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1  |  INTRODUC TION

A common way to assess the efficacy of an anticancer treatment is 
to analyze the tumor growth in patient- derived xenografts (PDX).1– 4 
The PDX approach involves the direct implantation of human tis-
sue samples into mice, where the mice are assigned to treatment 
groups then tumor volumes are measured over multiple weeks. This 
direct implantation into mice may allow for more heterogeneity than 

laboratory- grown tissue samples,1,2,5 and therefore the results may 
be more directly applicable to human patients.

A PDX study typically assigns many mice to each source of 
human tissue. For example, one study might have 5 different people 
contributing tumor samples that are then each allocated to 10 mice 
(all 10 receiving a distinct sample of that patient's tumor), resulting 
in a total of 50 mice. For the purpose of this study, we will define 
one person's set of mice as a PDX line. Continuing with the example, 
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Abstract
The consistency of reporting results for patient- derived xenograft (PDX) studies is 
an area of concern. The PDX method commonly starts by implanting a derivative of a 
human tumor into a mouse, then comparing the tumor growth under different treat-
ment conditions. Currently, a wide array of statistical methods (e.g., t- test, regres-
sion, chi- squared test) are used to analyze these data, which ultimately depend on 
the outcome chosen (e.g., tumor volume, relative growth, categorical growth). In this 
simulation study, we provide empirical evidence for the outcome selection process 
by comparing the performance of both commonly used outcomes and novel varia-
tions of common outcomes used in PDX studies. Data were simulated to mimic tumor 
growth under multiple scenarios, then each outcome of interest was evaluated for 
10 000 iterations. Comparisons between different outcomes were made with respect 
to average bias, variance, type- 1 error, and power. A total of 18 continuous, categori-
cal, and time- to- event outcomes were evaluated, with ultimately 2 outcomes outper-
forming the others: final tumor volume and change in tumor volume from baseline. 
Notably, the novel variations of the tumor growth inhibition index (TGII)— a commonly 
used outcome in PDX studies— was found to perform poorly in several scenarios with 
inflated type- 1 error rates and a relatively large bias. Finally, all outcomes of interest 
were applied to a real- world dataset.
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there would be 5 PDX lines with 10 mice each. Studies that use more 
than 1 PDX line have the potential benefit of adding more real- world 
variability (variability across patients) to the study, which may make 
the results of an antitumor treatment more generalizable.

When quantifying the effect of antitumor treatments, there are 
a multitude of approaches that a researcher might take. Although 
these multiple approaches can provide a more individualized ap-
proach to each unique study, this may lead to inconsistent reporting 
of results across studies. One key focus when designing any study 
should be the selection of the outcome. In a PDX study, the typical 
question of interest is “is the treatment more effective at reduc-
ing tumor growth than a comparator treatment, and if so, by how 
much?”. There are many potential outcomes that one might choose 
to answer this, so which outcome is the “optimal” choice? Ideally, the 
optimal outcome should be chosen primarily on the basis of statisti-
cal considerations, especially when there are multiple outcomes that 
appear to answer the question clinically. As evident by the heteroge-
neity in the approaches reported in PDX studies,6– 13 this field lacks 
a standard approach to outcome selection— justifying the need to 
investigate an array of potential outcomes. The purpose of this study 
is to evaluate the performance of different continuous, categorical, 
and time- to- event outcomes with respect to bias, variance, power, 
and type- 1 error, and to ultimately provide empirical reasoning for 
outcome selection in PDX studies.

From a statistician's standpoint, the most intuitive outcomes for 
PDX studies would be the raw tumor volume or the change in tumor 
volume from baseline. In a cross- sectional study, this would corre-
spond to the final volume measured and the final difference in vol-
umes (final— initial), respectively. If noncontinuous outcomes were 
of interest for a given study design, then a binary or categorical vari-
able could easily be computed if biologically meaningful cutoff val-
ues for either the final volume or the final difference exist. Another 
more detailed noncontinuous outcome would be a time- to- event 
outcome, where we could compare summaries such as the median 
time (in days) until the tumors reach a certain threshold in size, if 
they do in fact reach that threshold.

