corporation

Cat #019-19741

RRID: AB_839504

IHC 1:2500

Antibody Anti-GFAP (goat polyclonal) Abcam Cat #ab53554

RRID: AB_880202

IHC 1:1000

Antibody Anti-CD3, clone 17A2 (rat

monoclonal)

BD Biosciences Cat #555273

RRID: AB_395697

IHC 1:100

Antibody Anti-CD45, clone D3F8Q

(rabbit monoclonal)

Cell Signaling

Technology

Cat #702575

RRID: AB_2799780

IHC 1:200

Antibody DyLight 594 Lycopersicon
esculentum (tomato) lectin

Vector Laboratories Cat #DL-1177

RRID: AB_2336416

IHC 1:200

Antibody Anti-aquaporin-4 (rabbit

polyclonal)

Millipore Cat #ABN910 RRID:

AB_2922395

WB: 1:500

Antibody Anti-mouse aminopeptidase

N/CD13 (goat polyclonal)

R&D Systems Cat #AF2335

RRID: AB_2227288

WB1:500

Antibody Anti-actin, HRP conjugated

(rabbit monoclonal)

Cell Signaling

Technology

Cat #13E5 5125

RRID: AB_1903890

WB1:5000

Antibody Alexa 555 or 647

secondaries

Invitrogen IHC 1:300

Antibody Biotinylated anti-guinea pig

IgG (goat polyclonal)

Vector Laboratories Cat #BA-7000

RRID: AB_2336132

IHC 1:300

Antibody Anti-rabbit IgG (H+L), HRP

conjugated (donkey

polyclonal)

Fisher Scientific Cat # A16035

RRID: AB_2534709

WB1:5000

(Continues)
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Reagent type

(species) or

resource Designation Source or reference Identifiers Additional information

Antibody Anti-goat IgG (H+L), HRP

conjugated (donkey

polyclonal)

Fisher Scientific Cat #A15999

RRID: AB_2534673

WB1:5000

Other Hoechst Invitrogen Cat #H3570 IHC 1:10000

Other Prolong Gold Antifade

Mountant

Invitrogen Cat #P36934

Chemical compound 3,3′-Diaminobenzidine

tetrahydrochloride (DAB)

Sigma Aldrich Cat #D5905

Chemical compound Citrisolv clearing agent Decon Labs Cat #22-143-975

Chemical compound Cytoseal Thermo Scientific Cat #8310-4

Chemical compound RIPA lysis and extraction

buffer

Thermo Scientific Cat #89901

Chemical compound Halt protease and

phosphatase inhibitor

cocktail (100X)

Thermo Scientific Cat #78446

Chemical compound 4X Bolt LDS sample buffer Invitrogen Cat #B0007

Other Bolt 4 to 12%, Bis-Tris, 1.0

mm,Mini protein gel,

15-well

Invitrogen Cat #NW04125BOX

Commercial assay

or kit

Trans-Blot TurboMini 0.2 μm
nitrocellulose transfer

packs

Bio-Rad Cat #1704158

Chemical compound Nonfat drymilk,

blotting-grade

Bio-Rad Cat #1706404

Other PageRuler Plus Prestained

Protein Ladder, 10 to 250

kDa

Thermo Scientific Cat #26619

Chemical compound SuperSignalWest Pico PLUS

Chemiluminescent

Substrate

Thermo Scientific Cat #34580

Chemical

compound, drug

2,2,2-Tribromoethanol

(Avertin)

Sigma Aldrich Cat #T48402-25G 1.61g/mL stock diluted

1:40 in sterile saline

Chemical

compound, drug

5-Bromo-2’-deoxyuridine

(BrdU)

Sigma Aldrich Cat #B5002-5G 10mg/mL in sterile

saline

Chemical

compound, drug

Lipopolysaccharide (LPS) Sigma Aldrich Cat #L4005 SerotypeO55:B5 0.5

mg/mL in sterile saline

Chemical compound Sodium fluorescein (NaF) Sigma Aldrich Cat #F6377 0.4 kDa 100mg/mL in

sterile saline

Chemical compound Paraformaldehyde (32%

stock)

ElectronMicroscopy

Sciences

Cat #15714S 4%working solution

made in PBS

Chemical compound Sucrose Fisher Scientific Cat #S5-3 30%w/vworking

solutionmade in PBS

Chemical compound Ethylene glycol Fisher Scientific Cat #E178-4

Chemical compound Glycerol Sigma Aldrich Cat #G5516

Chemical compound Ethylenediaminetetraacetic

acid (EDTA)

Boston BioProducts Cat #BM-711

Commercial assay

or kit

Pierce BCAProtein Assay Kit Thermo Scientific Cat #23227

Commercial assay

or kit

Vectastain ABCKit Vector Laboratories Cat #PK-4000

(Continues)
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Reagent type

(species) or

resource Designation Source or reference Identifiers Additional information

Commercial assay

or kit

RNeasyMini Kit Qiagen Cat #74106

Commercial assay

or kit

Superscript III First-Strand

Synthesis SuperMix Kit

Invitrogen Cat #11752050

Commercial assay

or kit

Applied Biosystems SYBR

Green PCRMasterMix

Fisher Scientific Cat # 43-091-55

Commercial assay

or kit

Applied Biosystems TaqMan

MultiplexMasterMix

Fisher Scientific Cat # 44-842-63

Sequence-based

reagent

Mouse Cd11b qPCR primers Integrated DNA

Technologies, Inc.

TGGCCTATA-

CAAGCTTGGCTTT/

AAAGGCCGTTACT-

GAGGTGG

Sequence-based

reagent

Mouse Clcf1 qPCR primers Integrated DNA

Technologies, Inc.

GACTCGTGGGGGAT-

GTTAGC/

CTAAGCTGCG-

GAGTTGATGCT

Sequence-based

reagent

MouseDcx qPCR primers Integrated DNA

Technologies, Inc.

CTTTTGGTTCAGCA-

GAAGGG/

CAAAT-

GTTCTGGGAG-

GCACT

Sequence-based

reagent

MouseDlg4 qPCR primers Integrated DNA

Technologies, Inc.

CGCTACCAAGATGAA-

GACACG/

CAAT-

CACAGGGGGA-

GAATTG

Sequence-based

reagent

MouseGbp2 qPCR primers Integrated DNA

Technologies, Inc.

TGGGGTAGACGATTC-

CGCTAA/

AGAAGT-

GACGGGTTTTC-

CGTT

Sequence-based

reagent

MouseH2d1 qPCR primers Integrated DNA

Technologies, Inc.

TCCGAGATTG-

TAAAGCGTGAAGA/

ACAGGGCAGT-

GCAGGGATAG

Sequence-based

reagent

Mouse Iigp1 qPCR primers Integrated DNA

Technologies, Inc.

GGGGCAATAGCT-

CATTGGTA/

ACCTCGAAGACATC-

CCCTTT

Sequence-based

reagent

Mouse Il1a qPCR primers Integrated DNA

Technologies, Inc.

TCTCAGATTCA-

CAACTGTTCGTG/

AGAAAATGAG-

GTCGGTCTCACTA

Sequence-based

reagent

Mouse Il4 qPCR primers Integrated DNA

Technologies, Inc.

GGTCTCAACCC-

CCAGCTAGT/

GCCGAT-

GATCTCTCTCAAGT-

GAT

Sequence-based

reagent

MouseNfkb qPCR primers Thermo Fisher Cat #4331182

Assay ID:

Mm00476361_m1

Sequence-based

reagent

Mouse S1pr3 qPCR primers Integrated DNA

Technologies, Inc.

AAGCCTAGCGGGA-

GAGAAAC/

TCAGGGAA-

CAATTGGGAGAG

(Continues)
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Reagent type

(species) or

resource Designation Source or reference Identifiers Additional information

Sequence-based

reagent

Mouse Steap4 qPCR primers Integrated DNA

Technologies, Inc.

CCCGAATCGT-

GTCTTTCCTA/

GGCCTGAGTAATG-

GTTGCAT

Sequence-based

reagent

Mouse Syn1 qPCR primers Integrated DNA

Technologies, Inc.

GGAAGGGATCACAT-

TATTGAGG/

TGCTTGTCTTCATC-

CTGGTG

Sequence-based

reagent

Mouse Tnfa qPCR primers Thermo Fisher Cat #4331182

Assay ID:

Mm00443258_m1

Sequence-based

reagent

Mouse Tuj1 qPCR primers Integrated DNA

Technologies, Inc.

