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Equipped with its 302-cell nervous system, the nematode Caenorhabditis elegans adapts
its locomotion in different environments, exhibiting so-called swimming in liquids and
crawling on dense gels. Recent experiments have demonstrated that the worm displays
the full range of intermediate behaviors when placed in intermediate environments. The
continuous nature of this transition strongly suggests that these behaviors all stem from
modulation of a single underlying mechanism. We present a model of C. elegans forward
locomotion that includes a neuromuscular control system that relies on a sensory feedback
mechanism to generate undulations and is integrated with a physical model of the body
and environment. We find that the model reproduces the entire swim-crawl transition, as
well as locomotion in complex and heterogeneous environments. This is achieved with no
modulatory mechanism, except via the proprioceptive response to the physical environ-
ment. Manipulations of the model are used to dissect the proposed pattern generation
mechanism and its modulation.The model suggests a possible role for GABAergic D-class
neurons in forward locomotion and makes a number of experimental predictions, in par-
ticular with respect to non-linearities in the model and to symmetry breaking between the
neuromuscular systems on the ventral and dorsal sides of the body.
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1. INTRODUCTION
One essential requirement for the survival of most animals is
the ability to move around in a world characterized by complex,
unpredictable, and variable environments. Adapting to different
environments often involves the use of qualitatively distinct pat-
terns of locomotion, called gaits. The animal’s nervous system is
responsible for generating the rhythmic neuromuscular activity
associated with each of these gaits and must coordinate the task
of switching seamlessly between them. Furthermore, the animal
must be able to reliably adapt any of these patterns in response to
external perturbations. Understanding the neural basis of animal
locomotion is an important challenge that has received consider-
able attention (Kiehn et al., 1998; Grillner and Wallén, 2002; Hill
et al., 2003; Borgmann et al., 2009).

The popular model organism Caenorhabditis elegans is a tiny
(≈1 mm long) nematode worm with a largely invariant nervous
system, consisting of exactly 302 neurons with known connectivity
(White et al., 1986; Chen et al., 2006). Moreover, the behavioral
roles of many of these neurons have been uncovered using exper-
imental techniques including targeted cell killing (Chalfie et al.,
1985; McIntire et al., 1993b) and genetic mutations (Brenner,
1974; McIntire et al., 1993a). The result is an organism in which
the nervous system is mapped at cellular resolution. Despite its
small size and the apparent simplicity of the underlying nervous
system, the worm is capable of a surprisingly rich repertoire of
behaviors including navigation and foraging, mating, learning,
and even rudimentary social behavior (aggregation).

Central to all of these behaviors, the worm’s locomotion is
remarkably adaptive and changes in response to its environment.
Specifically, the body undulations used by the worm when swim-
ming in liquid or crawling on a firm gel substrate like agar are
kinematically different (see Movie S1 in Supplementary Material),
and have generally been thought to represent two distinct gaits
(White et al., 1986; Pierce-Shimomura et al., 2008). In line with
this two gait hypothesis, previous models of the worm’s locomo-
tion (Niebur and Erdös, 1991; Bryden and Cohen, 2004, 2008;
Karbowski et al., 2008) have mostly addressed crawling on agar.
Recent results, however, demonstrated that forward swimming
and crawling are two extremes in a spectrum of behaviors. Indeed
the intermediate waveforms can be revealed by placing worms
in appropriate intermediate media (Berri et al., 2009; Fang-Yen
et al., 2010; Sznitman et al., 2010; Boyle et al., 2011). The continu-
ity of the swim-crawl transition strongly suggests that the entire
range of behaviors are produced through modulation of a single
neural mechanism. This discovery sets an exciting new challenge
to develop a model of the worm that is capable of reproducing the
entire range of locomotor behaviors.

Here we present an integrated neuromechanical model of C. ele-
gans forward locomotion, grounded in the neurobiology, anatomy,
and physics of the real worm, that successfully accounts for loco-
motion across a range of media from water to agar, as well as in
more complex inhomogeneous environments. This model sug-
gests that sensory feedback mechanisms are sufficient to account
for the observed modulation of the locomotion behavior in
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different environments. Analysis of the model sheds further light
on the mechanisms that generate and modulate the oscillations
and leads to a number of experimental predictions.