Beyond the more intuitive outcomes in the prior paragraph, 
there exists a range of other possibilities that warrant exploration 
and rigorous empirical evaluation. First, since the final difference 
is intuitive, then the final ratio (final volume divided by initial vol-
ume) may be of utility as well. Second, the area under the curve 
(AUC) could be computed using the trapezoidal rule. There are 2 
options for the AUC calculation: (1) use only the first and last mea-
surements, or (2) use all timepoints since tumor size is generally 
evaluated on a set schedule over the course of the study. By using 
all timepoints, we may be able to capture more information about 
the tumor growth over the course of the study and potentially 
differentiate treatments that delay growth even if they have sim-
ilar volumes at the end of the study. The tumor growth inhibition 
index (TGII) is commonly used as a summary in PDX studies for 
each PDX line and is usually calculated on the basis of the ratio 
of mean tumor volume in different treatment groups. However, if 
TGII were the outcome for a single PDX line, new definitions with 

respect to individual mice by treatment would need to be defined 
and evaluated. With this motivation based on use of TGII in PDX 
studies, novel variations of the TGII were proposed and evaluated 
for this article. Since TGII is a ratio, it seems statistically intuitive 
to also investigate this outcome as the relative difference in tumor 
growth (using subtraction rather than division), though the clinical 
interpretation may not be as straightforward. The proposed TGII 
measures are defined in Section 2.1.

The remainder of this manuscript focuses on identifying the op-
timal outcomes for use within a single PDX study. Section 2 details 
the specific outcomes considered, details the simulation study, and 
introduces the real- world dataset of a PDX study. Results are sum-
marized in Section 3 for both the simulation study and real- world 
results. Sections 4 and 5 include a brief discussion and conclusion.

2  |  MATERIAL S AND METHODS

2.1  |  Outcomes of interest

The performance of 18 outcomes (15 continuous, 2 categorical, 1 
time to event) was compared via simulations, asymptotic properties, 
and application to a real- world PDX study. Conceptually, we clas-
sify the 15 continuous outcomes as either “individual” or “relative” 
outcomes (Table 1). “Individual” continuous outcomes are applied to 
each tumor, whereas “relative” outcomes are applied to the treated 
group only because the control group values are already incorpo-
rated into the calculations. Figures 1 and 2 present schematics for 
the calculation of selected outcomes for individual and relative 
measures, respectively, and are described in greater detail after in-
troducing the measures in the following paragraph.

Two “relative” continuous outcomes were used: (1) TGII, Δ (t)

Δ (c)
, and 

(2) relative difference, Δ(t) − Δ(c).; where Δ is the difference in the 
volumes between the final and the initial tumor measurement, t is 
the treatment group, and c is the control group. We proposed and 
evaluated 5 novel estimators each for both TGII and relative differ-
ence (Table 1). Four of these novel estimators are applied directly to 
each treatment group tumor, whereas one is a group- level estimator. 
The group- level estimator is calculated by estimating the individual 
counterparts separately. The other 4 estimators are identified on the 
basis of how treatment and control mice are compared for inference 
based on (1) random pairs, (2) matched pairs #1, (3) matched pairs 
#2, and (4) common denominator/difference. The random pairs es-
timator (1) is calculated by randomly pairing each treatment group 
tumor with a control group tumor given that a PDX study utilizes 
baseline tumor sizes that are approximately equal in each mouse. 
The matched pairs estimators (2 and 3) use 2 different variants of 
the k- nearest- neighbors approach to match treatment and control 
tumors together on the basis of their initial tumor volume to better 
account for potential heterogeneity (Table 1). The common denomi-
nator (TGII) or common difference (relative difference) estimator (4) 
compares each treatment group tumors with the average volume of 
the control group tumors.
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Figure 1 presents example calculations of the 5 “individual” out-
comes for a single case. Figure 1A presents the 10 measurements 
over 30 days for the case. Figure 1B highlights how the final volume, 
difference, and ratio calculations consider only the initial and final 
points in their calculations. Figure 1C provides the estimated AUC 
(all times), which uses all timepoints with an example calculation for 
one trapezoid between time D4 and D5. Figure 1D demonstrates the 
AUC (basic) calculation, which is simplified to ignore the data col-
lected between start and end and, in this case, overestimates the 
AUC. The methods presented in Figure 1B– D would need to be re-
peated for each case included in the study.