TAGACCCCAGCG-

GCAACTAT/

GTTCCAGGTTC-

CAAGTCCACC

Software, algorithm CleverSys CleverSys, Inc. RRID: SCR_017141

Software, algorithm ANY-maze Stoelting Co. RRID: SCR_014289

Software, algorithm Zen Zeiss Zen Blue 2.5

RRID: SCR_013672

Software, algorithm Image-Pro Media Cybernetics, Inc. Image-Pro 9.2

RRID: SCR_016879

Software, algorithm ImageJ National Institutes of

Health

RRID:SCR_003070

Software, algorithm SynapseCounter (ImageJ

plugin)

https://github.com/SynPuCo/

SynapseCounter

Software, algorithm QuantStudio Applied Biosystems QuantStudio 6 RRID:

SCR_020239

Software, algorithm Image Lab Bio-Rad Image Lab 6.0

RRID: SCR_014210

Software, algorithm GraphPad Prism GraphPad Software,

Inc.

Graphpad Prism 8 RRID:

SCR_002798

2.2 Behavior

2.2.1 Y-maze cognition

For the spatial recognition task Y-maze, a Y-shaped apparatus was

constructed with extruded PVC (Komatex). Each arm was 15 in. long

and 3 in. wide with 6 in. tall walls. Unique cues in the form of black

shapes were adhered to the walls at the ends of two of the arms,

while the third arm was un-cued and designated as the starting point

for the mice. Mice were habituated to a dimly lit room for at least

30 min prior to the start of training. First, mice were individually

placed in the starting arm and allowed to explore only one of the other

two arms (familiar arm) for 5 min; the second arm (novel arm) was

blocked off with an acrylic plastic wall identical to that of the rest

of the apparatus. After 24 h, each mouse was then returned to the

maze with both arms now open to explore for 5 min. All movements

were recorded and tracked for analysis using CleverSys Software

(CleverSys, Reston, VA). The number of entries into and the time

spent in each of the two arms, familiar and novel, was measured. After

each trial, the maze was wiped down thoroughly with 70% ethanol.

Animals of both ages were run together, and the experimenter was

blinded to the age of the animals while performing and analyzing the

experiment.

2.2.2 Y-maze ambulation

To measure distance and velocity, the same Y-maze protocol was used

as described in section 2.3.1. However, all movements were recorded

and tracked for analysis using ANY-maze software (Stoelting Co.,

Wood Dale, IL), which allows for measurement of the total distance

and velocity for the duration of the test. Animals of both ages were run

together, and the experimenter was blinded to the age of the animals

while performing and analyzing the experiment.

https://github.com/SynPuCo/SynapseCounter
https://github.com/SynPuCo/SynapseCounter
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2.2.3 Barnes maze

The Barnes maze is a circular maze with a diameter of 118 cm approxi-

mately 95 cmoff the ground, consisting of 40 holeswith a diameter of 5

cm aligned in three concentric circles. Each day, a hole was designated

as theescapehole,where a small blackboxwasplacedbeneath thehole

and provided a space below the maze that the mouse could climb into.

To create an aversive environment and motivation to find the escape

hole, the maze was illuminated with two large flood lights and a fan

blew over themaze, creating palpablewind and a constant background

noise of approximately 60 Hz. Two walls and two curtains surrounded

themaze, each ofwhich displayed distinct visual cues.Micewere habit-

uated to the room for at least 20–30 min prior to the start of testing.

The testing ran for four consecutive days, with five trials each day.Mice

were given 90 s to find and enter the escape hole after being placed in

the center of the maze. If mice failed to identify the escape hole in that

time, they were guided to the hole and encouraged to stay inside for

30 s. The inter-trial latency was 10 min. For the first 2 days of train-

ing (trials 1–10), the escape hole remained unchanged. For the second

2 days of testing (trials 11–20), the escape hole location was changed

at the start of each day but was kept consistent for the trials occurring

on that day (11-15, 16–20). Analysis began as soon as the mouse was

placed in the center of the maze and concluded either once the mouse

was inside the escape hole for >3 s or at a duration of 90 s. After each

trial, themaze and escape hole were wiped down thoroughly with 70%

ethanol. All movements were recorded and tracked for analysis using

CleverSys Software. Animals of both ages were run together, and the

experimenter was blinded to the age of the animals while performing

and analyzing the experiment. The Barnes maze assay was performed

in the same cohort of mice (cohort 2) as the Y-maze experiment, and

these behavioral tests were run approximately 1 week apart.

2.2.4 Grip strength

Mice were habituated to the room for at least 20 min prior to testing.

After habituation, each mouse was gently lifted by the base of the tail

to the height of the grip bar and allowed to grab the bar with an over-

hand grip. The mouse was gently pulled to ensure a tight grip and then

continuously pulled at a slow, constant horizontal speed until the grip

was broken. Steps were repeated for a total of four trials per mouse

and peak tension (grams of force) was recorded for each mouse using

a grip strength meter (Columbus Instruments, Columbus, OH). At the

end of the testing, the body weight of each mouse was recorded. The

average pull for each mouse was calculated and normalized to body

weight.

2.3 Histology

Micewere anesthetizedwith 2,2,2-tribromoethanol (Avertin, T48402-

25G, Sigma Aldrich) and subsequently perfused with 0.9% saline

transcardially. The brains were dissected and cut sagittally in two even

halves. One half was snap frozen in dry ice for protein and RNA anal-

ysis, and the other was fixed in 4% PFA (15714S, Electron Microscopy

Sciences, Hatfield, PA) in PBS for use in immunohistochemistry. After

2 days of fixation, the hemibrains were transferred to a 30% sucrose

(S5-3, Fisher Scientific, Hampton, NH) in PBS solution and then

changed again after 1 day. Hemibrains were sectioned coronally at 30

μm on a microtome at −22◦C. Brain slices were collected sequentially

into 12 tubes, so that every 12th section of the hippocampus was rep-

resented in a given tube. Brain sections were stored in cryoprotectant

media composed of 30% ethylene glycol (E178-4, Fisher Scientific) and

30% glycerol (G5516, SigmaAldrich) in a sodium phosphate solution at

−20◦C until needed for staining.

For fluorescent microscopy, blocking was done on free floating sec-

tions in the appropriate serum at 10% in PBS-Triton 0.5% (215680010,

ACROSOrganics, Fair Lawn, NJ), unless otherwise noted. Primary anti-

bodies were incubated overnight at 4◦C, unless otherwise noted. The

appropriate fluorescent secondary antibodies (Invitrogen, Carlsbad,

CA) were applied the next day at a concentration of 1:300 for 1 h at

room temperature followed by Hoechst (H3570, Invitrogen) at a con-

centration of 1:10,000 for 10 min. Prolong Gold Antifade Mountant

(P36934, Invitrogen) was used to coverslip the slides.

Ki67 antibody (ab15580, Abcam, Cambridge, United Kingdom) was

used at a concentration of 1:500 with antigen retrieval in 50 mM

Na-citrate (pH 6) for 10 min at 95◦C before blocking. BrdU antibody

(ab6326, Abcam) was used at a concentration of 1:500 with anti-

gen retrieval in 2N HCL for 30 min at 37◦C before blocking. Ki67-

and BrdU-positive cells in the blades of the dentate gyrus (DG) were

counted live at 20× magnification on a Leica DM5500 B Upright

Microscope (Wetzlar, Germany) by a single experimenter blinded to

age. Representative images were acquired using an exposure time of

157.68ms and gain of 2.5 at 20×.

CD3 antibody (555273, BD Biosciences, San Jose, CA) was used at

a concentration of 1:100 and stained together with CD45 antibody

(702575, Cell Signaling Technology, Danvers,MA) at a concentration of

1:200 to confirm cell type. Together with dyLight 594-labeled Lycoper-

sicon esculentum (Tomato) lectin (DL-1177, Fisher Scientific) at 1:200,

all primary antibodies were incubated overnight at room tempera-

ture. Images were acquired using the Hamamatsu Nanozoomer 2.0HT

(Hamamatsu City, Japan) at 20×. Quantification in the hippocampus

was done by counting CD3-CD45-double positive cells found outside

of blood vessels (LECTIN-negative) and within the vessels (LECTIN-

positive) using Image-Pro 9.2 software (Media Cybernetics, Rockville,

MD) by a single experimenter blinded to age. Due to the high back-

ground for T cell marker CD3, the immune cell marker CD45 was used

to identify immune cells that were then confirmed to be CD3-positive

T cells at a higher magnification. Quantification in the subventricu-

lar zone (SVZ) was done by counting all CD3–CD45-double positive

cells regardless of lectin staining using Image-Pro software by a single

experimenter blinded to age.