2. MATERIALS AND METHODS
We begin with the premise, grounded in the C. elegans circuitry
that a single neural circuit is responsible for all of the worm’s for-
ward locomotion, from slow (0.5 Hz), short wavelength, sinuous
crawling patterns to fast (2 Hz), long wavelength, thrashing, or
swimming patterns. With this in mind, we set out to develop a
model of this neural circuit and its modulation that can account
for the entire range of behaviors.

A large body of previous work (Niebur and Erdös, 1991;
Sauvage, 2007; Berri et al., 2009; Boyle, 2010; Fang-Yen et al., 2010;
Sznitman et al., 2010; Petzold et al., 2011; Shen and Arratia, 2011)
has found that the physics of the worm’s body and environment
are important components of the locomotion system. In particu-
lar, any model that is meant to account for motor behavior across
different physical environments must incorporate the correspond-
ing physics in some manner. In our model, as explained below, it
is also important to capture the detailed shape of the body, as it
may impact on any proprioceptive feedback mechanisms.

Stretch-receptor-mediated proprioception has long been pos-
tulated to exist in C. elegans motoneurons and has recently been
reported experimentally (Li et al., 2006; Schafer,2006). Specifically,
proprioceptive mechanisms are thought to channel information to
the motoneurons about the bending of the body (posteriorly and
possibly locally). In differing physical environments, the response
to identical muscle activation patterns would produce different
body shapes, thus constituting completely passive environment-
mediated modulation of the locomotion. Under such conditions,
one would also expect the proprioceptive signal to differ, providing
closed-loop neural control and adaptation of the neuromuscular
pattern of activity to variable environments. Indeed, in our model,
such sensory feedback is the primary driving force behind the
oscillation mechanism.

The model description that follows is consistent with the order
in which the model was developed and parameters fixed. Specifi-
cally, the physical parameters of the environment should be inde-
pendent from the choice of model of the worm, and so were
fixed first. Following similar logic, the behavior of the passive
body (lacking neuromuscular control) was modeled second and
all corresponding parameters were fixed. The muscles were mod-
eled next, and the neural control was incorporated last, without
any modifications to already set parameters of the muscles, body,
or environment. The model software is available as supporting
information (S14).

2.1. PROPERTIES OF THE ENVIRONMENT
Small size and relatively slow speeds mean that the worm’s motion
is well described by low Reynolds number physics, in which inertial
forces can be neglected. As previously demonstrated (Berri et al.,
2009), the resistive forces applied by the worm’s physical environ-
ment can be well represented by local drag coefficients resisting
motion tangential (C ||) and normal (C⊥) to the local body surface.
In Newtonian fluids of known viscosity, values of drag coefficients

can be determined from slender body theory, using equations due
to Lighthill (1976)

C‖, water = L
2πμ

ln(2q/a)
(1)

C⊥, water = L
4πμ

ln(2q/a) + 0.5
,

where μ is the dynamic viscosity (≈1 MPa·s for water); q is
proportional to the wavelength (λ) of the body wave (typically
about 1.5 mm in water, giving q = 0.09λ = 1.35 × 10−4 m); and
L = 1 mm and a = 40 μm are the length and radius of the body,
respectively.

Note that the values above are for the whole worm, so the drag
coefficient experienced locally along the worm is proportionately
smaller. Importantly, in Newtonian environments, the ratio of drag
coefficients is fully specified by the geometry of the object, and for
the worm is roughly K = C⊥/C || ≈ 1.5.

For agar, Wallace estimated the tangential drag coefficients
C ||,agar by directly measuring the force required to pull glass fibers
of similar dimension to C. elegans across the surface (Wallace,
1969). Based on this measurement, Niebur and Erdös (1991) esti-
mated C ||,agar = 3.2 × 10−3 kg·s−1. We previously estimated the
normal drag coefficient C⊥,agar from recordings of wild type
worms using our motion simulator (Berri et al., 2009). Briefly, we
found the ratio of drag coefficients to be in the range K agar ≈ 30–
40; taking a value of K agar = 40 and Niebur and Erdös’ estimate
for C ||,agar gives C⊥,agar = 128 × 10−3 kg·s−1, which will be used
in what follows.

For generality in our simulations, we allow all combinations of
drag coefficients C || and C⊥, such that (i) the minimum drag coef-
ficients correspond to a water environment; (ii) the maximum drag
coefficients correspond to estimates of agar properties; and (iii) the
ratio of drag coefficients falls within the range 1.5 ≤ K ≤ 40. The
specific combinations used are shown in Figure 4C.