Figure 2 presents how to calculate the relative difference and 
TGII for a selection of “relative” approaches. Figure 2A introduces 
the individual- level data to be used in the example with 3 treatment 
cases and 3 control cases. Figure 2B demonstrates the calculations 
for the group- level outcomes that take the average volume within 
each group at study start and finish using all 3 observations within 
each group. Figure 2C displays how to implement the matched pairs 
#1 approach with the 2 nearest neighbors for the treatment case 
with a starting tumor volume of 200 mm3. Figure 2D illustrates how 
the common difference and common denominators are estimated 
where all control arm data are used to calculate the outcomes, again 
with respect to the single treatment case with a starting tumor vol-
ume of 200 mm3. The examples in Figure 2C,D are for only one case, 
and would need to be reported for each additional case included in 
the study.

For noncontinuous outcomes, the binary outcome was dichot-
omized for tumors that grew more than twice their initial volume. 

Additionally, a 4- category variable was evaluated following the 
RECIST criteria.14 Lastly, the time- to- event outcome uses the num-
ber of days until reaching a doubling of tumor volume.

2.2  |  Simulation parameters

The performance of the outcomes was compared using simulated 
tumor growth over time. Tumor volume was generated form a nor-
mal random walk: Yi = Yi−1 + �i where �i ∼N

(

�T ,�
2

T

)

 and Y0 ∼N
(

�S ,�
2

S

)

 
for a trend in tumor growth, T, and the starting tumor volume, S. The 
simulations were repeated under each combination of the following 
scenarios: sample size (small or large), signal strength (null, small, or 
large mean), and amount of noise (small or large variance). All start-
ing volumes were simulated from a common volume, �S, of 200 mm3 
with a variance, �2

S
, of 20 mm3. Small and large sample sizes were 

set at 10 and 20 tumors per treatment group, respectively. Control 
group tumor growth was set at 20 mm3 per day (e.g., if initial volume 
is 200 mm3 then final volume after 28 days equals 760 mm3). The 
small and large mean difference in growth rates between groups, 
�T (t) − �T (c), or signal strength, was set at −5 and − 10 mm3, respec-
tively (i.e., treatment group tumor growth was set at 15 mm3 and 
10 mm3 per day). Variances for the growth trends, �2

T
, were set at 

1000 and 10 000 for small and large variances, respectively. For the 
k- nearest neighbor approaches, the closest 5 measures were used. 
All simulations assume only one tumor per mouse. Data were simu-
lated in R v3.6.0 (Vienna, Austria) across 10 000 simulated trials for 
each scenario.

TA B L E  1  Summary of outcomes presented with mathematical formula; notation defined in footnote

Outcome type Outcome Notation

Continuous “individual” Final volume YF i

Final difference Δi = YF i − YSi

Final ratio YF i

YS i

AUC (all times) D2 −D1

2

(

YD1 i
+ YD2 i

)

+
D3 −D2

2

(

YD2 i
+ YD3 i

)

 + …

AUC (basic) DF −D1

2

(

YF i + YSi
)

Continuous “relative” TGII (group- level) Δ(t)

Δ(c)

TGII (random pairs) Δi (t)

Δj (c)

TGII (matched pairs #1) Δi (t)
1

k

∑k

j=1
Δj (c)

TGII (matched pairs #2) 1

k

∑k

j=1

Δi (t)

Δj (c)

TGII (common denominator) Δi (t)
1

n

∑n

j=1
Δj (c)

Relative difference (group- level) Δ(t) − Δ(c)

Relative difference (random pairs) Δi(t) − Δj(c)

Relative difference (matched pairs #1) Δi(t) −
1

k

∑k

j=1
Δj(c)

Relative difference (matched pairs #2) 1

k

∑k

j=1
Δi(t) − Δj(c)

Relative difference (common difference) Δi(t) −
1

n

∑n

j=1
Δj(c)

Note: Y = tumor volume, D1,D2, … ,DF = measurement day, S = D1 = start day, F = DF = final day, Δ = YF − YS, n = number of observations per group, 
k = k- nearest neighbors, i and j = individual observations, t = treated group, c = control group. The k- nearest neighbors are based on the starting 
tumor volumes, where the k number of control tumors are matched to each treated tumor.
Abbreviations: AUC, area under the curve; TGII, tumor growth inhibition index.
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2.3  |  Evaluation of outcome performance

Outcomes are evaluated with respect to their power, type- 1 error 
rate, relative bias of the mean, and relative error of the variance. 
Relative bias of the mean and relative error of the variance were 
calculated as the percent difference between the observed and true 
values, 

[

observed− true

true

]

 × 100, and is presented as the mean (95% con-
fidence interval [CI]) across the 10 000 simulated trials. The power 
was calculated as the proportion of iterations with statistically sig-
nificant results based on the threshold for statistical significance (α) 
of 0.05. Lastly, the null scenarios— where there is no mean difference 
between treatment and control tumor growth— were simulated to 
calculate the type- 1 error rate (same calculation as power under the 
null scenarios).