CD68 antibody (MCA1957, Bio-Rad, Oxford, United Kingdom) was

used at a concentration of 1:1000 and stained together with Iba1 anti-

body (019-19741, Wako Chemicals, Richmond, VA), used at 1:2500.

CD68/Iba1 images were acquired using the Hamamatsu Nanozoomer



8 of 25 BRITTON ET AL.

2.0HT at 20×. Quantificationwas done using percent thresholded area

of the entire hippocampus region using ImagePro software by a single

experimenter blinded to age.

GFAP antibody (ab53554, Abcam) was used at a concentration of

1:1000. First, images were acquired using a Zeiss LSM800 confocal

microscope. The 6 z-stack (1 μm step size) images in the CA1 region

of the hippocampus were acquired at 40×. Maximum intensity projec-

tions of each z-stack were quantified using ImageJ (National Institutes

of Health, Bethesda, MD) for percent GFAP thresholded area and total

GFAP cell count. Next, images were acquired using the Axio Scan.Z1

(Zeiss, Oberkochen, Germany) at 20×. For GFAP line profile analysis,

6–12 large descending vessels in the hippocampal CA1 area from each

mouse (n=9–12mice)werequantified inZenBlue2.5 (Zeiss) by gener-

ating a 60 μm linear ROI to measure the fluorescent intensity profiles

across each vessel. Data were analyzed by averaging the intensity of

the 20 μm segment along the vessel (vascular) and the 20 μmon either

side of the vessel (perivascular).

To stain for synapses, sections were blocked in 10% goat serum

with PBS and 1% triton for 1 h followed by PSD-95 antibody (3450S,

Cell Signaling Technology) at 1:250 and Synapsin1/2 antibody (106

006, Synaptic Systems, Goettingen, Germany) at 1:750 overnight

at 4◦C in 3% goat serum in PBS with 0.3% triton. The 10 z-stack

(0.18 μm step size) images in the CA1 region were acquired using a

Zeiss LSM800 with Airyscan at 63X, Airyscan processed using Zen

Blue 2.5 (Zeiss), and then quantified using the ImageJmacro SynapseC-

ounter (https://github.com/SynPuCo/SynapseCounter) to measure

pre-synaptic Synapsin1/2 puncta, post-synaptic PSD-95 puncta, and

juxtaposed signal for synapses.

For light microscopy, blocking was done on free floating sections in

the appropriate serum at 10% in PBS-Triton 0.5%. Doublecortin (DCX)

antibody (AB2253,Millipore, Burlington,MA)was used at a concentra-

tionof1:2000and incubatedovernight at4◦C.Biotinylatedanti-guinea

pig antibody (BA-7000, Vector Laboratories, Burlingame, CA) was

applied the next day at a concentration of 1:300. Staining visualiza-

tion was achieved by reaction with the Vectastain ABC kit (PK-4000,

Vector Laboratories) and 3,3′-diaminobenzidine tetrahydrochloride

(DAB, D5905, Sigma Aldrich). Dehydration of the mounted slides was

achievedusingCitrisolvClearingAgent (22-143-975,DeconLabs, King

of Prussia, PA) and slides were coverslipped using Cytoseal (8310-4,

Thermo Scientific, Waltham, MA). The number of DCX-positive cells

in the blades of the DG were counted live on a Leica DM5500 B

Upright Microscope at 20×magnification by an experimenter blinded

to age. Representative images were acquired with the Hamamatsu

Nanozoomer 2.0HT at 20×.

2.4 Plasma protein quantifications

Bloodwas collectedbycardiacpuncture in syringes containing250mM

EDTA (BM-711, Boston BioProducts, Ashland, MA). Plasma was iso-

lated by centrifugation at 1000 x g for 15 min at 4◦C and immediately

frozen on dry ice. Mouse plasma was diluted 1:1 in PBS and then

shipped on dry ice to Eve Technologies in Calgary, Canada. Single sam-

ples were analyzed using a multi-plex Luminex technology assay for

cytokines and chemokines or cell adhesion molecules. Quantitative

datawas sent in an Excel sheet after completion of the data acquisition

and analysis.

2.5 qPCR

RNAwas isolated fromhippocampal brain tissueusing theRNeasyMini

Kit (74106, Qiagen, Hilden, Germany) according to the manufacturer’s

instructions. Briefly, tissuewashomogenized inRLTbuffer using aBead

Ruptor (Omni International, Kennesaw, GA), and then RNAwas bound

to an RNA isolation column, washed, and eluted. Contaminating DNA

was removed by DNase digestion and cDNA was generated using the

Superscript III First-Strand Synthesis SuperMix Kit (11752050, Invit-

rogen). A master mix for qPCR was made using SYBR green reagent

(43-091-55, Fisher Scientific) or TaqMan multiplex reagent (44-842-

63, Fisher Scientific) and the appropriate forward and reverse primers,

and the reactions were run in technical triplicates. The reaction was

run on a QuantStudio Flex Real-Time PCR System (Applied Biosys-

tems, Foster City, CA) and analyzed using the std ddCT protocol on the

QuantStudio 6 software (AppliedBiosystems) by a single experimenter

blinded to age.

2.6 Western blot

Cortical lysates were homogenized in RIPA buffer (89901, Thermo

Scientific) containing a protease and phosphatase inhibitor cocktail

(78446, Thermo Scientific). Tissue was homogenized using the Bead

Ruptor, homogenates were centrifuged at max speed (∼21,330 x g) for

10 min at 4◦C, and then supernatants were collected for subsequent

analysis of the soluble fraction. The Pierce BCA protein assay kit

(23227, Thermo Scientific) was used to determine protein concen-

tration and lysates were prepared in lithium dodecyl sulfate (LDS)

buffer (B0007, Invitrogen). The 25 μg lysate samples were run on

Bolt 4–12% Bis-Tris Plus Gels (NW04125BOX, Invitrogen) and trans-

ferred to nitrocellulose membranes using the Trans-Blot Turbo Mini

0.2 μm nitrocellulose transfer pack (1704158, Bio-Rad) with the turbo

transfer method. Membranes were blocked in 5% milk (1706404, Bio-

Rad) for 1 h at room temperature, then probed with antibodies to

Aquaporin-4 (AQP4, ABN910, Millipore) at 1:500, CD13 (AF2335,

R&D Systems, Minneapolis, MN) at 1:500, and Actin-HRP (13E5 5125,

Cell Signaling Technology) at 1:5000 in 5% milk overnight at 4◦C.

PageRuler Plus Prestained Protein Ladder 10 to 250 kDa (26619,

ThermoScientific) was used as the standard. Blotswere imaged follow-

ing incubation with HRP-conjugated secondary antibodies at 1:5000

(A16035, A15999, Fischer Scientific) for 1 h at room temperature

and subsequentlywith SuperSignalWestPicoPLUSChemiluminescent

Substrate (34580, Thermo Scientific). Blots were imaged on a Bio-Rad

Chemidoc and quantified using Image Lab 6.0 (Bio-Rad) software. Sam-

ples were randomized across gels and run blinded in single replicates.

A bridging samplewas run to normalize acrossmultiple blots, and band

https://github.com/SynPuCo/SynapseCounter
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intensities of AQP4 and CD13 were additionally normalized to Actin

loading control.

2.7 Statistical analysis

All data were analyzed using GraphPad Prism 8 (GraphPad Software,

SanDiego,CA). Sample sizeswere similar to those employed in the field

and all experimental n values reflect biological replicates of individ-

ual mice unless otherwise stated. For n > 10 with normally distributed

data, parametric tests were used, and for n < 10 and data with a

non-normal distribution, non-parametric tests were used. If technical

replicates were used, it is stated explicitly within the methods section.

Technical replicates reflect samples replicates from the same mouse,

such as ROI. Statistical significance was defined as p<0.05.

When two groups were compared in the motor and cognitive tests,

data were analyzed using a Mann–Whitney U test. Average maximum

grip strength across 4 trials was normalized to individual mouse body

weight and then analyzed using a mixed-effects analysis with repeated

measures with main effects of age and trial, followed by Mann–

Whitney test. For Y-maze performance, two separate cohorts of mice

were run and data were pooled across two experiments. Data were

analyzed using a three-way repeatedmeasures ANOVA for interaction

betweenarmxage x experiment followedbyWilcoxonmatched-paired

signed rank tests. For Barnesmaze performance, datawere tested first

for a normalized distribution and then analyzed using a mixed-effects

analysis with repeatedmeasure withmain effects of age and trial.

