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The emerging number of single-cell RNA-seq (scRNA-Seq) datasets allows the characterization of cell
types across various cancer types. However, there is still lack of effective tools to integrate the various
analysis of single-cells, especially for making fine annotation on subtype cells within the tumor microen-
vironment (TME). We developed scWizard, a point-and-click tool packaging automated process including
our developed cell annotation method based on deep neural network learning and 11 downstream anal-
yses methods. scWizard used 113,976 cells across 13 cancer types as a built-in reference dataset for train-
ing the hierarchical model enabling to automatedly classify and annotate 7 major cell types and 47 cell
subtypes in the TME. scWizard provides a built-in pre-training set for user’s flexible choice, and gives a
higher accuracy for annotation subtypes of tumor-derived T-lymphocytes/natural killer cells (T/NK) and
myeloid cells from different cancer types compared with the existing five methods. scWizard has good
robustness in three independent cancer datasets, with an accuracy of 0.98 in annotating major cell types,
0.85 in annotating myeloid cell subtypes and 0.79 in annotating T/NK cell subtypes, indicting the wide
applicability of scWizard in different cell types of cancers. Finally, the automatic analysis and visualiza-
tion function of scWizard are presented by using the intrahepatic cholangiocarcinoma (ICC) scRNA-Seq
dataset as a case. scWizard focuses on decoding TME and covers various analysis flows for cancer
scRNA-Seq study, and provides an easy-to-use tool and a user-friendly interface for researchers widely,
to further accelerate the biological discovery of cancer research.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The breakthrough of the cancer research and anti-tumor ther-
apy largely relies on the understanding of the heterogeneity of cell
types and crosstalk between cells within the tumor microenviron-
ment (TME) [1]. With the rapid development of single-cell RNA
sequencing (scRNA-seq), it is now possible to provide the express-
ing patterns of each cell type in the TME and decipher the intercel-
lular communication networks to explain their roles in cancer
progression. The bioinformatics packages and analysis methods
including Seurat [2] have been developed according to the require-
ments, which has accelerated cancer research.

To speed up the analysis efficiency of single cells, numerous
automated software and pipelines have been developed for
scRNA-seq data including scCancer [3], ASAP [4], dropClust [5],
iS-CellR [6], Cerebro [7] and ascend [8]. In terms of tool applicabil-
ity, these tools have limitations in personalized selection and defi-
ciency in providing essential features, such as lacking pseudo-time
trajectory analysis in most tools except Cerebro [7] and lacking
cell–cell interaction analysis in most tools except scCancer [3]
(Table 1). As cell-type annotation is an essential step in analyzing
scRNA-seq data, which is time-consuming and subjective, therein,
scCancer, dropClust and ASAP have incorporated the cell-type
annotation function. However, dropClust only enables to annotate
the peripheral blood mononuclear (PBMC) cells [5] and ASAP uses
CellMarker and PanglaoDB databases for cell-type annotation [4],
which is not always applicable for cell subtypes within the TME.
scCancer uses one-class logistic regression (OCLR) model and only
annotate major cell types without subtypes annotation [3]. Most
importantly, there are few automation pipelines specifically for
cancer scRNA-seq data except scCancer.
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Table 1
Function comparison with multiple tools.

scWizard scCancer dropClust ASAP Cerebro ascend iS-CellR

Quality control U U U U U U U

Inference of CNV U U

Batch processing U U U U U

Cell clustering U U U U U U U

Cell subcluster annotation U U U U

Cell-cell interaction U U

Pseudo-time trajectory U U

TF regulatory network analysis U

Correlation analysis U U

Gene set signature estimation U U U U U

Visualization U U U U U U U
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Until now, there have been several methods and tools special-
ized for cell type annotation developed, but few tools for classify-
ing and annotating cell types specifically for cells within the TME.
The most commonly used tools are CellAssign [9], SCSA [10], SCINA
[11], scmap [12], SingleR [13], CHETAH [14], SingleCellNet [15],
ACTINN [16] and scPred [17]. CellAssign, SCSA and SCINA are
dependent on prior knowledge and challenged by the fact that
there is not a canonical set of marker genes for all cell types and
subtypes in the TME. scmap and SingleR are correlation-based
tools, a general reference data set is included with the tool, but
they may not perform well when a reference is not specifically
matched to the query data set [18]. SingleCellNet, ACTINN and
scPred are supervised learning methods, but they classify cells
directly to a ‘‘terminal” cell type and overlook the hierarchical rela-
tionships between cell types. For instance, distinguishing CD8 T
cells from CD4 T is relatively direct, but sometimes cannot accu-
rately distinguish CD8+ exhausted T cells from Treg cells, directly.

