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Resonant tunneling driven metal-insulator
transition in double quantum-well structures of
strongly correlated oxide
R. Yukawa 1,5, M. Kobayashi1,5, T. Kanda 2,5, D. Shiga 1,2,5, K. Yoshimatsu 2, S. Ishibashi 3,

M. Minohara 1, M. Kitamura1, K. Horiba 1, A. F. Santander-Syro 4 & H. Kumigashira 1,2✉

The metal-insulator transition (MIT), a fascinating phenomenon occurring in some strongly

correlated materials, is of central interest in modern condensed-matter physics. Controlling

the MIT by external stimuli is a key technological goal for applications in future electronic

devices. However, the standard control by means of the field effect, which works extremely

well for semiconductor transistors, faces severe difficulties when applied to the MIT. Hence, a

radically different approach is needed. Here, we report an MIT induced by resonant tunneling

(RT) in double quantum well (QW) structures of strongly correlated oxides. In our structures,

two layers of the strongly correlated conductive oxide SrVO3 (SVO) sandwich a barrier layer

of the band insulator SrTiO3. The top QW is a marginal Mott-insulating SVO layer, while the

bottom QW is a metallic SVO layer. Angle-resolved photoemission spectroscopy experi-

ments reveal that the top QW layer becomes metallized when the thickness of the tunneling

barrier layer is reduced. An analysis based on band structure calculations indicates that RT

between the quantized states of the double QW induces the MIT. Our work opens avenues

for realizing the Mott-transistor based on the wave-function engineering of strongly

correlated electrons.
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Controlling the quantum ground state of a system is
essential for applications. The best-known example is
semiconductor technology, where the state (conductive or

not conductive) of a semiconductor is driven by the so-called
field-effect transistor (FET). In the FET, the number of electric
charge carriers is controlled by an external voltage1.

Some strongly correlated electron materials naturally show a
metal-to-insulator transition (MIT)2,3. It would be thus highly
desirable to control such an MIT in the same way as it is done for
semiconductors. Numerous efforts have been made to demonstrate
the FET control of the MIT4–8, as well as of rich quantum phase
transitions in strongly correlated electron materials9–15. For exam-
ple, field-effect control over the MIT has been successfully achieved
in many scenarios using electrolyte gating in the electric double-
layer transistor7,8, although such gate-controlled MIT is challenging
because of the possible electrochemical reaction in the ionic liquid
gate16,17. Meanwhile, the FET control of other correlated devices
has been also achieved for specific cases via back gating18–20.
Nonetheless, these important achievements have no pretense to
result in a practical transistor6,7,21. In fact, such approach faces
fundamental difficulties. One is the insufficient carrier density that
can be induced by the electric field to cause a filling-controlled MIT
(Mott transistor operation)4,5. The other is the shortness of the
Thomas–Fermi screening length due to 1022–1023 cm−3 mobile
carriers, which limits the conductive area where MIT occurs7,8.
Thus, realistic future applications of the Mott transistor call for a
different principle of controlling the MIT22.

Now, according to the Mott–Hubbard theory23, the ground state
in strongly correlated materials is described by the ratio of the
Coulomb interaction (U) to the bandwidth (W)2,3,23. When U <W,
the material is metallic, but it becomes insulating when U >W.
Therefore, tuning the U/W ratio by some external perturbation
would control the MIT, and the practical realization of this idea has
been one of the central goals in modern condensed matter
physics4–11.

Here we propose a new approach for the tuning of the U/W
ratio, hence the control of the MIT, using the resonant-tunneling
(RT) effects1 in double quantum well (QW) structures of strongly
correlated oxides (Supplementary Note 1). The concept is sche-
matically illustrated in Fig. 1. The double QW structure consists
of two strongly correlated oxide layers and a barrier layer
(insulator). The top QW is a “marginal” Mott insulator, i.e., a
material in the insulating Mott phase but in close proximity (U
slightly larger than W; U≳W) to the metallic one, while the
bottom QW is a correlated metal. In the marginal Mott-insulating
QW, the quantized electron states are localized due to U≳W,
leading to a Mott insulating state, but the QW exhibits a transi-
tion to a metallic state by applying a small external stimulus. If
the RT occurs between the marginal Mott-insulating QW and
metallic QW states, the QW states that are energetically close to
each other are hybridized. In this situation, the resultant envelope
wave functions extend over the whole double QW structure and
consequently electrons in the top QW states may achieve addi-
tional spatial freedom through the RT effects, leading to the
reduction in effective Coulomb potential. As a result, the mar-
ginal Mott insulator is expected to be metallized owing to U
becoming smaller than W (Supplementary Note 2). Since the
MIT is caused by the quantum tunneling phenomena, the MIT
control avoids the fundamental problems of the FET
approach4–21, and is also advantageous over conventional filling
(bandwidth) control by chemical doping (pressure) in the bulk2.