The total number of DCX-positive cells per DG was estimated by

counting the number of positive cells from 6 tissue sections and mul-

tiplying the sum of the number counted per section by 12, as an

estimate for the total hippocampal volume.Micewith less than 6 quan-

tifiable sections were excluded from the analysis. The thresholded

percent area of CD68 and Iba1 were measured from 5–6 hippocampi

per mouse using Image-Pro 9.2 software (Media Cybernetics). Mice

with less than 5 quantifiable sections were excluded from the analy-

sis. Ki67- and BrdU-positive cells were counted from 5 dentate gyri

permouse andCD3-CD45-double positive cellswere counted fromthe

hippocampus and SVZ of 5 hemibrain sections per mouse, and then

the counts were summed. Mice with less than 5 quantifiable sections

were excluded from the analysis. BrdU and Ki67 data were analyzed

using nested t-tests. DCX, CD68, Iba1, SVZCD3/CD45, and hippocam-

pus parenchymaCD3/CD45 datawere analyzed using nested one-way

ANOVAs followed by Tukey’s multiple comparisons test. CD3-CD45-

Lectin triple positive data in the hippocampus was analyzed using

Kruskal–Wallis tests followed by Dunn’s multiple comparisons tests

as data for each individual slice was not recorded during analysis of

blood vessels. For GFAP percent area and counts, maximum intensity

projections of each CA1 ROI z-stack were thresholded and quanti-

fied using ImageJ. Six sections per mouse were imaged and analyzed

usingnested t-tests. ForGFAP lineprofile analysis, 6–12 largedescend-

ing vessels in the hippocampal CA1 area from each mouse were

quantified in Zen Blue 2.5 (Zeiss) by generating a 60 μm linear ROI to

measure the fluorescence intensity profiles across each vessel by a sin-

gle experimenter blinded to age. Mice with less than six quantifiable

vessels were excluded from the analysis. Data were analyzed by aver-

aging the intensity of the20μmsegment along thevessel (vascular) and

the 20 μmon either side of the vessel (perivascular) followed by nested

t-tests. Synapses were analyzed from six ROIs in the CA1 hippocampal

region from six mice per age using ordinary one-way ANOVA, followed

by unpaired t tests for significance between ages with n of 36 ROIs per

age.

For gene expression, circulating cytokines and cell adhesion

molecules, and extravasated hemibrain sodium fluorescein, data were

analyzed using Kruskal–Wallis tests followed by Dunn’s multiple com-

parisons test or Mann–Whitney tests. For gene expression, samples

were excluded from final analysis if the standard deviation between

triplicates was greater than 1. Normality of western blot data was

analyzed using Anderson–Darling test, D’Agostino and Pearson test,

Shapiro–Wilk test, and Kolmogorov–Smirnov test. Western blot data

with a normal distribution and equal variances were analyzed using an

unpaired t-test. Otherwise, theywere analyzed using aMann–Whitney

U test.

3 RESULTS

3.1 Impaired cognitive and motor function with
age

In humans, aging leads to a progressive decline in cognitive function

(Klimova et al., 2017) and, in mice, has been shown to cause impair-

ments in cognitive tasks including the Morris and radial arm water

mazes and contextual fear conditioning (Murphy et al., 2006; Villeda

et al., 2014; Weber et al., 2015). We found that 20- to 22-month-

old aged mice had impairments in the hippocampal-dependent spatial

learning and memory tasks, Y-maze (Figure 1A) and Barnes maze

(Figure 1B), compared to young 2 to 3-month-oldmice. However, aging

also leads to declines in gait, motor function, and strength in both

humans (Williams et al., 2019) and C57BL/6J mouse strains (Murphy

et al., 2006;Villeda et al., 2014).We tested locomotor function in young

and aged mice and showed that aged mice traveled shorter distances

(Figure 1C) and had a 62% reduced velocity (Figure 1D) relative to

youngmicewhile exploring theY-maze.Next,weassessed forearmgrip

strength between young and aged mice and identified that aged mice

generated significantly less pulling force (Figure 1E). For this task, we

used 6.5-month-old young mice to ensure there was no difference in

body weight between groups (Figure 1F). The impairments in motor

function and strength with age confound the interpretation of cog-

nition in both the Y-maze and Barnes maze and highlight one of the

challenges with behavior in aged animals. Therefore, we sought to out-

line molecular and histological changes that occur at the same time as

the impairments in cognition andmotor function.
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F IGURE 1 Impaired cognitive andmotor function in agedmice. (A) Average percent duration spent in the novel (N) and familiar (F) arms of
Y-maze during the testing phase for young (3month) and aged (20month) mice. n= 20–28mice per group. Three-way repeatedmeasures ANOVA:
Arm x Age x Experiment F= 9.162, p= 0.0032, followed byWilcoxonmatched-paired signed rank tests: 3 month *p= 0.0215, 20month p=
0.7282. Average percent entries into the novel (N) and familiar (F) arms of Y-maze during the testing phase for young (3month) and aged (20
month) mice. n= 20–28mice per group. Three-way repeatedmeasures ANOVA: Arm x Age x Experiment F= 4.994, p= 0.0071, followed by
Wilcoxonmatched-paired signed rank tests: 3 month ***p= 0.0004, 20month p= 0.0863. Cartoon depicting Y-maze set up. (B) Average latency to
find escape hole in Barnesmaze task over the course of 4 days with 5 trials per day in young (2month) and aged (22month) mice. n= 8–10mice
per group.Mixed-effects analysis with repeatedmeasures: Trial x Age F= 2.401, p= 0.0011; Trial F= 7.394, p<0.0001; Age F= 14.21, **p=
0.0017. Cartoon depicting Barnesmaze set up. (C) Total distance traveled in 5min during training phase of Y-maze by young (3month) and aged
(20month) mice. n= 6–15mice per group.Mann–Whitney test ***p= 0.0001. (D) Average velocity over 5min during training phase of Y-maze of
young (3month) and aged (20month) mice. n= 6–15mice per group.Mann–Whitney test ***p= 0.0007. (E) Averagemaximum grip strength
across 4 trials (gf, gram-force) normalized to individual mouse bodyweight of young (6.5month) and aged (22.5month) mice. n= 5–17mice per
group.Mixed-effects analysis with repeatedmeasures: Trial x Age F= 3.986, p= 0.0118; Trial F= 2.008, p= 0.1389; Age F= 31.7, p<0.0001,
followed byMann–Whitney test ****p<0.0001. F. Average bodyweight of young (6.5month) and aged (22.5month) mice. n= 5–17mice per group.
Mann–Whitney test p= 0.8201. All data are shown asmean± s.e.m. Abbreviations: ANOVA, analysis of variance
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3.2 Decreased neurogenesis, proliferation, and
synaptic density in the hippocampus with age

New neurons are generated within the SVZ and the subgranular

zone of the DG throughout adulthood, and this neurogenesis is

greatly decreased with healthy aging and in neurodegenerative dis-

ease (Horgusluoglu et al., 2017;Kempermann, 2015;Knothet al., 2010;

Kozareva et al., 2019; Kuhn et al.,1996; Kuzumaki et al., 2010;Moreno-

Jimenez et al., 2019) and correlates with cognitive status in humans

(Moreno-Jimenez et al., 2019; Tobin et al., 2019) and mice (Kemper-

mann&Gage, 2002;Kozarevaet al., 2019;Raberet al., 2004; Saxeet al.,

2006). In the DG, these newborn neurons functionally integrate into

neuronal networks and contribute to cognitive processing (Kozareva

et al., 2019; Toni & Schinder, 2015). To measure neurogenesis, we

examined the newborn neuron marker DCX in the DG using histology

and show a dramatic decrease by 6 months of age with little neuro-

genesis occurring by 18–24 months of age (Figure 2A,B). However,

using bulk hippocampal qPCR, Dcx gene expression was only modestly

reduced (Supplementary Fig. 1A), indicating that histology is a more

robust readout for age-related neurogenesis changes. Additionally, the

cell proliferation markers Ki67 (Figure 2C,D) and BrdU (Supplemen-

tary Fig. 1B-C) were also reduced by 97–99% in aged DG relative to

young.

