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Diamond-Blackfan anemia (DBA) is an inherited bone marrow (BM) failure characterized by macrocytic
anemia, congenital malformations, and an increased predisposition to cancer.1,2 More than 90% of
patients with DBA are diagnosed within the first year of life (median age, 12 weeks).3 The pathogenesis
of DBA is linked to loss-of-function mutations in genes that encode ribosomal proteins (RPs), although
mutations in 3 non-RP genes (GATA1, TSR2, and HEATR3) have been reported.1,4-6 Mutations in
RPS19, RPL5, RPS26, RPL11, RPL35a, RPS10, RPS24, and RPS17 are responsible for ~70% of the
patients with DBA. Varying degrees of anemia are observed in 90% of patients with DBA at diagnosis
and are the primary reason for treatment, which includes corticosteroids or red blood cell (RBC)
transfusions. However, lifelong treatment results in morbidities, such as osteoporosis, diabetes, and iron
overload.1,2,7 Currently, hematopoietic stem cell transplantation is the only curative therapy.3,8 The
challenge in conducting preclinical studies for new therapies to treat DBA is the lack of mouse models
that recapitulate its clinical features, including haploinsufficiency of ribosomal genes, severe anemia,
and age of onset. Heterozygous mutations in RPL11 are found in 5% to 7% of patients with DBA.1,2

Previously published mouse models with Rpl11 haploinsufficiency have mild anemia and a normal life
span,9,10 which have limitations for therapeutics development.

Anemia in patients with DBA presents with decreased RBC counts, hemoglobin (Hgb) concentrations,
increased mean corpuscular values (MCV), and elevated erythrocyte adenosine deaminase activity.2,11

To develop a novel mouse model with Rpl11 haploinsufficiency and anemia, we generated mice car-
rying a single copy of mutant Rpl11 (Rpl11+/floxP) and Mx1-Cre+. The pups were born with normal body
weight, regardless of genotype. Rpl11 deletion was induced as reported by intraperitoneal injection of
30 μL of 1 μg/μL polyinosinic-polycytidylic acid (pIpC) on postnatal days 8 and 10.12 Two weeks after
pIpC injection, mice with Rpl11-haploinsufficiency (Rpl11+/▵) developed pale ears and macrocytic
anemia. Blood genotyping confirmed that the allele with the Rpl11 deletion was detected only in mice
carrying Rpl11+/floxP and Mx1-Cre+ (supplemental Methods; supplemental Figure 1A-C). Quantification
of messenger RNA in blood nucleated cells from Rpl11+/▵ mice showed that Rpl11 expression was
~50% of wild-type (WT) littermates (Rpl11+/floxPMx1-Cre–). Western blot analysis confirmed that
Rpl11 protein levels were significantly decreased in BM cells from Rpl11+/▵ mice compared with their
WT littermates (Figure 1A-C).

Two weeks after pIpC injection, Rpl11+/▵ mice, regardless of gender, developed moderate macrocytic
anemia with a mean Hgb concentration of 6.9 g/dL and mean corpuscular value of 61 fL, whereas white
blood cell counts were comparable to those of WT littermates (Figure 1D; supplemental Figure 1D).
Hgb progressively decreased in Rpl11+/▵ mice, resulting in severe anemia by the age of 15 to 35 weeks
(hereafter termed as the end stage). The platelet counts initially increased in Rpl11+/▵ mice but returned
to normal at the end stages. Similar to patients with DBA,13,14 peripheral blood reticulocyte counts
were significantly decreased in Rpl11+/▵ mice (mean 0.3 vs 0.4 M/mL; P < .001) (supplemental
Figure 1E). Blood erythrocyte adenosine deaminase concentrations were also significantly elevated
in Rpl11+/▵ mice compared with their WT littermates (mean 5 vs 1 EU/g Hgb; P < .001), and plasma
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Figure 1. Rpl11-haploinsufficient mice recapitulate the hematologic phenotypes of patients with DBA. (A) Relative quantitative polymerase chain reaction showing