For statistical testing, the continuous outcomes were com-
pared via univariate linear regression. The “individual” continuous 
outcomes were compared between treatment groups, but “rela-
tive” continuous outcomes used an intercept- only model, after 
first subtracting 1 from each “relative” continuous outcome to 
shift to all outcomes in order to facilitate ease of interpretation 

since it tests the null value 0 instead of 1 (since, for TGII, the 
null hypothesis is Δ(t)

Δ(c)
= 1). The shift transformation was chosen 

because the log- transformation is not always mathematically 
tractable since TGII can be less than zero (i.e., if the tumor size 
decreases). Both categorical outcomes were tested using either 
a chi- squared test or a Fisher's exact test, depending on resulting 
counts per category. The time- to- event outcome was evaluated 
with a Cox proportional hazards model (using the coxph function 
from the survival package in R).

2.4  |  Application to real- world data

The data used to illustrate and implement these approaches examined 
the effect of the combination of AZD1775 provided by AstraZeneca or 
purchased from MolPool (Hong Kong) with Navitoclax purchased from 
Active Biochem (“drug AB”) versus a placebo treatment (“vehicle”). A 
subset of data from a past experiment on 1 PDX line for triple- negative 
breast cancer (TNBC012) is used to illustrate the different methods 
where 2 tumors were planted into the hind flanks of each mouse as 

F I G U R E  1  Schematic illustrating how to calculate “individual” outcomes with single tumor data over time (A), calculation of baseline/final 
measures (B), area under the curve (AUC) for all times (C), and basic AUC using baseline/final measures (D)

(A) (B)

(C) (D)
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described previously.2,15,16 These tumors were repeatedly measured 
at unequally spaced days. Tumors were excluded in the real- world data 
analysis if the initial starting volume was less than 70 mm3 or greater 
than 500 mm3. Given the small sample size within each treatment 
group, a simplifying assumption that all tumors were independent of 
each other was made for the real- world data.

The study was carried out in accordance with the National 
Institutes of Health (NIH) guidelines for the care and use of laboratory 
animals, and in a facility accredited by the American Association for 
Accreditation of Laboratory Animal Care. Approval from University of 
Colorado Animal Care and Use Committee was obtained before the 
initiation of experiments. All mice were female athymic nude mice.

3  |  RESULTS

3.1  |  Outcome evaluation

We highlight results from the simulation studies to identify the optimal 
outcomes based on each measure of performance, with Supporting 
Information presenting all results from the 8 simulation scenarios 

with respect to bias and variance (Table S1), type- 1 error (Table S2), 
and power (Table S3). Further, to help visualize the comparisons of the 
outcomes, histograms of both the relative bias and the relative error of 
the variance are shown in Figures S1 and S2 (for a single scenario: small 
sample size, large mean difference, large variance).

Good performance (assessed across all 8 simulation scenarios) for 
bias and variance was defined as having less than 3% average relative 
error, with the 95% confidence interval maintaining a narrow width 
(<10%) while covering 0%. Good performance for the type- 1 error rate 
was defined as <6%, where ideally the type- 1 error should be 5% (the � 
level). Good performance for power was subjectively labeled for each 
scenario on the basis of the results observed across all 18 outcomes. 
In Table 2, the 5 estimators for each TGII and relative difference were 
grouped together, and the categorical outcomes were grouped to-
gether owing to similar results across each set of outcomes.