Age-related reductions in synaptic density and expression of genes

related to synaptic function occur in both humans and rodents, and

these changes correlate with cognitive deficits (Bishop et al., 2010;

Blalock et al., 2003; Lee et al., 2000; Xu et al., 2018; Yankner et al.,

2008). We found that excitatory synaptic density decreased between

12 and 18months of age in the Schaffer collateral synapses of the CA1

hippocampal region, which is essential for activity-dependent synaptic

plasticity (Bishop et al., 2010), asmeasured by juxtaposed pre-synaptic

Synapsin and post-synaptic PSD-95 (Figure 2E,F). However, the gene

expression of Syn1 and Dlg4, the genes encoding Synapsin-1 and PSD-

95, respectively, were unchanged by qPCR from bulk hippocampal

tissue with age (Supplementary Fig. 1D-E), while gene expression of

neuron-specific Tuj1 had a small stepwise reduction with age, which

is only significant at 24 months of age (Supplementary Fig. 1F). Taken

together, these data suggest that histology may be a better readout

for the small synaptic changes that occur with healthy aging in mice,

while bulk qPCR may be better suited for detecting larger changes to

neuronal morphology or number.

3.3 Heightened microgliosis and elevated
proinflammatory cytokines with age

Neuroinflammation is a major hallmark of aging and disease (Jansen

et al., 2019; Mosher & Wyss-Coray, 2014) and numerous changes

in microglia, which are the resident macrophages of the central ner-

vous system, are impacted by animal age, including proliferation (Long

et al., 1998), reactivity (Hefendehl et al., 2014), motility (Damani et al.,

2011; Hefendehl et al., 2014), gene expression (Harry, 2013; Hart

et al., 2012), and secretion of inflammatory cytokines (Ye & Johnson,

1999; Yu et al., 2002). Using CD68 and Iba1 to mark microglia in the

hippocampus, we found a stepwise increase in microgliosis with age

(Figure 3A,C). Furthermore, there was increased gene expression of

the proinflammatory genes Tnfa, Cd11b, and Il1a analyzed by qPCR

from bulk hippocampal tissue (Figure 3D,F). Interestingly, while these

genes are predominantly expressed by microglia (Bohlen et al., 2017),

they did not show the same stepwise progression as histological eval-

uation, but rather a sharp increase at 12 or 24 months of age. We

also identified a subset of inflammatory genes that are unchanged

with age, including Nfkb and Il4 (Supplementary Fig. 2A-B), suggesting

that bulk gene expression may not be a robust readout of age-related

microgliosis.

Circulating factors in the blood can have significant impacts on

brain health, including neurogenesis, proliferation, myelination, synap-

tic plasticity, vascular remodeling, and cognition (Katsimpardi et al.,

2014; Ruckh et al., 2012; Villeda et al., 2011, 2014). Additionally, the

contributions of inflammaging—the small yet persistently increased

levels of proinflammatory signaling with age—are becoming increas-

ingly more appreciated (Goronzy & Weyand, 2019; Lopez-Otin et al.,

2013; Salminen et al., 2012). We examined the plasma levels of two

circulating cytokines that are known to mediate microglia activa-

tion: IP-10/CXCL10 (Clarner et al., 2015) and MIG/CXCL9 (Ellis et al.,

2010), and we found that levels of IP-10 and MIG increased with age

(Supplementary Fig. 2C,D). Taken together, these results suggest that

increased microgliosis and heightened expression of a subset of hip-

pocampal and circulating proinflammatory cytokines occur at the same

time as age-related cognitive and motor decline in mice and could be

used asmolecular or histological readouts.

3.4 Changes to astrocytes and pericytes at the
neurovascular unit with age

The NVU plays an essential role in maintaining cerebral blood flow

and BBB integrity (Zlokovic, 2008). Astrocytes support brain health by

interacting with the NVU and other cell types in the brain parenchyma

(Colombo & Farina, 2016; Szu & Binder, 2016) and by providing

essential growth factors and metabolites (Eidsvaag et al., 2017;

Hoddevik et al., 2017; Seifert et al., 2006; Simard & Nedergaard,

2004; Zeppenfeld et al., 2017). Expression of the astrocyte marker

glial fibrillary acidic protein (GFAP) increases with age in humans and

mice (Kimbroughet al., 2015; Kovacs et al., 2018; Kress et al., 2014;

Stichel & Luebbert, 2007;Wruck & Adjaye, 2020; Zhuang et al., 2019),

plays an important role in astrogliosis (Faulkner et al., 2004; Lundkvist

et al., 2004; McLean & Lane, 1995; Nawashiro et al., 1998; Pekny &

Pekna, 2004; Sofroniew & Vinters, 2010), and its increased expression

is correlated with Alzheimer’s disease (AD) (Wruck et al., 2016).

Additionally, astrocytic endfeet are filled with the aquaporin-4 (AQP4)

water channel that forms an essential part of the BBB, regulates

fluid exchange (Haj-Yasein et al., 2011; Kress et al., 2014; Mestre et al.,

2017; Sofroniew&Vinters, 2010;Uenoet al., 2019), and ismislocalized

in mouse (Bronzuoli et al., 2019; Kimbrough et al., 2015; Kovacs et al.,

2018; Kress et al., 2014; Wilcock et al., 2009; Yang et al., 2011) and
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F IGURE 2 Reduced neurogenesis, proliferation, and synaptic density in agedmice. (A) Number of Doublecortin-positive (DCX+) cells per
dentate gyrus (DG) as amarker of newborn neurons inmice 3–24months of age. n= 3–9mice per group. Nested one-way ANOVA F= 221.9,
p<0.0001, followed by Tukey’s multiple comparisons test: 3 vs. 6 ****p<0.0001, 3 vs. 12 ****p<0.0001, 3 vs. 18 ****p<0.0001, 3 vs. 24
****p<0.0001, 6 vs. 12 ****p<0.0001, 6 vs. 18 ****p<0.0001, 6 vs. 24 ****p<0.0001, 12 vs. 18 p= 0.7895, 12 vs. 24 p= 0.7343, 18 vs. 24 p= 0.9998.
(B) Representative images of DCX staining in the DG ofmice 3–24months of age. Scale bar 100mm. (C) Number of Ki67-positive cells per DG as a
marker of cell proliferation in young (2month) and aged (24month) mice. n= 7–11mice per group. Nested t-test F= 82.56, ****p<0.0001. (D)
Representative images of Ki67 (green) and nuclear DAPI (blue) staining in the DG of young (2month) and aged (24month) mice. Ki67-positive cells
are indicated with white arrow heads. Scale bar 100mm. (E). Number of juxtaposed Synapsin and PSD-95 puncta per μm3 in the CA1 region of the
hippocampus as a readout for excitatory synapse density in adult (12month), middle-aged (18month), and aged (24month) mice. n= 34–35
images from 6mice per group. Oneway ANOVA F= 3.623, p= 0.0302, followed by unpaired t-tests: 12 vs. 18 *p= 0.0154, 12 vs. 24 *p= 0.04,
18 vs. 24 p= 0.6518. (F) Representative images of a single z-plane of thresholded Synapsin (red) and PSD-95 (white) with juxtaposed synapses
circled in yellow in the CA1 of adult (12month) and aged (24month) mice. Scale bar 5mm. All data are shown asmean± s.e.m. Abbreviations: DCX,
doublecortin; DG, dentate gyrus; PSD-95, post-synaptic density protein 95; CA1, Cornu Ammonis region 1; ANOVA, analysis of variance

human (Iliff et al., 2012; Kress et al., 2014; Simon et al., 2018; Siracusa

et al., 2019; Wyss-Coray et al., 2003; Xiao et al., 2014; Zeppenfeld

et al., 2017) aging and disease. To determine if overall astrocyte

activation or proliferation is changed with age, we measured percent

GFAP area and total GFAP cell count in the CA1 region of the hip-

pocampus (Figure 4A,C). There was a slight elevation in GFAP percent

area (Figure 4A,B), but no change in total cell number (Figure 4A,C),

indicating an increase in astrocyte activation with age, but not cellular

proliferation. Gene expression markers of astrocyte activation in vitro

have been extensively characterized (Clarke et al., 2018). However, we

found no change in bulk qPCRof pan-reactive astrocyte genes S1pr3 or

Steap4; A1-type reactive astrocyte genes Gbp2, Iigp1, or H2d1; or the

A2-type reactive astrocyte gene Clcf1 (Supplementary Fig. 3). Next, to

evaluate changes in vascular astrocytesmore specifically, we examined

GFAP expression along a 60 μm linear ROI across the large descending

vessels in the CA1 hippocampus, which have previously been shown

to be modulated with age (Bronzuoli et al., 2019; Kress et al., 2014).