Here, we developed scWizard, a shiny-based R package that
aims to comprehensively process scRNA-Seq data for cancer
research. Except for integrating 11 fundamental analyses (Table 1),
scWizard highlights the cell annotation function, which is based on
the deep neural network study to establish an accurate prediction
model with hierarchical classification for classifying cell types
within the TME. 113,976 cells with 7 major cell types and 47 sub-
types labeled from 199 samples across 13 cancer types were built
in scWizard as a reference database for pre-training the model,
which is ready to automatically run on diverse scRNA-seq data sets
of tumors and is able to effectively distinguish cell subtypes within
the TME. Notably, scWizard is a point-and-click tool packaging
automated methods into easy-to-use workflows to facilitate
diverse scRNA-Seq analysis and to visualize the results for the
researchers without sufficient bioinformatics experience. scWizard
is available as an R package on GitHub (https://github.com/Dula-
b2020/scWizard).
2. Methods

2.1. Data collection and processing

All datasets used in this study were publicly available and the
detailed information was presented in Table S1. We organized
these datasets for building annotation model, assessing perfor-
mance and using them as the case study. To create the training
set of major cell types and their corresponding subtypes in TME,
we downloaded 113,976 cells from 10 datasets including 199 sam-
ples across 13 cancer types. The cell type information of major cell
types, endothelial cells, myeloid cells and T/NK cells were provided
by the original research. For the stromal cell subtypes, we manu-
ally annotated stromal cells by canonical cell markers (Table S2)
and investigated gene expression patterns of cells in breast cancer
(BC), colorectal cancer (CRC), lung cancer (LC), ovarian cancer (OV),
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pancreatic ductal adenocarcinoma (PDAC) and squamous cell car-
cinoma (SCC) datasets. In the comparison of accuracy assessment
with other methods, four cancer datasets including lymphoma
(LYM), pancreatic adenocarcinoma of myeloid cells (Mye_PAAD),
breast cancer of T/NK cells (T/NK_BRCA) and kidney renal clear cell
carcinoma of T/NK cells (T/NK_KIRC) were applied. In assessment
robustness of cell type annotation function, independent datasets
from publicly available human Merkel cell carcinoma (MCC), CRC
and LC with labeled cell type were obtained. For application
description, we used a publicly available human intrahepatic
cholangiocarcinoma (ICC) scRNA-seq data set. For all datasets
described in Table S1, only cells that passed the quality control
(QC) of the original publication and assigned cell types were
included.
2.2. Clustering based on Seurat

Seurat was used to define a standardized scRNA-seq pipeline in
scWizard. This step included in scWizard currently were dimen-
sion reduction, cell clustering and differential gene expression
detection. For cell clustering, scWizard provided Seurat’s clustering
algorithm. Non-linear dimension reduction techniques were used
to visualize all cells in two dimensions using Uniform Manifold
Approximation and Projection (UMAP) techniques. UMAP was used
to visualize the cell clusters, gene expression of interest, GSVA
score, or sample information with an unannotated ‘‘single-cell
map” image. The different gene analysis was based on a two-
sided Wilcoxon rank-sum test with Bonferroni FDR correction.
2.3. Quality control

By default, scWizard defined cells with <200 genes detected, >
10,000 genes detected, >5 % of reads mapping to mitochondrial
RNA as low-quality cells and filtered them out of the downstream
analysis.
2.4. Batch processing

scWizard provided two methods to remove batch effects and
performs multi-sample integration analysis by inserting the Seurat
[2] and Harmony [19] algorithms. Both Harmony and Seurat are
the methods to remove batch effects, in which Harmony performs
well on datasets with common cell types and different techniques
and the comparatively shorter runtime of Harmony also makes it
suitable for initial data exploration of large datasets [20]. The
methods and parameter could be chosen and adjusted according
to the user’s needs.

https://github.com/Dulab2020/scWizard
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2.5. Cell type annotation model based on neural network learning

The deep neural network structures and the learning algorithms
were implemented using ReLU (Rectified Linear Unit) and softmax
activation function. The neural network contained one input layer,
one output layer, and one hidden layer for the major cell annota-
tion model and three hidden layers for the subtype cell annotation
model, respectively. The input layer had a number of nodes equal
to the number of genes in the training set after principal compo-
nents analysis (PCA). The output layer had a number of nodes equal
to the number of cell types in the training set. In order to allow
users to have more flexible choice, the number of hidden layer
nodes could be adjusted according to users’ needs. How the adjust-
ment was made and the criteria to define the number of hidden
layer nodes was provided in Supplementary File-User Manual.