Rpl11 messenger RNA levels in nucleated cells of the peripheral blood from Rpl11+/▵ mice and WT littermates. N = 4. (B-C) Representative western blot data show Rpl11 protein

level in BM cells. N = 4. The area under the peak for Rpl11 and β-actin was calculated for the expression of Rpl11 protein relative to β-actin in BM-nucleated cells from Rpl11+/▵

mice and WT littermates. (D) Complete blood counts were performed using a HEMAVET 950FS analyzer. WT N = 13, Rpl11+/▵ N = 16. (E) Quantification of eADA in blood. The

concentrations were normalized to blood Hgb levels. N = 7 per group. (F) Quantification of EPO concentrations in the plasma. N = 6 per group. (G) Representative morphology of

the sternum and spleen. Hematoxylin and eosin–stained sections show that the sternum of Rpl11+/▵ mice were relatively hypocellular with substantially less trabecular bones

compared with WT littermates, and their spleens lost the normal architecture without normal white pulp. Immunohistochemistry-stained sections show the abnormal distribution of

Ter119+ cells in the spleens of diseased mice with Rpl11+/▵ (H) Kaplan-Meier analysis shows high penetrance (100%) of disease and a lethal impact of Rpl11- haploinsufficiency

on survival of diseased mice with Rpl11+/▵ induced on postnatal day 8. The median survival age was 26.5 weeks in Rpl11+/▵ mice. N = 16 per group. Statistical differences

between the groups were calculated using a 2-tailed Student t test. Data are presented as the mean ± standard error of the mean. More supportive data are provided in

supplemental Figure 1. eADA, erythrocyte adenosine deaminase; MCV, mean corpuscular value; PLT, platelets; WBC, white blood cell counts; wks, weeks.
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Figure 2. Abnormal erythropoiesis in Rpl11+/▵ mice and L-leucine treatment. (A) Burst-forming unit-erythroid (BFU-E) colony counts. BM cells (2 ×105) in 1 mL of

MethoCult M3234 medium supplemented with 1 or 10 units/mL recombinant mouse EPO. Number of BFU-E colonies (containing >10 cells) was counted on days 8 to 10 using

STEMvision (STEMCELL Technologies). N = 5 per group. (B) Frequency analysis of hematopoietic stem cells/progenitor cells by flow cytometry. Fresh single BM cells were

collected from the femurs and tibias. LIN−, lineage negative (CD4–CD8–B220-Gr1-CD11b–Ter119–); LSK, LIN– Scal-1+ c-Kit+; hematopoietic stem cells, LIN-

Scal1+cKit+CD48–CD150+, multipotent progenitors, LIN-Scal1+cKit+CD48–CD150–. N = 5 per group. (C) Representative flow cytometry analysis of erythroid differentiation

trajectory in BM cells from Rpl11+/▵ mice and WT littermates. LIN− population (CD4–CD8–B220-Gr1-CD11b–) was analyzed and gated as previously reported16 to identify the

LNPCs and erythroblast populations I to V, which include BFU-E deriving cells and proerythroblasts (I), basophilic erythroblasts (II), polychromatic erythroblasts (III),

orthochromatic erythroblasts (IV), and reticulocytes and mature RBCs (V). The data revealed a differentiation block of BFU-E-derived cells/proerythroblasts (I-II) before

polychromatic erythroblasts (III). (D) Frequency analysis of flow cytometry data for the populations of erythroid differentiation trajectory in the BM from Rpl11+/▵ mice and WT

littermates. N = 7 per group. (E) Mice treated with 1.5% l-leucine in drinking water at the age of 4 to 6 weeks for 16 weeks. Blood Hgb concentration was monitored every

4 weeks. (F) Kaplan-Meier analysis shows that L-leucine treatment significantly prolonged the survival of the treated group (P < .05). Statistical differences between groups were

calculated using a 2-tailed Student t test. Data are presented as mean ± standard error of the mean, *P < .05; **P < .01; ***P < .001. More supportive data are provided in

supplemental Figures 2 and 3. FSC, forward scatter; LNPC, LIN− precursor cells; wks, weeks.
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erythropoietin (EPO) concentrations were significantly increased
(mean 38 350 vs 25 pg/mL; P < .01) (Figure 1E-F). The body
weights of Rpl11+/▵ mice were significantly lower than those of
their WT littermates at the time of evaluation (supplemental
Figure 1F). Necropsy showed that Rpl11+/▵ mice had significant
splenomegaly, whereas the liver size was normal (supplemental
Figure 1G-H). Histology of the BM revealed relative hypo-
cellularity with less trabecular bones in the sternum of Rpl11+/▵