Results
Design of double QW structures showing RT-driven MIT. To
demonstrate the MIT driven by the RT effects, we fabricate

double QW structures where layers of the strongly correlated
conductive oxide SrVO3 (SVO) sandwich a barrier layer of
SrTiO3 (STO), a band insulator. Being a highly correlated Fermi-
liquid (FL) metal with simple 3d(t2g)1 configuration24–30, SVO in
ultrathin film grown onto STO is known to form QW states31,32,
and to undergo a thickness-dependent transition from the FL
metal to a Mott insulator at a critical film thickness of 2–3
monolayers (ML)33–35. A recent theoretical study has predicted
that the 2 ML of SVO is at the verge of the Mott insulator, and it
can easily become a metal by applying a small perturbation36.

Fig. 1 Schematic illustration of the metal–insulator transition induced by
resonant tunneling effects. a Before switching on the RT effect.
The structure of a double QW consists of a marginal Mott-insulator QW
layer/barrier layer/metallic QW layer. The marginal Mott-insulator
(U≳W), which undergoes the transition to metal by application of a
perturbation, is used as the top QW layer. Owing to the long distance
between the top and bottom QWs, there is no RT effect between the two
QWs. The corresponding band diagram and standing waves are illustrated
on the right side. The potential well is represented as a black plate, while
the existence-probability amplitudes of the metallic QW states are drawn in
red for the top QW and in yellow for the bottom QW. Owing to the
marginal Mott insulating nature of top QW states, the strongly correlated
electrons in the original top QW states become localized, resulting in a
localized state (lower Hubbard band) presented in blue. b After switching
on the RT effect. Owing to the hybridization between the top and bottom
QW states, bonding (red curve) and antibonding (yellow curve) states are
formed. In this situation, electrons in the top QW will be able to move to
the bottom QW via RT. By gaining the spatial degree of freedom, the
effective Coulomb repulsion of electrons is weakened and the top QW
undergoes the transition from the marginal Mott insulator (U≳W) to the
metal (U <W).
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Thus, as the top marginal Mott-insulating QW, we used a 2-ML
SVO layer. As a counterpart, we used a 6-ML SVO for the bottom
metallic QW layer, so as to induce the RT effect between two
energetically close QW states (Supplementary Note 3). Thereafter,
the (2-ML SVO)/(L-ML STO)/(6-ML SVO) double QW structure
is denoted as V2TLV6, where L is the thickness of the STO barrier
layer. Thus, based on the previously reported structure plot of
quantization energies as a function of SVO layer
thickness31–33,37,38, the first quantization level of the top (2-ML
SVO) QW states matches the second quantization level of the
bottom (6-ML SVO) QW. Furthermore, in the V2TLV6 structure,
the transition probability of electrons between the top and bottom
QWs is also controlled as a function of the STO barrier layer
thickness L, as schematically presented in Fig. 1.

RT-driven MIT in double QW structures. The transition from
the marginal Mott-insulating QW states to the metallic QW states
induced by the RT effects is visualized by in situ angle-resolved
photoemission spectroscopy (ARPES). Figure 2a presents a series
of ARPES images of the V2TLV6 double QW structures with
varying the STO barrier layer thickness (L= 2, 4, 10, and ∞ ML).

Because these band dispersions have been taken along the Γ–X
direction, the ARPES images consist of only the dzx bands of V 3d
t2g states in the present experimental geometry (see Supplemen-
tary Note 7)31–33,39,40. Here, the series of ARPES images are
normalized to the incident photon flux; hence, the color scale
reflects the change in spectral weight as a function of L. Thus,
the metallization of top QW will be evidenced by the appearance
of a parabolic band at the Γ point near the Fermi level (EF).