We designed a ‘‘two-step” annotation model for the cell-type
classification, which was applied to individual cells before cluster-
ing for major cell types and after clustering for subtype annotation.
First, we combined the training dataset labeled each major cell
type and prediction dataset together, and performed PCA dimen-
sion reduction. Second, the training dataset and prediction dataset
were separated, and training data was used to build the model.
Then, the prediction data could be assigned by the model corre-
sponding to the major cell type of each cell characteristic and scor-
ing the possibility of each cell labeling as each cell type. The
maximum likelihood was chosen to annotate this cell as a specific
major cell type.

Each major cell type cluster was separated from prediction data
and divided by major cell type, then each major cell type was sub-
clustered based on a specific resolution by Seurat. The subclusters
contained in each major cell type were evaluated, and the pre-
dicted subcluster corresponding to the largest number of cells
within the original subcluster was defined as a specific cell sub-
cluster. The prediction data could be assigned by the model corre-
sponding to the cell subtype of each subcluster characteristic. The
clustering before subtype cell annotation could increase the fault
tolerance of the model and improve the accuracy of annotations.

To evaluate the overall performance based on the total training
dataset, we performed a tenfold validation test. The dataset was
divided into ten parts, nine of which were used as training data
and one as test data in turn and the average accuracy of ten times
was used as the estimate accuracy of the algorithm model and the
reliability of the training datasets. The parameters including learn-
ing rate, hidden layer nodes and regularization rate could be
adjusted in the operation interface according to users’ needs.

2.6. Comparison with other cell type annotation tools

To evaluate and compare the performance of scWizard, we
obtained five most commonly used and publicly available scRNA-
seq classification tools span three main methodological
approaches, including CellAssign, SCSA, ACTINN, SingleR and Sin-
gleCellNet. These packages were installed either through their Bio-
conductor or from their GitHub page. Four independent datasets,
including T/NK cells and myeloid cells derived from different can-
cer tissues, were used to evaluate and compare the accuracy
between these tools with scWizard. Each dataset was divided into
training sets and testing sets, and then organized into the file for-
mat required by each tool according to the user manual. For the
training sets, scWizard, ACTINN, SingleR and SingleCellNet used
the same datasets for training model in annotating these cell sub-
types. As CellAssign and SCSA were marker-based annotation tools,
we used the classical markers of T/NK cell subtypes for annotating
subtypes of T/NK cells (Table S3). As the conventional markers
were not comprehensive and representative for subtypes of mye-
loid cells, the differentially expressed genes of each cell subcluster
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in the myeloid cells of original annotation information were used
as markers for annotating subtypes of myeloid cells (Table S3). In
the training process, the default settings were applied in each
method.

The output results were the types predicted for cells in the val-
idation datasets. To calculate the accuracy, we defined cells as
‘‘consistent” if the predicted cell types matched their annotated
cell types in the original study, otherwise, they were ‘‘inconsistent”
or ‘‘unknown” when the results were unmatched with original data
or unable to identify, respectively. Then, we compared the number
of ‘‘consistent”, ‘‘inconsistent” and ‘‘unknown” cells to the total cell
number of each cell cluster.
2.7. Performance evaluation of cell type and subtype annotation in
independent datasets

The trained model was then applied to independent datasets
with the cell information labeled to evaluate the accuracy of scWi-
zard. The predicted results were labeled as ‘‘consistent”, ‘‘un-
known”, and ‘‘inconsistent”.

The independent MCC datasets including 11,024 cells with the
labeled cell information were used to evaluate the major cell anno-
tation capability of scWizard. 11,717 myeloid cells from CRC, and
45,555 T cells from LC were used to evaluate the robustness of
scWizard in cell subtype annotation. Once the model had been
evaluated for its robustness and wide applicability, it could be used
to annotate single cells from independent cancer dataset for
applications.
2.8. Integrative basic analysis

The cell malignancy estimation, gene set signatures estimation,
cell–cell interaction, pseudo-time trajectory and transcription fac-
tor regulatory network analysis were the routine analyses for
users’ choice. Users could adjust parameters in the analyses pro-
cess. The information of packages and methods used in scWizard
was summarized in Table S4.