Indeed, a line graph representation of GFAP along the vessels suggests

an increase with age (Figure 4D,G). This age-related increase in GFAP

seemed to be largely in the vascular region (Figure 4E), but there

was a trending increase in the surrounding perivascular region as

well (Figure 4F). There is also an increase in the astrocytic endfoot

protein AQP4 measured from total cortical lysates by western blot

(Figure 4H,J).

Pericytes line the capillary walls and interact directly with the

endothelial cells of the NVU (Armulik et al., 2005; Diaz-Flores et al.,
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F IGURE 3 Stepwise increase in hippocampal microgliosis and elevated proinflammatory cytokines with age. (A) Average thresholded percent
area of CD68-positivemicroglia in the hippocampus of mice 3–24months of age. n= 9–12mice per group. Nested one-way ANOVA F= 28.96,
p<0.0001, followed by Tukey’s multiple comparisons test: 3 vs. 12 p= 0.1376, 3 vs. 18 ****p<0.0001, 3 vs. 24 ****p<0.0001, 12 vs. 18 **p= 0.0014,
12 vs. 24 ****p<0.0001, 18 vs. 24 p= 0.1216. (B) Average thresholded percent area of Iba1-positive microglia in the hippocampus of mice 3–24
months of age. n= 7–11mice per group. Nested one-way ANOVA F= 17.94, p<0.0001, followed by Tukey’s multiple comparisons test: 3 vs. 12 p=
0.5851, 3 vs. 18 **** p<0.0001, 3 vs. 24 **** p<0.0001, 12 vs. 18 **p= 0.0014, 12 vs. 24 ***p= 0.0004, 18 vs. 24 p= 0.8235. (C) Representative
images from hippocampus of 3- and 24-month-old mice of Iba1 (green) and CD68 (red) microglia. Scale bar 100mm. (D) Average hippocampal Tnfa
gene expression relative toGapdhmeasured by TaqMan qPCR inmice 3–24months of age. n= 9–12mice per group. Kruskal–Wallis test
p<0.0001, followed by Dunn’s multiple comparisons test: 3 vs. 12 *p= 0.0188, 3 vs. 18 *p= 0.0206, 3 vs. 24 ****p<0.0001, 12 vs. 18 p>0.9999,
12 vs. 24 p= 0.2929, 18 vs. 24 p= 0.1616. (E) Average hippocampal Cd11b gene expression relative toGapdhmeasured by SYBR qPCR inmice
3–24months of age. n= 6–10mice per group. Kruskal–Wallis test p= 0.0024, followed byDunn’s multiple comparisons test: 3 vs. 12 **p= 0.0040,
3 vs. 18 p= 0.0983, 3 vs. 24 *p= 0.0217, 12 vs. 18 p>0.9999, 12 vs. 24 p>0.9999, 18 vs. 24 p>0.9999. (F) Average hippocampal Il1a gene
expression relative toGapdhmeasured by SYBR qPCR inmice 3–24months of age. n= 6–10mice per group. Kruskal–Wallis test p= 0.0033,
followed by Dunn’s multiple comparisons test: 3 vs. 12 p= 0.0788, 3 vs. 18 p= 0.2415, 3 vs. 24 **p= 0.0024, 12 vs. 18 p>0.9999, 12 vs. 24
p>0.9999, 18 vs. 24 p= 0.4666. All data are shown asmean± s.e.m. Abbreviations: ANOVA, analysis of variance; Iba1, ionized calcium-binding
adapter molecule 1;Gapdh, glyceraldehyde-3-phosphate dehydrogenase; qPCR, quantitative polymerase chain reaction; Tnfa, tumor necrosis
factor alpha; Il1a, interleukin 1 alpha

2009). In adults, pericytes control capillary diameter (Peppiatt et al.,

2006; Yemisci et al., 2009) and BBB integrity (Bell et al., 2010). Fur-

thermore, age-dependent pericyte loss in animals and humans leads to

increased neuroinflammation and leakiness of serum proteins across

the BBB (Bell et al., 2010; Rustenhoven et al., 2017). However, high-

quality staining and quantification for pericytes and other makers of

the NVU, such as tight junction proteins, often requires cryostat sec-

tioning or transgenic labeled mouse strains (Bell et al., 2010), which is

time-consuming and not available for all labs. Using western blot, we

identified a 20% reduction in the brain-specific pericyte marker CD13

in aged cortical lysates relative to young (Figure 4I,J). Taken together,

these changes in astrocytes and pericytes at the NVU may contribute
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F IGURE 4 Increase in astrocyte reactivity and reduction in pericytes at the neurovascular unit with age. (A) Representative maximum
intensity projections of astrocytemarker GFAP in the CA1 region of the hippocampus in young (3month) and aged (22.5month) mice. Scale bar
30mm. (B) Average thresholded percent area of GFAP in the CA1 region of the hippocampus in young (3month) and aged (22.5month) mice. n= 9
mice per group. Nested t-test *p= 0.0145. (C) Average number of GFAP positive cells in a region of interest (ROI) in the CA1 region of the
hippocampus in young (3month) and aged (22.5month) mice. n= 9mice per group. Nested t-test p= 0.2719. (D) Cross-sectional quantification of
GFAP fluorescent intensity across large descending vessels in the CA1 region of the hippocampus of young (3month) and aged (24month) mice.
n= 9–12mice per group. (E) Average fluorescence intensity of GFAP in the vascular region across large descending vessels of the CA1 region of
the hippocampus of young (3month) and aged (24month) mice. n= 9–12mice per group. Nested t-test ***p= 0.0007. (F) Average fluorescence
intensity of GFAP in the perivascular region surrounding the large descending vessels of the CA1 region of the hippocampus of young (3month)

(Continues)
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F IGURE 4 (Continued)

and aged (24month) mice. n= 9–12mice per group. Nested t-test p= 0.0581. (G). Representative images of GFAP (green) staining surrounding
large descending vessels in the CA1 region of the hippocampus of young (3month) and aged (24month) mice. Scale bar 20mm. (H) Average
relative protein expression of astrocyte endfoot protein AQP4 in cortical lysates of young (3month) and aged (22.5month) micemeasured by
western blot and normalized to ACTIN loading control. n= 16–22mice per group.Mann–Whitney test **p= 0.0033. (I). Average relative protein
expression of pericytemarker CD13 in cortical lysates of young (3month) and aged (22.5month) micemeasured bywestern blot and normalized
to ACTIN loading control. n= 13–14mice per group. Unpaired t-test *p= 0.0478. (J). Representative western blot bands of AQP4, CD13, and
ACTIN. All data are shown asmean± s.e.m. Abbreviations: GFAP, glial fibrillary acidic protein; ROI, region of interest; AQP4, aquaporin-4; CA1,
Cornu Ammonis region 1

to impaired BBB integrity and identify the molecular or histological

tools that can be used to assess these changes.

3.5 Increased T cell infiltration into the brain
with age

One consequence of inflammaging andBBBdysfunction is the increase

in infiltrating T cells into the brain in both humans (Dulken et al., 2019;

Gemechu & Bentivoglio, 2012; Loeffler et al., 2011; Moreno-Jimenez

et al., 2019; Moreno-Valladares et al., 2020) and mice (Dulken et al.,

2019; Gemechu & Bentivoglio, 2012; Mrdjen et al., 2018; Ritzel et al.,

2016; Stichel & Luebbert, 2007). Susceptibility to T cell infiltration is

partially related to the BBB leakiness of the brain region (Loeffler et al.,

2011), and infiltration of T cells is greatly enhanced in human patients

with AD (Itagaki et al., 1988; Rogers et al., 1988; Togo et al., 2002), in

mouse models of AD (Ferretti et al., 2016; Mrdjen et al., 2018), and

following injury (Muzio et al., 2010; J. Wang et al., 2015). Infiltration

into the hippocampus and SVZ are of particular interest due to their

functions as neurogenic niches. T cells have been identified in the SVZ

of aged mouse brains with single cell RNA sequencing (Dulken et al.,

2019; Ogrodnik et al., 2021) and an increase in cytotoxic CD8+ T cells

have been found in various regions of the aged mouse brain by histol-

ogy (Propson et al., 2021). We used histological markers to quantify

T cells in the hippocampus and SVZ across age. There was a stepwise

increase in CD3+CD45+ T cells within the hippocampal parenchyma

(Figure 5A,D) and within blood vessels (Figure 5B,D) with increas-

ing age. Additionally, there was a large increase in T cells at the SVZ

with age (Figure 5C), suggestive of BBB impairment or recruitment of

peripheral immune cells to the brain during aging.