3.1.1  |  Results for bias

All continuous outcomes except for TGII had good performance 
(Table 2). The largest bias was found in the scenario with a small 

F I G U R E  2  Schematic illustrating how to calculate select “relative” outcomes with three treatment and three control tumors (A), baseline/
final changes by group level summary (B), matched pairs for highlighted treatment tumor with k=2 (C), and outcomes based on common 
differences and denominators (D)

(A) (B)

(C) (D)
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sample size, small mean difference, and a large variance, though meas-
ures of TGII also had large biases in other scenarios (Table S1). In gen-
eral, the large- variance scenario showed more biased results. All 5 TGII 
estimators were more biased than the other continuous outcomes, 
where generally the random pairs estimator and the matched pairs 
#2 estimator were the worst of the TGII outcomes with respect to 
bias (Table S1). The TGII outcomes were the only outcomes to produce 
extreme outliers for the relative bias (Figures S1 and S2).

It should be noted that some estimators are equivalent for the 
estimation of the mean difference, as expected. Namely, the bi-
ases were equivalent for the following pairs: (1) the group- level 
TGII and the common denominator TGII; (2) the final difference 
and 3 of the relative difference estimators (group- level, random 
pairs, and common difference); (3) both matched pairs for relative 
difference.

3.1.2  |  Results for variance

For “individual” continuous outcomes, the final volume, final differ-
ence, and AUC (basic) outcomes consistently had the lowest relative 
error for variance, with less than 1% relative error from the true vari-
ance on average for all scenarios. The AUC outcome using all time-
points had an inflated variance across all scenarios (overestimated 
by 4%– 5% on average). The final ratio outcome underestimated the 
true variance in small- variance scenarios but overestimated the true 
variance in large- variance scenarios.

The relative difference outcomes that did not use the k- 
nearest- neighbors algorithm (group- level, random pairs, and 

common difference) are not equivalent for variance calcula-
tions— as opposed to the bias results— and all resulted in less than 
1% relative error from the true variance on average for all scenar-
ios. Conversely, the 2 matched pairs estimators for relative differ-
ence have equivalent variance calculations, and these 2 estimators 
overestimated the variance for both small sample sizes (>4%) and 
large sample sizes (>9%).

All 5 TGII estimators have unique results for variance, and all 
overestimated the variance on average. Notably, the most unsta-
ble estimates for the variance came from the random pairs and the 
matched pairs #2 TGII estimators. The matched pairs #1 TGII esti-
mator was unstable for large variances, but only moderately over-
estimated for small variances (by 8%– 13% on average, Table S1). 
Similarly, the group- level TGII estimator was generally unstable for 
large variances, but only overestimated for small variances by 3%– 
6% on average (Table S1). The best- performing TGII estimator for 
variance estimation was the common denominator, where it was also 
generally unstable for large variances, but only overestimated for 
small variances by 1%– 3% on average (Table S1). Both the group- 
level and common denominator TGII estimators had narrower CIs 
and fewer occurrences where the variance estimate was >1000% 
error (Table S1).

3.1.3  |  Results for type- 1 error

Stable type- 1 error rates were labeled as such for simulation results 
with <6% false positives across all scenarios. All “individual” con-
tinuous outcomes and the time- to- event outcome had stable type- 1 

Outcome
Type- 1 
errora Power Bias Variance

Final volume + + + +

Final difference + + + +

Final ratio + + + −

AUC (all) + − + −

AUC (basic) + + + +

TGIIc − − − −

Relative differencec − + + +

Categorical +b − Not evaluated Not evaluated

Time to event + − Not evaluated Not evaluated

aGood (+) type- 1 error rates were defined as less than 6% false positives (i.e., less than 1% inflated). 
Good power was defined separately for each scenario as being within 10% of the highest observed 
power, which was set from the outcomes with stable type- 1 error rates. Both good bias and good 
variance were defined as having less than 3% average relative error, having the 95% confidence 
interval covering 0% error, and having the confidence interval spanning less than 10%. To be 
represented as good (+) in this table, the outcome must be “good” in all 8 simulated scenarios. 
Minus signs (−) denote “poor” results, which was defined as the opposite of good.
bType- 1 error for the 2 categorical outcomes (binary and the 4- category RECIST) had type- 1 error 
rates between 0% and 3% (expecting 5%), which may be a result of extremely poor power for these 
outcomes.
cSummarized for all 5 estimators (more specific results can be found in Supporting Information 
Tables S1– S3).

TA B L E  2  General summary of 
performance across 8 simulated scenarios 
with good (+) results across all scenarios 
or poor (−) results
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error rates. Both categorical outcomes had very low type- 1 error 
rates (some scenarios close to or equal to 0% and all <3%, Table S2).