The methods of infer copy number alterations (CNV) were refer-
enced from previous study [3,21] and we applied the algorithm of
R package infercnv to estimate single-cell CNVs by scRNA-seq data.
We used the GSVA method and gene sets from MSigDB database
[22] to calculate the angiogenesis score. scWizard calculated signa-
ture scores of any hallmark gene sets and users could upload gene
lists obtained from MSigDB or their own interested gene signature
to the function. scWizard performed the cell–cell interaction by
CellphoneDB method [23], which characterized ligand-receptor
interactions extent over cell subclusters. To identify significant
interactions, users could filter weak gene pairs according to the P
value and their mean expression in cell clusters and estimate the
global interaction strength between any two cell clusters by the
number of the remaining gene pairs. These global interaction
strengths between clusters by a bubble chart and annotated clus-
ters with their cell-type fractions for convenience of comparison
could be visualized in scWizard. scWizard integrated the Monocle
R package [24] to realize its pseudo-time trajectory analysis func-
tion and sorted cells by their expression. SCENIC [25], based on co-
expression and motif analysis, to calculate scRNA-seq data regula-
tion network relationship reconstruction and cell state identifica-
tion, was also introduced to scWizard.
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3. Results

3.1. Comprehensive overview of the scWizard workflow

scWizard consists of four major modules including QC, cell
annotation model, multi-scRNA-seq personalized analysis, and
visualization, which enables the comprehensive analysis functions
compared to the existing workflows (Fig. 1, Fig. S1). For utilizing
the shiny webserver to analyze the user-uploaded data, users need
to install scWizard and open the analysis interface. The installation
guides and analysis interface guides are presented in the user man-
ual (Supplementary File: User Manual).
3.2. Model for classification and annotation cell major types/subtypes
within the TME

By default, scWizard includes 113,976 cells with cell major type
and subtype information from 10 datasets as the pretraining sets,
and also optionally allows users to add a custom reference data-
base for training. To make the classification and annotation results
more accurate and easier to interpret, hierarchical classification is
applied and the process is divided into two steps: major cell type
and subtype annotation, including 7 cell types and 47 cell subtypes
respectively (Table S5). The major cell types include epithelial cells,
T/NK cells, myeloid cells, B lymphocytes, fibroblasts, endothelial
cells, and mast cells. The subtypes of T/NK cells, myeloid cells,
fibroblasts and endothelial cells were divided into 11, 16, 10 and
9 subtypes, respectively (Table S5). To ensure the robustness of
scWizard algorithm and the reliability of the training datasets,
we performed 10-fold cross-validations on the training datasets,
and obtained the average 0.97 of concordances in major cell anno-
tation and average 0.81 to 0.89 accuracy in subtype cell annotation
(Table S6).
3.3. Comparison with published methods on cell type annotation

We sought to compare the cell annotation performance of scWi-
zard with five widely used methods based on different computa-
tional algorithms, which were representatives for the marker-
based, correlation-based and supervised learning-based methods,
including CellAssign, SCSA, ACTINN, SingleR and SingleCellNet.
We applied each method to four independent scRNA-Seq datasets
for annotating cell subtypes. Due to scWizard used hierarchical
model, we evaluated scWizard at two levels of the cell type hierar-
chy, directly annotating (scWizard) and annotating after clustering
(scWizard_cluster).

As shown in Fig. 2 and Table S7, scWizard performed significant
advantage in annotating cell subtypes within the TME. In the LYM
dataset, scWizard and scWizard_cluster performed robust with
achieving over 0.66 accuracy for annotation subtypes of Mye_LYM,
ACTINN had the accuracy of 0.59. However, SingleR, SingleCellNet,
SCSA and CellAssign had an accuracy lower than 0.5 (Fig. 2,
Table S7, Fig. S2). In the Mye_PAAD (Fig. 3), T/NK_BRCA (Fig. S3)
and T/NK_KIRC (Fig. S4), scWizard achieved the accuracy of 0.64,
0.71 and 0.66, scWizard_cluster improved the accuracy to 0.69,
0.89 and 0.76, respectively (Fig. 2, Table S7). However, the accuracy
of ACTINN, SingleR, SingleCellNet, SCSA and CellAssign only had
average of 0.57, 0.45, 0.5, 0.5 and 0.1 in Mye_PAAD, T/NK_BRCA
and T/NK_KIRC, respectively (Fig. 2, Table S7). Besides, F1 score
was also calculated and the results showed that scWizard_cluster
obtained 0.740 in annotating T/NK subtype cells in T/NK_BRCA,
which is higher than other methods with 0.574, 0.553, 0.572,
0.297, 0.118 in ACTINN, SingleR, SingleCellNet, SCSA and CellAs-
sign, respectively (Table S7). Taken together, these results suggest
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that scWizard performed better than alternative workflows in both
accuracy and F1 score for annotation cell subtypes within the TME.