As can be seen in the ARPES images of the V2T∞V6 structure,
there are no discernible states near EF, reflecting the Mott-
insulating nature of the 2-ML SVO films. The Mott-insulating
state of the top 2-ML QW of V2T∞V6 is further confirmed by the
appearance of the lower Hubbard band at a binding energy of
1.5 eV (see Fig. 2b and Supplementary Fig. 18)33,34. In the
V2T4V6 double QW, as the STO barrier layer becomes thinner
(the transition probability of electrons between the two QW states
increases), a faint dispersive feature emerges near EF. Eventually,
a metallic band whose dispersion crosses EF is clearly visible in
the V2T2V6 double QW structures, demonstrating the metalliza-
tion of the top 2-ML SVO layer (see also Supplementary Notes 10
and 11). It should be noted that the observed metallic states are at
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Fig. 2 Visualization of the metal-insulator transition induced by reduction in the barrier-layer thickness. a Respective ARPES images for V2TLV6 double
QW structures with L reducing from ∞ to 2. The ARPES data were acquired at a photon energy of hν= 88 eV along a kx slice near the Γ point, which
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the top 2-ML SVO layer, since the mean-free-path of the
photoelectrons in the present experimental condition is about
0.4–0.6 nm (corresponding to 1.0–1.5 ML in the present case)
(refs. 41–43). Thus, signals from the buried 6-ML SVO layer are
negligible in the ARPES results on V2TLV6 (Supplementary
Note 12).

The emergence of metallic states created by the proximity of
two QWs is more clearly seen in the energy distribution curves
(EDCs) shown in Fig. 2b, where one observes a systematic
evolution of the dispersive metallic states and subsequent
reduction in the lower Hubbard band (localized states) in the
V2TLV6 double QW structures (see also Supplementary Fig. 19).
In the top 2-ML SVO layer of the V2T∞V6 and V2T10V6 double
QW structures, no metallic-band-like features are visible near EF
and only non-dispersive features are observed below a binding
energy of 1 eV. The existence of the non-dispersive structure is
caused by spectral weight transfer from the coherent bands near
EF to the lower Hubbard bands33,34,44, indicating the localized
nature of V 3d electrons in the top 2-ML SVO layer (see
Supplementary Note 9). When the barrier layer thickness
decreases, a band-like feature appears near EF for V2T4V6, while
a weak non-dispersive structure is still visible around 0.8 eV.
Eventually, for the thinnest barrier, the band-like feature evolves
to a clear dispersive feature crossing EF (see also Supplementary
Note 8).

The spectral behavior observed in the top QW layer of V2TLV6

is similar to that previously observed in thickness-dependent
Mott transition in SVO QWs33, suggesting the existence of a Mott
transition from localized states to standard QW subbands in
2-ML SVO with decreasing L. Thus, the next crucial issue is
whether the MIT originates from the RT effects or not. The
condition for the RT to occur is that there must be an energetic

match between quantized states at both the top and bottom
QWs1. As seen in the 2-ML QW shown in Fig. 2, the bottom of
the conduction band (subband bottom energy), corresponding to
its first quantization energy, is estimated to be 320 meV. This
value is consistent with the one extrapolated from the structure
plot of SVO QW states as a function of SVO layer thickness (see
Supplementary Note 3)31–33,37,38. To confirm the existence of
energetically close QW states for SVO layers at the opposite side
of the structure, we investigate the “flip” double QW structure of
V6T2V2 as shown in Fig. 3a, where we only probe the subband
structures of the 6-ML QW due to the photoelectron
attenuation41–43. As expected from previous works31–33, the
ARPES images consist of the quantized dzx bands with quantum
numbers n= 1 (band bottom at 500 meV) and n= 2 (band
bottom at 290 meV) [see Supplementary Notes 3 and 13]. The
quantization energy of n= 2 states for the 6-ML SVO layer is
close to that of the metallic band observed for the 2-ML SVO
layer (320 meV). The existence of the energetically close QW
states in both the top and bottom QW structures suggests the
hybridized nature of the envelope wave functions of the two
subbands45,46, leading to the RT effect between the two QWs.