For relative difference, both the group- level and the random 
pairs estimators had stable, if not improved, type- 1 errors. However, 
the other 3 estimators for relative difference (matched pairs #1, 
matched pairs #2, and common difference) had inflated type- 1 error 
rates near 15% (Table S2). Similarly, for TGII, both the group- level 
and random pairs estimators had mostly stable type- 1 errors, al-
though the random pairs results were not as consistent across sce-
narios (from 4% to 7%, Table S2). The matched pairs #1, matched 
pairs #2, and common difference TGII estimators had type- 1 error 
rates 13% or greater. Furthermore, the matched pairs #2 TGII esti-
mator had type- 1 error rates between 23% and 38%.

It should be noted that some estimators have equivalent type- 1 
error results. The 2 “relative” estimators that use the control group 
mean as the relative value (i.e., common denominator and common 
difference) were equivalent. The 2 k- nearest neighbors relative dif-
ference estimators were also equivalent.

3.1.4  |  Results for power

The results for power are shown in decreasing order for sets of out-
comes: (1) those with controlled type- 1 error rates, and (2) those 
with inflated type- 1 error rates. First, for those with controlled 
type- 1 errors, the group- level TGII estimator had the highest power 
(Table S3), followed by the final volume, final difference, and AUC 
(basic). The next- highest power was seen for the final ratio and both 
the random pairs and group- level relative difference estimators, fol-
lowed by the AUC with all timepoints. The worst power for continu-
ous outcomes was observed for the random pairs TGII estimator. 
The time- to- event outcome had less power than all continuous out-
comes, but was still higher than the extremely low power observed 
for the 2 categorical outcomes (Table S3). Second, for those with 
inflated type- 1 errors, the 2 “relative” estimators that use the con-
trol group mean as the relative value (i.e., common denominator and 
common difference) had the highest power. Both matched pairs es-
timators for relative difference had the next- highest power, followed 
by the matched pairs estimators for TGII.

Similar to the type- 1 error results, it should be noted that some 
estimators are equivalent for the power results. The 2 “relative” 
estimators that use the reference group mean as the relative value 
(i.e., common denominator and common difference) were equiva-
lent. The 2 k- nearest neighbors relative difference estimators were 
equivalent.

3.2  |  Application to real- world data

Only one PDX line was used (Figure 3) where there were 8 tumors 
included for each treatment group. The starting volume (mm3) for 
tumors in the “vehicle” group was 74, 133, 134, 141, 230, 280, 353, 
and 451; the volumes in “drug AB” were 99, 101, 115, 115, 186, 304, 

354, and 485. All 18 outcomes were tested for significance with this 
dataset (Table 3). The results reflect a null study for all continuous 
and categorical outcomes, where none was statistically significant 
(i.e., p < .05). Results generally reflected these null findings with little 
to no difference between the 2 groups (Table 3). Both categorical 
outcomes (binary and the 4 categories of RECIST) did not distinguish 
between treatment groups because all but one “drug AB” tumor at 
least doubled in size compared with their original volume. The time- 
to- event outcome did produce a significant result (p = .010), indicat-
ing that the treatment was better than the control with respect to 
the time until the tumor doubled, where the median days to tumor 
doubling was 15.5 days for the control group and 24 days for the 
treated group. These results help to illustrate the practical chal-
lenges of selecting outcomes, such as having most data in a single 
categorical group, and the information ultimately contained in the 
summary, such as the time to tumor doubling versus just considering 
volume absent time.

4  |  DISCUSSION

The simulation results and data application provide evidence that 
certain outcomes perform better with respect to statistical con-
siderations such as the bias of the estimator, its variance, and the 
ability to detect a difference (power) or lack thereof (type I error). 
If one outcome is to be selected, we would recommend prioritiz-
ing individual- level measures of the final volume or difference. 
Alternatively, the use of a time- to- event measure may be advanta-
geous given its performance in the simulation studies and the ability 
to estimate the median or mean time until an event occurs within 
each group. However, since follow- up measurements are set at fixed 
intervals, the day that a tumor reaches a certain threshold may not 
actually be observed and reflect interval censoring. Thus, the time- 
to- event outcome may be an overestimate of the true time until the 
event, for example, when the tumor has the event at day 5 but it is 
not observed until its follow- up measurement on day 7.