3.4. Performance evaluation of cell annotation in the independent
cancer scRNA-seq datasets

In order to evaluate the robustness of scWizard’s performance
in different cancer scRNA-seq datasets, we applied three indepen-
dent datasets from human MCC, CRC, and LC. We examined
whether the output cell annotation was consistent with the labels
provided by the original study and found accuracy was 0.98 in
major cell types from MCC (Fig. S5a, Fig. S5b, Table S8). When pre-
dicting the subtypes for myeloid cells from CRC dataset, the accu-
racy among 16 subtypes was 0.85. The results showed that the
dendritic cells, monocytes and macrophages could be clearly and
correctly distinguished between each other, while the inconsistent
cells were mainly found in the internal subtypes of monocytes or
macrophages, especially between Mono_CD14 and
Mono_CD14CD16 subtypes (Fig. S5c, S5d, Table S9).

The accuracy of predictions on T cell subtypes was 0.79 in LC
(Fig. S5e, S5f, Table S10). The results showed that the inconsistency
was mainly between CD8Tn and CD8Teff subtypes. We evaluated
the expression of conventional cell markers of each subtype in all
clusters, aiming to inspect whether the ‘‘inconsistent” results were
caused by inaccurate annotations in the original data set, cell
inherent similarity or scWizard performance. Therein, 2838 CD8Tn
in LC (Table S10) from original data were annotated as CD8Teff by
scWizard. After evaluating the expression of canonical markers, the
‘‘inconsistent” subcluster was found to express both effector T cell
marker gene KLRG1 and naive T cell marker TCF7 in LC (Fig. S5g),
indicating these clusters may represent an intermediate cell state
or gene-expression gradient. The above results show that the
inconsistency might be largely due to the subclusters as an inter-
mediate cell state.

3.5. Application of scWizard in the integrative analysis

To show how scWizard is used for the analysis of scRNA-seq
data in cancer research, we performed an analysis on the ICC
scRNA-seq data set to explore the particular cell subtypes and
molecules involved in angiogenesis.

3.5.1. Cell type classification and annotation
We collected cells originating from tumor and tumor-adjacent

tissue and performed QC and cell annotation function. According
to the results of the annotation module, a total of 8 clusters
emerged (Fig. S6a) and the cells were colored based on the expres-
sion of marker genes for each major cells for verifying the accuracy
of annotation (Fig. S7). Few cells were named Unknown cells and
discarded in the downstream analysis. Subsequently, the gene
expression of subtypes and their corresponding marker of fibrob-
lasts (Fig. S6c), myeloid cells (Fig. S8a), T/NK cells (Fig. S8b) and
endothelial cells (Fig. S8c) were obtained by scWizard.

3.5.2. Cell malignancy estimation
Using epithelial and non-epithelial cell clusters, we identified

copy number alterations (CNAs) for each sample by InferCNV. An
InferCNV clustered heatmap was created, which corresponded to
the normalized expression values of normal cells plotted in the
top panel and tumor epithelial cells in the bottom panel
(Fig. S6d). We found the copy-number alterations in epithelial can-
cer cells exceeded non-malignant cells including endothelial cells
and fibroblasts, which were consistent with ICC tumors divided
from epithelial origin. In the resultant CNA heatmap, the regions
of gain were depicted in red and regions of loss in blue.



Fig. 1. Overview of scWizard framework. The functionality of scWizard can be divided into three modules including Input Data, Single-Cell Analysis and Visualization. Single-
Cell Analysis module include quality control, cell annotation, cell clustering, batch processing, difference analysis, gene set variation analysis, cell receptor ligand interaction
analysis, pseudotime analysis, single-cell transcription factor analysis and copy number variation analysis.
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3.5.3. Evaluation of angiogenesis
As angiogenesis is a hallmark of cancer, it is important to

address the molecular underpinnings of angiogenesis in ICC based
on the advantages of single cells. We calculated the GSVA score of
angiogenesis across all cells and found score was higher in cancer
samples compared with tumor-adjacent tissues, suggesting
increased disordered angiogenesis in tumors (Fig. S9a). Besides,
we evaluated and filtered out the cell subtypes with higher score
and higher angiogenesis-related genes expression (Fig. S6b)
(Fig. S9b-S9g), indicating these cell subtypes were potentially
responsible for angiogenesis. Particularly, the specific subclusters
harbored the highest score among each cell types. For example,
Macro_NLRP3 and Mono_CD14 were exhibited the higher score
in myeloid cells, Arteries-like cells were shown the highest AN
score among endothelial cells, while TGF–myCAF had the lower
score in fibroblasts. Besides, VEGFA, MMP9 and IL8 were the factors
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associated with angiogenesis and their gene expression were also
evaluated and higher in Macro_NLRP3 as well as Mono_CD14,
which showed the results as the same with the angiogenesis GSVA.
3.5.4. Pseudotime ordering of endothelial cells, myeloid cells and CD8
+T cells