2.2. THE PHYSICAL MODEL
In line with previous work (Niebur and Erdös, 1991; Boyle et al.,
2008), we model the worm’s body as a 2D outline. The 2D repre-
sentation is justifiable as the C. elegans body (with the exception
of the head) only bends in the dorso-ventral plane. The passive
body is modeled as a lightly damped elastic beam. The model
body is divided into repeating “segments” and articulated by pairs
of (D)orsal and (V)entral muscles, with each muscle located in the
gap between two points of the physical model (see Figures 1A,B).
The hydrostatic skeleton and muscles are represented by a combi-
nation of damped springs and solid rods connecting these points.
Each resulting set of four points and two muscles is referred to
as a segment. The number of segments thus corresponds to the
number of muscle pairs in the model. We have chosen M = 48 to
provide a good approximation of a smooth (biologically unseg-
mented) body without being excessively computationally expen-
sive. This number also approximates closely the number of muscles
along the body (C. elegans has 48 dorsal and 47 ventral mus-
cle cells). Note, however, that the term “segments” is used for
convenience to denote repeating structures, and does not imply
biological segmentation. The muscles are modeled as damped
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FIGURE 1 | (A) Structure of the physical model. The worm is represented
by 49 solid rods (black lines) whose end points (filled black circles) are
connected by lateral (red) and diagonal (blue) elements. (B) Detailed
schematic diagram of a single segment of the physical model illustrating
nomenclature. Solid rods maintain equal width, diagonal elements (blue)
preserve internal pressure and active muscles line the lateral elements
(red). k and k̄ denote opposite ventral and dorsal sides, or vice versa. (C)

Schematic of the neuromuscular model, showing one of 12 repeating units
making up a symmetrized circuit for forward locomotion control. The circuit
includes a pair of B-class excitatory neurons (circles), a pair of D-class
inhibitory neurons (squares), and four muscles (diamonds) on each side
(dorsal and ventral). Synapses are labeled either as excitatory (arrowhead)
or inhibitory (circlehead). Posteriorly directed lines from B-class neurons
denote the stretch receptor inputs. AVB also forms gap junctional
connections with VB and DB (not shown).

springs whose spring “constant,” rest length, and damping “con-
stant” are functions of the level of activation. This implementation
endows the muscles with simplified Hill-like length-force and
speed-force relations (Hill, 1938), as illustrated in Figures 2A,B
respectively.

Structure
In the model, a worm of length L and radius R is represented by
P = 2(M + 1) = 98 discrete points pk

i , where i = 1, . . ., M + 1 and
k = {D, V }. In other words 49 dorso-ventral point pairs i = 1, . . .,
M + 1 form the boundaries of the M = 48 segments. The model
approximates the tapered shape of the worm as a prolate ellipse.
To avoid zero-valued radii at the ends, the major radius is taken to
be slightly greater than L/2. For a minor radius R, the radii along
the body are given by

Ri = R

∣∣∣∣sin

[
cos−1

(
i − (M/2 + 1)

M/2 + 0.2

)]∣∣∣∣ . (2)

Neglecting the worm’s radial elasticity implies the body will main-
tain a fixed diameter over time. This allows opposite points pk

i and

pk̄
i to be connected by a solid rod of length 2Ri (with k̄ denoting the

opposite side to k, i.e., D = V̄ and D̄ = V ). Lateral elements repre-
senting passive cuticle forces and active muscle forces connect each
point pk

i to adjacent points pk
i±1. The volume-preserving effect of

internal pressure is approximated by diagonal elements that con-

nect pk
i to pk̄

i±1. Together, these elements yield a net force fk
i on

each point. The forces acting on pk
i and pk̄

i combine into a net
force and torque acting on the midpoint of the ith rod.

Passive body forces
In the absence of muscle activation, passive body forces capture the
combined effect of the cuticle and internal pressure. In the inter-
est of numerical stability, diagonal elements that strongly resist
compression are used to represent the effect of pressure.