3.6 High-dose LPS induces BBB impairment

While BBB impairment in aged humans is well known (Montagne

et al., 2015), changes to the BBB in aged mice are less well charac-

terized and the impairment in BBB leakiness is reported to be less

robust (Sumbria et al., 2018). To measure BBB leakiness, we adminis-

tered sodium fluorescein (NaF, 0.4 kDa) by IV tail vein injection and

examined fluorescence in brain tissue 4 h later. Indeed, we found

that aged mice (22 month) do not have overt BBB leakiness com-

pared to younger (4 month) animals (Figure 6A). To determine if aged

mice may be more susceptible to BBB damage, we used a high, acute

dose of lipopolysaccharide (LPS, 10 mg/kg), which has previously been

reported to increase barrier leakiness 6 h following administration

(Bien-Ly et al., 2015). High-dose LPS induced leakiness in both young

andagedmice, and this leakinesswas exacerbatedwith age (Figure6A),

indicating impaired maintenance of the BBB in aged mice following

chemical insult.

LPS has been well studied across multiple labs due to its potent

effects and relative ease of use in animal models. LPS administration

causes hundreds of genes to be differentially expressed (Chen et al.,

2020). Furthermore, LPS increases soluble plasma levels of cell adhe-

sion molecules (CAMs), which are released from endothelial cells in

response to damage (Gotsch et al., 1994; Kisucka et al., 2009; Ley et al.,

2007; Petri et al., 2008; Rossi et al., 2011). For example, P-selectin is

increased following acute neuroinflammation and blocking it prevents

neutrophil recruitment into the brain parenchyma (Bernardes-Silva

et al., 2001) and leads to improved BBB integrity (F. Wu et al., 2015).

We identified that high-dose LPS leads to significant increases in solu-

ble E-Selectin, ICAM-1, and P-Selectin in the plasma of both young and

agedmice (Figure 6B,D), suggesting widespread endothelial damage in

response to LPS.

4 DISCUSSION

We identified changes in neurogenesis, proliferation, synaptic den-

sity, microgliosis, neuroinflammation, astrocytes, and pericytes at the

NVU, and T cell infiltration into the brain during healthy aging in

male C57BL/6J mice and propose the specific techniques that can

be used to quantify these changes. Due to the many challenges with

cognitive and behavioral testing in mice, we propose these molecu-

lar and histological changes may be used as readouts associated with

aging-related cognitive and motor decline. The challenges of measur-

ing behavior in agedmice include optimization of protocols, specialized

equipment, and variability within and between aged cohorts. Further-

more, interpreting cognitive decline in aged mice is complicated by

the fact that aged animals also have motor impairments. The read-

outs for many cognitive tasks are influenced by both cognition and

ambulation. Finally, blinding of behavioral experiments is confounded

by the obvious differences in size and appearance between young and

aged animals. Here we aim to form a comprehensive profile of the

molecular and histological changes that are robustly modulated with

aging in male C57BL/6J mice and more straightforward to implement

across labs.
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F IGURE 5 Stepwise increase in T cell infiltration into the hippocampus and subventricular zone (SVZ) with age. (A) Number of
CD3–CD45-double positive, LECTIN-negative T cells counted in the parenchyma of the hippocampus of mice 3–24months of age. n= 6–11mice
per group. Nested one-way ANOVA F= 9.554, p= 0.0001, followed by Tukey’s multiple comparisons test: 3 vs. 12 *p= 0.0113, 3 vs. 18 *p=
0.0129, 3 vs. 24 ****p<0.0001, 12 vs. 18 p= 0.9992, 12 vs. 24 p= 0.1181, 18 vs. 24 p= 0.0865. (B) Number of CD3–CD45-double positive T cells
counted in the LECTIN-positive blood vessels of the hippocampus of mice 3–24months of age. n= 6–11mice per group. Kruskal–Wallis test p=
0.0003, followed byDunn’s multiple comparisons test: 3 vs. 12 p= 0.5355, 3 vs. 18 ***p= 0.0006, 3 vs. 24 **p= 0.0047, 12 vs. 18 p= 0.1893, 12 vs.
24 p= 0.3570, 18 vs. 24 p>0.9999. (C) Number of CD3-CD45-double positive T cells counted in the SVZ of mice 3–24months of age. n= 8–10
mice per group. Nested one-way ANOVA F= 53.54, p<0.0001, followed by Tukey’s multiple comparisons test: 3 vs. 12 p= 0.8266, 3 vs. 18 **p=
0.0066, 3 vs. 24 ****p<0.0001, 12 vs. 18 p= 0.0589, 12 vs. **** 24 p<0.0001, 18 vs. **** 24 p<0.0001. (D) Representative images of CD3 (green),
CD45 (red), and LECTIN (white) staining in the hippocampus of young (3month) and aged (24month) mice.White arrowheads identify
CD3–CD45-double positive T cells in the hippocampal parenchyma andwhite arrows identify cells in the LECTIN-positive blood vessels. Scale bar
50mm. All data are shown asmean± s.e.m. Abbreviations: SVZ, subventricular zone; ANOVA, analysis of variance

The readouts outlined here support a model of inflammaging and

reveal a high level of cross-talk betweenmodalities. For example, adult

neurogenesis is regulated by metabolic factors, the vascular system,

and the immune system, which are all modulatedwith aging (Horguslu-

oglu et al., 2017; Villeda et al., 2011). Astrocytes express and regulate

signaling factors and cytokines (Horgusluoglu et al., 2017; Kozareva

et al., 2019; Sofroniew, 2009), while microglia can enhance or sup-

press neurogenesis under different conditions, contributing to these

age-related changes in neurogenesis (Belarbi & Rosi, 2013; De Lucia

et al., 2016; Sierra et al., 2014). Pericytes are lost with aging in rodents

and humans leading to increased neuroinflammation (Bell et al., 2010;

Rustenhoven et al., 2017) and contributing to dementia (Bowman

et al., 2007; Janelidze et al., 2017; Montagne et al., 2015; Sweeney

et al., 2018; van de Haar et al., 2016), while improving BBB func-

tion is associated with beneficial effects (Dempsey et al., 2000; Kamat

et al., 2016; Montagne et al., 2015; Sweeney et al., 2018; Van Skike

et al., 2018; Zeppenfeld et al., 2017). Microglia and astrocytes secrete

factors that impact BBB permeability and lead to changes in tight
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F IGURE 6 High-dose LPS caused BBB leakiness and increased plasma levels of soluble CAMs. (A) Sodium fluorescein (0.4 kDa) leakiness into
the brain of young (4month) and aged (22month) mice with andwithout a high, acute dose of LPS (10mg/kg). n= 13–21mice per group.
Kruskal–Wallis test p<0.0001, followed by Dunn’s multiple comparisons test: 4 vs. 4+LPS ***p= 0.0001, 4 vs. 22 p= 0.5342, 4 vs.
22+LPS ****p<0.0001, 4+LPS vs. 22 *p= 0.0213, 4+LPS vs. 22+LPS p= 0.2418, 22 vs. 22+LPS ****p<0.0001. (B) Soluble E-Selectin levels in
plasma of young (4month) and aged (22month) mice with andwithout LPS treatment. n= 13–19mice per group. Kruskal–Wallis test p<0.0001,
followed by Dunn’s multiple comparisons test: 4 vs. 4+LPS ****p<0.0001, 4 vs. 22 *p= 0.0393, 4 vs. 22+LPS p= 0.0736, 4+LPS vs. 22
****p<0.0001, 4+LPS vs. 22+LPS p= 0.1966, 22 vs. 22+LPS ****p<0.0001. (C) Soluble ICAM-1 levels in plasma of young (4month) and aged (22
month) mice with andwithout LPS treatment. n= 12–19mice per group. Kruskal–Wallis test p<0.0001, followed by Dunn’s multiple comparisons
test: 4 vs. 4+LPS ****p<0.0001, 4 vs. 22 p>0.9999, 4 vs. 22+LPS ***p= 0.0002, 4+LPS vs. 22 ****p<0.0001, 4+LPS vs. 22+LPS p>0.9999, 22 vs.
22+LPS ****p<0.0001. (D) Soluble P-Selectin levels in plasma of young (4month) and aged (22month) mice with andwithout LPS treatment. n=
12–19mice per group. Kruskal–Wallis test p<0.0001, followed by Dunn’s multiple comparisons test: 4 vs. 4+LPS ****p<0.0001, 4 vs. 22
p>0.9999, 4 vs. 22+LPS **p= 0.0041, 4+LPS vs. 22 ****p<0.0001, 4+LPS vs. 22+LPS p>0.9999, 22 vs. 22+LPS ****p<0.0001. All data are shown
asmean± s.e.m. Abbreviations: LPS, lipopolysaccharide; BBB, blood-brain barrier; CAM, cell adhesionmolecule; FITC, fluorescein isothiocyanate;
RFU, relative fluorescent units; ANOVA, analysis of variance; sICAM-1, soluble intercellular adhesionmolecule-1