In order to explore the evolutionary trajectories of different cell
subclusters, we used scWizard to preform trajectory analysis and
found arteries and activated pcv cells might be divided from capil-
lary activated cells which was mainly in tumor adjacent tissues
(Fig. S10a-S10c). For myeloid cells, Macro_NLRP3 cells were mainly
in cancer samples and potentially divided from Mono_CD14
(Fig. S10d-S10f) and cDC1_CLEC9A cells were mainly in terminal
(Fig. S11a-S11c). CD8+T cell analysis revealed that pseudotime
began with CD8+Tn and CD8+Tcm, followed by CD8+Teff, and
ended with CD8+Pro cells (Fig. S11d-S11f). Combined with above
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Fig. 2. Comparison scWizard against five methods on cell subtype classification and annotation of the myeloid cells and T/NK cell datasets. The proportion of cells assigned
‘‘consistent”, ‘‘inconsistent”, and ‘‘unknown” by scWizard, ACTINN, SingleCellNet, SingleR, SCSA, and CellAssign on myeloid cells from lymphoma (LYM) (a), myeloid cells from
pancreatic cancer (PAAD) (b), T/NK cells from breast cancer (BRCA) (c) and T/NK cells from kidney renal clear cell carcinoma (KIRC) (d).
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results, cells involved in disordered angiogenesis were tumor-
specific cell subclusters.
3.5.5. Ligand-receptor interaction between cell subclusters within
different cell types

As angiogenesis is the result of the interaction of multiple cells
including endothelial cells with macrophages [26] as well as
fibroblasts [27], we conducted the cell–cell interaction between
these cell subclusters. The results showed that tumor endothelial
cells would receive angiogenic stimulatory signals from macro-
phages and fibroblasts through VEGFA/VEGFB and its receptor
FLT1 and KDR, as the key mediators to activate the angiogenesis
program (Fig. S10g, S10h). These results revealed that the commu-
nication with other cells was crucial for endothelial cells to pro-
mote tumor angiogenesis. Besides, transcription factor activity
for endothelial cells was also analyzed (Fig. S11g).
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4. Discussion

Here, we developed scWizard, a user-friendly tool for auto-
mated analysis of cancer single cell data, establishing cell classifi-
cation and annotation model for cells within the TME, integrating
existing methods to construct an automatic analysis process, aim-
ing to shorten the time of single cell analysis process and improve
the efficiency of researchers. In addition to highlighting the easy-
operating on routine analysis of single cell study, scWizard also
focuses on providing analytical thinking that reveling the specific
cells and cell states contributing to hallmarks of cancer, which is
expected to greatly improve our understanding of the diversity
and complexity of tumor-derived cells. Following the user manual,
users can easily upload data to the scWizard and start the analysis
in the user-friendly interface, and visualize each step of the analy-
sis results according to their own needs. We believe that scWizard
is a useful software package for cancer subtype annotation and sin-
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Fig. 3. Myeloid cell subtypes from pancreatic cancer (PAAD) predicted by six tools. (a) Original annotation. (b) Annotation by scWizard_cluster. (c) Annotation by scWizard.
(d) Annotation by ACTINN. (e) Annotation by SingleR. (f) Annotation by SingleCellNet. (g) Annotation by SCSA. (h) Annotation by CellAssign. Conflict of interest.
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gle cell downstream analysis, which will facilitate us to reveal the
biological discovery and understand the complexity of cancer.

Collectively, scWizard outperforms the five existing tools in
annotating T/NK cell and myeloid cell subtypes from different
tumor tissues. Due to the biology complexity of multicellular sys-
tems and the heterogeneity of tumors, clustering subtypes and
states is relatively difficult [28]. The strength of scWizard is that
it uses hierarchical classification model for accurate cell type iden-
tification and avoiding misclassification. The major breakthrough
of scWizard, as compared with most other methods, is that it pro-
vides avenues for annotating comprehensive cell types and sub-
types within the TME, which is important because stromal cells
[29] and immune cells [30] in the TME also play a key role in tumor
development, but the biology of these cell subtypes is still incom-
pletely revealed at the single cell resolution due to the tough anno-
tation task in cancer studies [31]. Specifically, there are 47
subtypes spanning subtypes of T cells, myeloid cells, endothelial
cells and fibroblasts within the TME in our repository and scWizard
is prepared to generalize to other solid cancer scRNA-seq dataset
for cell annotating and downstream analysis.