Generally, TGII is not recommended for use as a statistical out-
come given its poor performance across these measures. However, if 
there is a strong desire to use TGII as the outcome, then the common 
denominator estimator (or the group- level estimator since these 2 
are equivalent for estimation of the mean) would be the best option. 
Additionally, the 2 categorical outcomes are further scrutinized be-
cause of the limited interpretation that these provide and the loss 
of information when using such outcomes. Sharma, Maitland, and 
Ratain previously discussed that using the RECIST categories as the 
primary outcome is inadequate in many scenarios.17

When considering unplanned missing data, the most com-
mon source comes from euthanized mice, which poses a problem 
for the more straightforward univariate analyses. Unfortunately, 
the common approach used in cross- sectional studies of imputing 
with the last observation carried forward (LOCF) is problematic.18 
Fortunately, we observe the cause of the missing data (i.e., we have 
the previous volume that crossed the threshold to euthanize), and 
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there are analysis methods that adequately handle this type of miss-
ingness in a multivariable regression framework with maximum- 
likelihood- based methods.19

The application to the real- world data demonstrated similar null 
statistical conclusions for most outcomes except for the time to event 
of tumor doubling. However, it would be naïve to assume that all out-
comes also have the same interpretation or implications, where the 
time to event addresses a different underlying question of interest than 
raw tumor size or relative change in tumor size. If timing is a crucial as-
pect of the study, then methods accounting for the longitudinal nature 
of the data and the research question of interest should be used.

There are limitations to consider. First, our simulations used only 
linear growth trends, where other nonlinear trends may be more re-
alistic. However, many analytical approaches propose transforming 
non- normal data first to meet modeling assumptions. Second, tumor 
volumes have a lower limit (i.e., volumes cannot be less than zero), yet 
we assume that the outcome is normally distributed without a lower 
cutoff in the simulations. However, it is encouraging that the analo-
gous results from other simulations with a lower truncation (not in-
cluded) did draw different conclusions. In practice, there are other 
viable approaches that would account for the lower truncation, such 
as a mixture model in a multivariate regression framework. Third, not 

all 18 proposed outcomes are entirely unique. For example, the final 
difference is essentially the same outcome as the group- level relative 
difference estimator, but they were utilized in different testing frame-
works. Another example worth noting is that the TGII versus relative 
difference estimand are very similar, where the null hypothesis is al-
gebraically the same, but the outcomes follow different distributions. 
Fourth, we acknowledge the limitation of using simple summary statis-
tics (e.g., means) for the TGII results, since we observed extreme out-
liers. Fifth, the outcomes tested here are not an exhaustive list of all 
relevant outcomes, nor is this an exhaustive list of all relevant ways to 
use these outcomes. Furthermore, certain data transformations may be 
justified, such as the log- transformation (especially with the final ratio 
where log(x/y) becomes log(x) − log(y)). Also, certain situations may also 
render some outcomes useless for comparison, such as the binary out-
come of “doubling in size,” if in fact all tumors doubled in size.

A final limitation worth highlighting stems from studies that use 
multiple PDX lines but summarize the results within each PDX line 
separately. While not directly addressed in this paper, it is possible 
to generalize our results across multiple PDX lines by using statisti-
cal methods that can account for the relevant potential sources of 
correlation (e.g., spatial, temporal, hierarchical). In other words, one 
might see 2 options for analyzing data with multiple PDX lines: (1) 

F I G U R E  3  The tumor volumes of the 8 tumors in each treatment group. (A) All measurements taken across the span of the study. (B) Only 
the first and last measurements for each tumor

(A) (B)



256  |    PATTEN et al.

less efficiently, by repeating the same analysis for each PDX line, or 
(2) more efficiently, by using a single mixed- effect regression model, 
which could appropriately model the complex correlation within and 
across PDX lines in a single overarching study. More specifically, 
we recommend modeling the correlation in tumor growth with a 
Kronecker product correlation structure to account for the repeated 
measures over time and the spatial correlation of the 2 tumors in a 
single mouse, all nested in a random intercept for each PDX line, pro-
vided that the feasibility of fitting complex statistical models in not a 
concern. This is similarly reflected in the results of Oberg et al., who 
explored the use of linear mixed- effects models with complex cor-
relation structures in the context of ovarian cancer PDX studies.20 
Additional work has examined the need for unified frameworks of 