mice than in WT littermates, and the spleens from Rpl11+/▵ mice
lost the normal architecture with substantially increased Ter119+

erythrocytes (Figure 1G). Without intervention, mice with Rpl11+/▵

started to die at 15 weeks of age, with a median survival of
26.5 weeks (equivalent to adult age in humans, Figure 1H).
Therefore, compared with previously reported mouse models with
Rpl11 mutations and other mutations,9,10,15 this model recapitu-
lates the haploinsufficiency of RPs and the hematologic phenotype
of patients with DBA (supplemental Table 1).

To investigate whether anemia in Rpl11+/▵ mice results from
aberrant erythropoiesis in the BM, we conducted colony formation
assays. BM cells from Rpl11+/▵ mice derived significantly fewer
numbers of colonies for burst-forming unit-erythroid (BFU-E) in the
presence of 1 or 10 units/mL of EPO (Figure 2A). We further
evaluated the immunophenotype of BM cells using flow cytometry.
Lineage-negative cells were significantly increased in the BM of
Rpl11+/▵ mice, whereas hematopoietic stem cells and multipotent
progenitors were significantly reduced compared with their WT
littermates (Figure 2B; supplemental Figure 2). We also analyzed
the BM cell subpopulations from erythroid progenitors (EPs) to
reticulocytes using the I to V system published by Doty et al.16

Populations I to V represent sequential maturation during erythro-
poiesis. Cells in the I population correspond to EPs that functionally
define the BFU-E and colony-forming unit erythroid colonies.16-19

Populations I and II were significantly increased, whereas pop-
ulations IV and V were decreased in the BM of the Rpl11+/▵ mice.
Our data demonstrated that cells in the early stages of erythroid
differentiation (EPs and erythroblasts in populations of I-II) were
significantly increased in the BM of Rpl11+/▵ mice. In contrast, the
more mature erythroid precursors in populations IV and V were
significantly decreased (Figure 2C-D), suggesting that the early
EPs are preserved, and the maturation defect occurs in the late
precursor Ter119+ cells during differentiation. This is consistent
with the data showing that erythroid maturation is preserved in EPs
and early precursors in BM cells from patients with DBA-carrying
mutations in RPL genes.20 The loss of hematopoietic stem cells
and multipotent progenitors in BM of Rpl11+/▵ mice is likely due to
cell exhaustion, driven by compensatory efforts to increase RBC
production. Overall, our data suggest that defective differentiation
of erythropoiesis in the BM contributes to lethal macrocytic anemia
in Rpl11-haploinsufficient mice.

L-leucine has been reported to improve anemia and growth in some
patients with DBA, as well as in mouse models with short hairpin
RNA-mediated Rps19 knockdown.21-23 To test whether Rpl11+/▵

mice can serve as a model to predict treatment response, we treated
Rpl11+/▵ mice with drinking water containing 1.5% L-leucine for
16 weeks, starting at age 4 weeks. Rpl11+/▵ mice treated with L-
leucine maintained higher Hgb levels during treatment than the
control group (water alone) (Figure 2E). Importantly, L-leucine
10 JUNE 2025 • VOLUME 9, NUMBER 11
significantly prolonged the survival of treated Rpl11+/▵ mice (P <
.05; Figure 2F). Our data suggest that L-leucine may be beneficial
for improving the survival of patients with DBA. We also treated
Rpl11+/▵ mice with 25 mg/mL of prednisolone in drinking water,16 or
3 to 10 mg/kg body weight administered by daily gavage in 5% milk
for 10 days and repeated every 21 days for 3 cycles. As previously
reported, prednisolone had no impact on Hgb concentration in
treated mice16 (supplemental Figure 3). This is most likely due to the
impact of glucocorticoids on red cell production through stimulation
of the earliest progenitors (BFU-E deriving cells).24

In conclusion, this mouse model exhibits hematologic characteris-
tics of patients with DBA with Rpl11 haploinsufficiency, including
disease severity and early age of onset. Importantly, we demon-
strate that this model is useful for studying DBA pathogenesis and
for testing novel therapies.
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