Currently, the package mainly focuses on universal cell types
within the TME. For tissue specific cell types, scWizard may not
be very applicable, such as the alveolar cells in lung cancers may
not be identified and named in Unknown cluster. As the quick
accumulation of more single-cell data of different cell types, scWi-
zard will be updated and improved to identify more cell types
4908
including tissue specific subtypes and cellular states in the future
to solve cell heterogeneity and more cancer-specific problems.
Data availability

All the datasets used in this paper are publicly available and
applied in the supplementary file. The downloaded accessible
number, web link and corresponding references are presented in
Table S1. scWizard is available as an R package on GitHub
(https://github.com/Dulab2020/scWizard). The detailed documen-
tation on how to acquire, install, and run the software are provided
in the Supplementary File: User Manual. To facilitate the first usage
of scWizard, the example_data.rds file of testing set including
10,000 single cells of various cell types is randomly chosen and
uploaded in Figshare (https://figshare.com/s/
8f568e156d943754915e), users can selectively download and
quickly get started with scWizard.
Funding

This work has been supported by the National Key R&D Pro-
gram of China (2018YFC0910201), the Key R&D Program of Guang-
dong Province (2019B020226001) and China Postdoctoral Science
Foundation (2021M701253).

https://github.com/Dulab2020/scWizard
https://figshare.com/s/8f568e156d943754915e
https://figshare.com/s/8f568e156d943754915e


J. Wei, Q. Xie, Y. Qu et al. Computational and Structural Biotechnology Journal 20 (2022) 4902–4909
Author contributions

H.D. and J.W. designed and concepted the study. J.W. and Q.X.
collected the data and led the data analysis. Q.X. developed the
method, analyzed and implemented the Shiny app. J.W. interpreted
the results and wrote the manuscript. Y.Q. contributed to prelimi-
nary background research survey and prepared supplemental files.
G.H. implemented the R package. Z.C. evaluated the method. H.D.
conceived of the project, supervised it and revised the manuscript.
All authors read, revised and approved the final version of the
manuscript. J.W. Resource, Methodology, Writing - original draft,
Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.csbj.2022.08.028.

References

[1] Hinshaw DC, Shevde LA. The tumor microenvironment innately modulates
cancer progression. Cancer Res 2019;79(18):4557–66.

[2] Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell
transcriptomic data across different conditions, technologies, and species. Nat
Biotechnol 2018;36(5):411–20.

[3] GuoW,Wang D, Wang S, Shan Y, Liu C, Gu J. scCancer: a package for automated
processing of single-cell RNA-seq data in cancer. Brief Bioinform 2021;22(3).

[4] David F, Litovchenko M, Deplancke B, Gardeux V. ASAP 2020 update: an open,
scalable and interactive web-based portal for (single-cell) omics analyses.
Nucleic Acids Res 2020;48(W1):W403–14.

[5] Sinha D, Kumar A, Kumar H, Bandyopadhyay S, Sengupta D. dropClust: efficient
clustering of ultra-large scRNA-seq data. Nucleic Acids Res 2018;46(6):e36.

[6] Patel MV. iS-CellR: a user-friendly tool for analyzing and visualizing single-cell
RNA sequencing data. Bioinformatics 2018;34(24):4305–6.

[7] Hillje R, Pelicci PG, Luzi L. Cerebro: interactive visualization of scRNA-seq data.
Bioinformatics 2020;36(7):2311–3.

[8] Senabouth A, Lukowski SW, Hernandez JA, et al. ascend: R package for analysis
of single-cell RNA-seq data. GigaScience 2019;8(8).

[9] Zhang AW, O, Flanagan C, et al. Probabilistic cell-type assignment of single-cell
RNA-seq for tumor microenvironment profiling. Nat Methods. 2019. 16(10):
1007-1015.
4909
[10] Cao Y, Wang X, Peng G. SCSA: A cell type annotation tool for single-cell RNA-
seq data. Front Genet 2020;11:490.

[11] Zhang Z, Luo D, Zhong X, et al. SCINA: A semi-supervised subtyping algorithm
of single cells and bulk samples. Genes (Basel) 2019;10(7).

[12] Kiselev VY, Yiu A, Hemberg M. scmap: projection of single-cell RNA-seq data
across data sets. Nat Methods 2018;15(5):359–62.

[13] Aran D, Looney AP, Liu L, et al. Reference-based analysis of lung single-cell
sequencing reveals a transitional profibrotic macrophage. Nat Immunol
2019;20(2):163–72.

[14] de Kanter JK, Lijnzaad P, Candelli T, Margaritis T, Holstege F. CHETAH: a
selective, hierarchical cell type identification method for single-cell RNA
sequencing. Nucleic Acids Res 2019;47(16):e95.