PDX studies and their evaluation to better ensure replicability and 
optimal use of study data.5,21,22

5  |  CONCLUSION

Final volume and final difference showed encouraging performance 
across all 4 properties evaluated. The only notable shortcoming for 
the AUC (basic) outcome was the decreased power is some sce-
narios. The AUC (all timepoints) outcome had inflated variance in all 
scenarios explored, leading to decreased power. The final ratio per-
formed much better than the other ratio- based outcomes (i.e., TGII), 
but still had decreased power and unstable variance estimates. None 
of the TGII estimators performed as well with respect to statistical 
properties as the more straightforward final volume or final differ-
ence for any of the evaluations in any of the scenarios and were also 
prone to extreme under or overestimates for both bias and variance. 
This suggests that, while TGII estimators may be useful as a descrip-
tive summary, other measures may have better properties for statis-
tical analysis with respect to power, type I error, and bias. Although 
the relative difference estimators were unbiased, some variations 
had inflated type- 1 error rates. The 2 categorical outcomes have 
substantially lower power than all other outcomes. The time- to- 
event outcome has inherent measurement error (biased time to 
event due to the timing of measurements) and decreased power. If a 
time- to- event outcome is desired, then the study design should con-
sider measuring the tumor volumes on all days— rather than at fixed 
intervals— to eliminate the measurement bias introduced by interval 
censoring. Furthermore, if the timing of the study is of interest, then 
other time- varying regression methods should also be considered.

Outcome selection is partially a subjective choice for evaluating 
PDX studies, which leads to challenges in the consistency of reporting 
findings in this field. The approach using “relative” continuous out-
comes, such as the TGII, is inferior to using “individual” continuous 
outcomes, such as the raw tumor volume, based on the simulation 
results presented in this paper. Our results suggest that some of the 
more straightforward, intuitive outcomes are the most consistent and 
powerful, while more complex measures or the proposed TGII sum-
maries are more variable and perform poorly. While these simulations 
considered only the case with 2 groups within one PDX line, the re-
sults and methods are generalizable to cases with multiple treatments 
and multiple PDX lines. It is also worth noting that these results are not 
exclusive to PDX studies and may be applied to other contexts, such as 
for studies of xenografting cancer cell lines. The simulation results give 
empirical reasoning to specify the outcome as either the final tumor 
volume or the change in volume from baseline. Fortunately, these out-
comes work well in a multivariate regression model, which may be the 
most efficient analysis approach for PDX studies.
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TA B L E  3  Results from univariate testing for all 18 outcomes on 
real- world data

Outcome Estimatea p- Value

Final volume −1.30 .996

Final difference 3.29 .987

Final ratio 0.40 .752

AUC (all times) −353.18 .932

AUC (basic) 1176.58 .810

TGII (group- level) 1.01 .988

TGII (random pairs) 0.54 .359

TGII (matched pairs #1) 0.16 .691

TGII (matched pairs #2) 0.56 .337

TGII (common denominator) 0.01 .984

Relative difference (group- level) 3.29 .988

Relative difference (random 
pairs)

3.29 .987

Relative difference (matched 
pairs #1)

52.28 .748

Relative difference (matched 
pairs #2)

52.28 .748

Relative difference (common 
difference)

3.29 .984

Binary – 1.000

Categorical (RECIST) – 1.000

Time to event of tumor doubling 0.12 .010

aFirst, the 5 estimates for the “individual” continuous outcomes 
are mean differences between treatment groups, where a positive 
estimate represents larger tumors in the treated group compared 
with the control. Second, the 5 estimates for TGII directly represent 
the estimand of interest 

(

Δ(t)

Δ(c)

)

; values greater than 1 represent larger 
tumor growth in the treated group compared with the control. Third, 
the 5 estimates for relative difference are mean differences between 
treatment groups, which is also the estimand of interest (Δ(t) − Δ(c) ); 
positive values represent larger tumor growth in the treated group 
compared with the control. Fourth, estimates are not provided for the 
categorical outcomes because all tumors had the same fate for both 
treatment groups. Lastly, the estimate for the time- to- event outcome 
is a hazard ratio for the treatment group compared with the control 
group; a value less than 1 represents a lower hazard of the tumor 
doubling compared with the control.
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