junction proteins (Palmer & Ousman, 2018). Overexpression of GFAP

in Alzheimer’s disease, Parkinson’s disease, and healthy patients is cor-

related with myelin impairment (Han et al., 2019), and astrogliosis

can inhibit axonal regeneration (Sofroniew & Vinters, 2010). Addition-

ally, reactive astrogliosis is regulated by several growth factors and

cytokines, includingTNFα and IL-1α (Sofroniew, 2009),whichwe found
were also increased in the plasma of mice with age. Finally, T cells may

be recruited to the brain by reactive astrocytes (Aloisi et al., 2000)

and subsequently release cytokines that trigger microglial activation

(Gemechu & Bentivoglio, 2012; Ritzel et al., 2016). Infiltrating T cells

may exert effects on cognition through modulation of inflammation

(Butovsky et al., 2006; Dulken et al., 2019; Guo et al., 2010; Pluchino

et al., 2008; T. Wang et al., 2010; Y. Wang et al., 2008) or neuroge-

nesis (Beers et al., 2011; Gendelman & Appel, 2011; Li et al., 2013;

Reynolds et al., 2007; Rezai-Zadeh et al., 2009). Here, we propose

that these changes may be used as molecular and histological end-

points that correspondwith aging-related cognitive andmotor decline.

Additionally, we identified a number of readouts that were unchanged
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TABLE 1 Age-specific changes in male C57BL/6Jmice

Modality Changewith aging Current study Citations

Behavior

Motor activity Reduced speed and

distance

Figure 1A-D (Boyer, Jaouen, Ibrahim, &Gascon,

2019;Weber et al., 2015;

Whitehead et al., 2014)

Grip strength Reduced Figure 1E,F (Murphy et al., 2006; Villeda et al.,

2014)

Cognition: MWM, RAWM,
CFC, BM, Y-maze

Impaired Figure 1A,B* (Murphy et al., 2006; Sukoff Rizzo

et al., 2018; Sukoff Rizzo &

Silverman, 2016; Villeda et al.,

2014;Weber et al., 2015)

Neurons

Neurogenesis and
proliferation

Reduced Figure 2A-D; Sup

Figure 1A-C

(Horgusluoglu et al., 2017;

Kempermann, 2015; Kempermann

&Gage, 2002; Kozareva et al.,

2019; Villeda et al., 2011)

Synaptogenesis/synaptic
density

Reduced Figure 2E,F; Sup

Figure 1D,E

(Cizeron et al., 2020; Lee et al., 2000;

Morrison & Baxter, 2012;Weber

et al., 2015; Xu et al., 2018;

Yankner et al., 2008)

Neurodegeneration Unchanged Not tested (Kerrisk & Koleske, 2013; Lutz &

Osborne, 2013; T.Wu et al., 2019)

Microglia

Phagocytosis Impaired Not tested (Mosher &Wyss-Coray, 2014)

Proliferation Increased Figure 3A-C (Long et al., 1998;Weber et al.,

2015)

Dystrophy Activated shape, increased

size

Figure 3A-C (Hefendehl et al., 2014)

Movement Decreased Not tested (Damani et al., 2011; Hefendehl

et al., 2014)

Signaling Altered Suppl. Figure 2C,D (Clarner et al., 2015; Ellis et al.,

2010; Harry, 2013; Hart et al.,

2012; Kawanokuchi et al., 2008;

Rock et al., 2005; Shen, Zhang, &

Bhat, 2006; Ye & Johnson, 1999;

Yu et al., 2002)

Gene expression Tnfa, Cd11b, Il1a increased Figure 3D-F (Schaum et al., 2020; TabulaMuris,

2020)

Gene expression Nfkb, Il4 unchanged Suppl. Figure 2A,B

Astrocytes

Reactivity Increased Figure 4A-F (Boisvert et al., 2018; Clarke et al.,

2018; Kohama et al., 1995; Kress

et al., 2014; Lynch et al., 2010;

O’Callaghan &Miller, 1991;

Stichel & Luebbert, 2007;Weber

et al., 2015; Zhuang et al., 2019)

AQP4 Expression Mislocalized Figure 4H,J (Bronzuoli et al., 2019; Kress et al.,

2014)

Morphology Increased size Figure 4A-C (Grosche et al., 2013;Matias,

Morgado, & Gomes, 2019;

Rodriguez et al., 2014;

Verkhratsky, Zorec,

Rodriguez-Arellano, & Parpura,

2019)

(Continues)
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TABLE 1 (Continued)

Modality Changewith aging Current study Citations

Signaling Altered Not tested (Boisvert et al., 2018; Clarke et al.,

2018; Palmer &Ousman, 2018;

Tarantini, Tran, Gordon, Ungvari, &

Csiszar, 2017; Verkhratsky et al.,

2019)

Neural modulation Synapse elimination Not tested (Boisvert et al., 2018; Clarke et al.,

2018; Palmer &Ousman, 2018)

Antigen presentation Increased Not tested (Orre et al., 2014; Palmer &Ousman,

2018)

Gene expression S1pr3, Steap4,Gbp2, Iigp1,
H2d1, Clcf1 unchanged

Suppl. Figure 3 (Clarke et al., 2018; Schaum et al.,

2020; TabulaMuris, 2020)

Pericytes

Cell number and signaling Decreased Figure 4I,J (Bell et al., 2010; Diaz-Flores et al.,

2009)

T cells

CNS infiltration Increased Figure 5 (Dulken et al., 2019; Gemechu &

Bentivoglio, 2012;Mrdjen et al.,

2018; Ogrodnik et al., 2021;

Propson et al., 2021; Ritzel et al.,

2016; Stichel & Luebbert, 2007)

Signaling Altered Not tested (Desdin-Mico et al., 2020; Dulken

et al., 2019; Ferretti et al., 2016;

Ritzel et al., 2016)

Blood-brain barrier

Leakage Unchanged Figure 6A (Sumbria et al., 2018) (Peppiatt et al.,

2006; Rustenhoven et al., 2017)

Induced leakage Increased permeability Figure 6A (Bien-Ly et al., 2015).

Signaling Altered Figure 6B-D (Bernardes-Silva et al., 2001; Gotsch

et al., 1994; Kisucka et al., 2009;

Ley et al., 2007; Petri et al., 2008;

Rossi et al., 2011; F.Wu et al.,

2015)

Brain endothelial cells

Signaling and gene
expression

Altered Figure 6B-D (Chen et al., 2020;Marques, Sousa,

Sousa, & Palha, 2013; Schaum

et al., 2020; TabulaMuris, 2020;

Yousef et al., 2019)

Summary of behavioral, molecular, and histological age-related changes.

*Cognition reported in Figure 1A,B is confounded bymotor impairments in agedmice.

with age and have limited utility as robust markers of aging in male

C57BL/6Jmice.

There are a few limitations to the results presented here. We are

only reporting results from male mice in the one strain C57BL/6J. As

a result, these conclusions can only be generalized within this popula-

tion of animals. Others have published the differences in female mice

or across different aged strains, and we point the reader to these pub-

lished studies for additional references (Adelof et al., 2019; Kohama

et al., 1995; Tran et al., 2021; Weber et al., 2015; Xiong et al., 2018).

Broadly, the results reported here across the three modalities of neu-

rons, microglia, and NVU cell types are recapitulated in other strains

ofmice and across sex. However, the specific timelines andmagnitudes

are distinct between background strain and sex. While many of these

endpoints have been previously reported, the additional data here, and

the bringing together of multiple biological mechanisms, is significant

as aging is a multimodal process and must be considered holistically.

These results, along with reports from the literature, summarized in

Table 1, are essential tools for understanding aging processes and

development of therapeutics for gerontological disease.
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