[15] Tan Y, Cahan P. SingleCellNet: A computational tool to classify single cell RNA-
seq data across platforms and across species. Cell Syst 2019;9(2):207–213.e2.

[16] Ma F, Pellegrini M. ACTINN: automated identification of cell types in single cell
RNA sequencing. Bioinformatics 2020;36(2):533–8.

[17] Alquicira-Hernandez J, Sathe A, Ji HP, Nguyen Q, Powell JE. scPred: accurate
supervised method for cell-type classification from single-cell RNA-seq data.
Genome Biol 2019;20(1):264.

[18] Abdelaal T, Michielsen L, Cats D, et al. A comparison of automatic cell
identification methods for single-cell RNA sequencing data. Genome Biol
2019;20(1):194.

[19] Korsunsky I, Millard N, Fan J, et al. Fast, sensitive and accurate integration of
single-cell data with Harmony. Nat Methods 2019;16(12):1289–96.

[20] Tran H, Ang KS, Chevrier M, et al. A benchmark of batch-effect correction
methods for single-cell RNA sequencing data. Genome Biol 2020;21(1):12.

[21] Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights
intratumoral heterogeneity in primary glioblastoma. Science 2014;344
(6190):1396–401.

[22] Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P, Mesirov
JP. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011;27
(12):1739–40.

[23] Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. Cell PhoneDB:
inferring cell-cell communication from combined expression of multi-subunit
ligand-receptor complexes. Nat Protoc 2020;15(4):1484–506.

[24] Trapnell C, Cacchiarelli D, Grimsby J, et al. The dynamics and regulators of cell
fate decisions are revealed by pseudotemporal ordering of single cells. Nat
Biotechnol 2014;32(4):381–6.

[25] Aibar S, González-Blas CB, Moerman T, et al. SCENIC: single-cell regulatory
network inference and clustering. Nat Methods 2017;14(11):1083–6.

[26] Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated
macrophages in tumor angiogenesis and metastasis. Cell Immunol
2020;353:104119.

[27] Unterleuthner D, Neuhold P, Schwarz K, et al. Cancer-associated fibroblast-
derived WNT2 increases tumor angiogenesis in colon cancer. Angiogenesis
2020;23(2):159–77.

[28] Wahl GM, Spike BT. Cell state plasticity, stem cells, EMT, and the generation of
intra-tumoral heterogeneity. NPJ Breast Cancer 2017;3:14.

[29] Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of
cancer-associated fibroblasts. Nat Rev Clin Oncol 2021.

[30] Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer.
Nat Rev Immunol 2021.

[31] Clarke ZA, Andrews TS, Atif J, et al. Tutorial: guidelines for annotating single-
cell transcriptomic maps using automated and manual methods. Nat Protoc
2021;16(6):2749–64.

https://doi.org/10.1016/j.csbj.2022.08.028
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0005
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0005
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0010
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0010
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0010
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0015
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0015
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0020
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0025
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0025
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0030
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0030
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0035
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0035
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0040
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0040
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0050
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0050
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0055
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0055
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0060
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0065
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0070
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0070
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0070
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0075
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0075
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0080
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0080
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0085
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0085
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0085
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0090
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0090
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0090
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0095
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0095
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0100
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0100
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0105
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0105
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0105
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0110
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0115
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0120
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0125
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0125
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0130
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0135
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0135
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0135
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0140
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0140
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0145
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0145
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0150
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0155
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0155
http://refhub.elsevier.com/S2001-0370(22)00362-2/h0155

	scWizard: A web-based automated tool for classifying and annotating single cells and downstream analysis of single-cell RNA-seq data in cancers
	1 Introduction
	2 Methods
	2.1 Data collection and processing
	2.2 Clustering based on Seurat
	2.3 Quality control
	2.4 Batch processing
	2.5 Cell type annotation model based on neural network learning
	2.6 Comparison with other cell type annotation tools
	2.7 Performance evaluation of cell type and subtype annotation in independent datasets
	2.8 Integrative basic analysis

	3 Results
	3.1 Comprehensive overview of the scWizard workflow
	3.2 Model for classification and annotation cell major types/subtypes within the TME
	3.3 Comparison with published methods on cell type annotation
	3.4 Performance evaluation of cell annotation in the independent cancer scRNA-seq datasets
	3.5 Application of scWizard in the integrative analysis
	3.5.1 Cell type classification and annotation
	3.5.2 Cell malignancy estimation
	3.5.3 Evaluation of angiogenesis
	3.5.4 Pseudotime ordering of endothelial cells, myeloid cells and CD8+T cells


	Data availability
	Funding
	Author contributions
	Declaration of Competing Interest
	Appendix A Supplementary data
	References