Theoretical analysis based on DFT calculations. The occurrence
of the RT effects between the two QW states is further supported
by density functional theory (DFT) calculation (Supplementary
Note 15). Figure 3 compares the DFT results of V2T2V6 QW
structures with the ARPES results. Owing to the hybridization
between the top and bottom QW states, the DFT calculation
shows the formation of four dzx-derived subbands (n′= 1–4)
from the bottom. As a result of the hybridization of the original
n= 1 of the 2-ML QW and n= 2 in the 6-ML QW, these two
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on the left-half side, together with the DFT calculation. As shown in the schematic layout on the top, electrons near the surface (~0.4–0.6 nm) are detected
in the ARPES measurements. Since only dzx-derived subbands are detected in this experimental configuration (see Supplementary Note 7), the
corresponding subband with predominant dzx character (filled circles) is presented in the calculation for comparison (the subbands for all t2g states are
shown in Supplementary Fig. 26). The probability of the electron being detected by ARPES is represented by the size of the filled circles. b Existence
probabilities for respective dzx-derived subbands, which are calculated by Mulliken population analysis, are plotted along the z direction for the V2T2V6

heterostructure. The baselines of the existence probabilities (solid black lines) correspond to the quantization energies (subband minimum energies). The
existence probability of bonding n′= 2 states (red hatched) has central weight at the 2-ML QW, while that of antibonding n′= 3 states (yellow hatched) at
the 6-ML QW, representing their original character.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27327-z

4 NATURE COMMUNICATIONS |         (2021) 12:7070 | https://doi.org/10.1038/s41467-021-27327-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


energetically close quantization levels form a bonding (n′= 2)
and an antibonding (n′= 3) state in the double QW. From the
DFT calculation, the energy difference between quantization
levels n′= 2 and n′= 3 is estimated to be 40meV. In contrast, the
original n= 1 and 3 states in the bottom 6-ML QW are not
hybridized to any levels in the top QW and remain unchanged.
Judging from the existence probability of electrons belonging to
each subband as shown in Fig. 3b, the n′= 2 subband, which
mainly exists in the 2-ML QW, emerges from the original
n= 1 subband of the 2-ML SVO layer, whereas the other sub-
bands (n′= 1, 3, 4) from the original 6-ML SVO QW states. By
considering the escape depth of the present ARPES
measurements41–43 and the distribution of existence probabilities,
only the n′= 2 subband is predominately detectable in ARPES for
the V2T2V6 heterostructure, whereas the n′= 1, 3, 4 subbands are
detectable for the “flip” V6T2V2 heterostructure. These features
are well reproduced in the ARPES results of Fig. 3a, c, suggesting
the occurrence of the RT effects between the top (n= 1) and
bottom (n= 2) QW states.

Discussion
The DFT calculation provides an important indication regarding
the metallization of the top QW states: owing to the close
proximity of the two quantization energy levels, only n′= 2 and
3 states hybridize with each other. Also, the n′= 2 (n′= 3) shows
weak but finite existence probabilities in the 6-ML SVO layer (2-
ML SVO layer) side, and their respective probability maxima
spatially overlap. This spread of the existence probability over
both sides of the double QW structure results from the hybridi-
zation of the corresponding envelope wave functions. Actually,
the DFT result demonstrates that about 10% of the n′= 2 states
spread over the 6-ML SVO QW side in the case of V2T2V6 double
QW structures. As schematically illustrated in Fig. 1, in this
situation, strongly correlated electrons in the top “marginal” Mott
QW states of the 2-ML SVO layer (U≳W) achieve additional
spatial freedom, since they can move to the bottom metallic 6-ML
QW through the RT effects. The RT effects cause the reduction in
effective Coulomb potential (U <W) in the 2-ML QW. As a
result, the marginal Mott insulator undergoes an insulator-to-
metal transition.

Although U/W is the most important parameter determining
the MIT, it should be bear in mind that the MIT is not deter-
mined solely by the value of U/W. In particular, in the case of a
multi-orbital system, various factors such as electron number, the
strength of Hund’s coupling, and detailed density-of-states
structures determine the boundary of the MIT36. Thus, more
realistic calculations incorporating such effects, as well as com-
plex interactions of strongly correlated electrons in the QW, are
expected. Such calculations are certainly necessary for a quanti-
tative understanding of the observed RT-driven MIT, but this
issue remains to be resolved.

The present study demonstrates that the MIT can be controlled
by the RT effect in double QW structures of strongly
correlated oxides. Our observations offer valuable insight into
the quest for novel quantum phenomena using oxide
heterostructures6–11,47–50, since the U/W ratio can be controlled
by designing the wave function of their strongly correlated elec-
trons. In addition, from an applied perspective, the MIT control
based on the double QW structure studied here has fundamental
advantages over conventional FET control4–8: the Mott transition
may be operated by aligning two quantization levels through the
application of a small voltage, and the entire QW will undergo an
MIT irrespective of the limitation imposed by Thomas–Fermi
screening, as illustrated in Fig. 4. The present demonstration
opens an avenue for creating a Mott-transistor operation based

on the quantum RT effects between designed wave functions of
strongly correlated electrons.

Methods
Laser molecular-beam epitaxy. QW structures were grown on atomically flat
(001) surfaces of TiO2-terminated Nb-doped STO substrates in a laser molecular-
beam epitaxy chamber connected to an ARPES system at BL-2A of Photon Factory
(PF)30–34 (Supplementary Note 6). During the growth, the thickness was precisely
and digitally controlled on the atomic scale by monitoring the intensity oscillation
of reflection high-energy electron diffraction spots. The details of the growth
conditions of SVO and STO layers31–34,51 are described in Supplementary Note 4.
Note that all double QW structures were fabricated under the same conditions as
those of the previously reported SVO/STO heterostructures31–34,51, wherein
atomically flat surfaces and chemically abrupt interfaces formed. The details of the
characterizations for the QW structures are given in Supplementary Information.
Noted that we carefully characterized the thickness of SVO and STO layers, as well
as the chemical abruptness of the SVO/STO interfaces, by analyzing the relative
intensities of the relevant core levels just before in situ ARPES measurements (see
Supplementary Note 5).

In situ angle-resolved photoemission spectroscopy. After growth, the samples
were transferred to the ARPES chamber under an ultrahigh vacuum of 10−10 Torr
to avoid the degradation of the sample surfaces on exposure to air (Supplementary
Note 6). The ARPES experiments were conducted in situ at a temperature of 20 K
using linear horizontal (LH) polarization of the incident light. The incident photon
energy was 88 eV. The energy and angular resolutions were respectively set to
about 30 meV and 0.3°. The EF of the samples was calibrated by measuring a gold
foil that was electrically connected to the samples. The details of the ARPES
measurement setups are given in Supplementary Note 7.

Electronic structure calculations. First-principles calculations based on DFT were
carried out in the framework of the Perdew–Burke–Ernzerhof-type generalized-
gradient approximation52 using the QMAS code53 based on the projector
augmented-wave method54 and a plane-wave basis set. The plane-wave cutoff
energy was set to 20 Ha. The corresponding Brillouin zone was sampled by
8 × 8 × 2 k-mesh for the self-consistent field calculation. To obtain the electronic
density of states, calculations with fixed charges were made at additional k points.
We have adopted a repeated slab geometry with a vacuum layer (thickness of
11.93247 Å) in between neighboring slabs of the V2T2V6 heterostructure as illu-
strated in the top panel of Fig. 3b. Note that to simplify the calculations, DFT
calculations were performed without structural relaxation, setting the cubic lattice
constant of both SVO and STO to 3.86494 Å, which is the lattice constant of an
SVO crystal. For the comparison with the ARPES results, the subband dispersion
(Esub) was obtained by multiplying the calculated band structures (EDFT) by the
band renormalization factor (Z): Esub kk

� � ¼ Z�EDFTðkkÞ, where k∥ is the momen-
tum parallel to the surface. The value of Z is inversely proportional to the mass
enhancement factor, and the mass enhancement in the subbands is known to be
associated with strong interaction among V 3d electrons24,25,30–33,55–57. The best fit
to the ARPES results gives Z= 0.55 (mass enhancement factor ~1.8) for the het-
erostructure, in good agreement with previous results measured on SVO thin
films31.

ba

Fig. 4 Schematic illustration of the Mott transistor based on the
metal–insulator transition induced by resonant tunneling effects. a On
states (same as the metallic states shown in Fig. 1b) and b off states. Owing
to the energy separation of QW states between the top and bottom QWs,
there is no RT effect between the two QWs, and hence the top QW
becomes a marginal Mott insulator in off states. The Mott transition (on/
off operation) is controlled by applying a voltage between the two QWs.
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Data availability
All data supporting the key findings of this study are available within the article and
its Supplementary Information. All raw data generated during the current study are
available from the corresponding author on reasonable request.

Code availability
All the codes to analyze the experimental data in this study are available from the
corresponding author upon reasonable request. The code used for DFT calculation is
described in detail in the “Methods”. The custom code for DFT analysis is available from
S.I. (shoji.ishibashi@aist.go.jp) upon reasonable request.
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