For the model to work in a highly resistive environment such
as agar, spring forces suffice (Niebur and Erdös, 1991; Boyle et al.,
2008). However, to model motion in liquid, damping terms must
also be included. We therefore model each lateral and diagonal
element as a spring in parallel with a damper. Forces applied by
the passive lateral elements are given by

f k
L,m =

⎧⎪⎨
⎪⎩

κL(L0L,m − Lk
L,m) + βLvk

L,m , Lk
L,m < L0L,m

κL[(L0L,m − Lk
L,m)

+2(L0L,m − Lk
L,m)

4] + βLvk
L,m , otherwise ,

(3)

where κL, βL, and L0L,m denote the lateral spring constant, damp-
ing constant, and rest length, respectively. The length of lateral
element is Lk

L,m while vk
L,m = d

dt Lk
L,m . Note that, due to the non-

constant radius, the rest lengths vary along the worm according to

L0L,m =
√

L2
seg + (Rm − Rm+1)

2. Similarly, the forces exerted by

diagonal elements are given by

f k
D,m = κD

(
L0D,m − Lk

D,m

)
+ βDvk

D,m , (4)

where κD, βD, and L0D,m denote the diagonal spring constant,
damping constant, and rest length, respectively, the latter given

by L0D,m =
√

L2
seg + (Rm + Rm+1)

2; the length of the diagonal

element is Lk
D,m .

The parameters for the passive body were chosen by compar-
ing the behavior of the passive physical model embedded in virtual
water and agar environments to that of a flaccid C. elegans in water
or on agar (Sauvage, 2007). Accordingly, a model worm initiated
in a bent position will straighten almost instantaneously in water
but will straighten only very slowly on agar. These parameters are
given in Table 1.

Active muscle forces
The worm’s longitudinal body wall muscles are anchored to the
inside of the cuticle and are effectively grouped into dorsal and
ventral sets. In the model, muscles connect adjacent points on the
same side of the body, and therefore act in parallel with the passive
lateral elements representing the cuticle (Figure 1B). Thus, the
muscle length and cuticle length for a given section of the body
are assumed to be identical, consistent with recent experimental
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FIGURE 2 |The force generated by model muscles is a function of their

activation, length, and rate of contraction. (A) Force/length relationship
obtained by holding the muscle at a specific length. (B) Force/velocity
relationship obtained by allowing the muscle to contract at a specified rate

and measuring the force it exerts at the moment it reaches its rest length L0L.
The model therefore provides a simple linear approximation of these
properties of biological muscles. Note that in both cases −f is plotted for
simplicity, because contractile forces are defined as negative in the model.

Table 1 | Parameters of the physical model.

Param. Value

M 48

L 1 mm

κL
M
24 0.01 kg · s−1

κD κL × 350

κ0M κL × 20

F max,1 0.7 × (2/3)

P 2 (M + 1)

�M 0.65

L0L,m

√
L2

seg + (Rm − Rm+1)2

L0D,m

√
L2

seg + (Rm + Rm+1)2

Lmin,m L0L,m (1 − �M (Rm + Rm+1)/2R)

F max,m=2,. . .,M 0.70 − 0.42 (m − 1)/M

R 40 μm

Lseg L/M

βL κL × 0.025 s

βD κD × 0.01 s

β0M βL × 100

findings (Petzold et al., 2011). Qualitatively following Hill’s rela-
tions (Hill, 1938), muscle forces are modeled as a function of the
muscle activation and mechanical state (Figure 2), such that (i) as
a muscle shortens the maximum force it can develop will decrease,
eventually reaching saturation, and (ii) the force it generates varies
inversely with the speed of contraction. Accordingly, muscles are
implemented as a variable lateral element (again consisting of a

spring acting in parallel with a damper), whose spring parameter
κk

M,m (equivalent to the spring “constant” in an ideal Hooke’s Law

spring), spring rest length Lk
0M,m , and damping coefficient βk

M,m all
depend on the muscle activation. An anterior-posterior gradient in
the maximum muscle efficacies is implemented by a linearly (pos-
teriorly) decreasing factor F max,m . This gradient makes the shape
of the worm more biologically realistic (see Figure 3). Finally, the
most anterior muscles receive somewhat weaker innervation to
prevent the tip of the head from displaying unrealistically strong
bending. Muscle forces are therefore given by

f k
M,m = κk

M,m

(
Lk

0M,m − Lk
L,m

)
+ βk

M,mvk
L,m , (5)

where

κk
M,m = κ0M Fmax,m σ

(
Ak

M,m

)
Lk

0M,m = L0L,m − Fmax,m σ
(

Ak
M,m

)
(L0L,m − Lmin,m) (6)

βk
M,m = β0M Fmax,m σ

(
Ak

M,m

)
,

and where κ0M and β0M are constants. The function σ is a piece-
wise linear approximation of a sigmoid that binds the muscle’s
electromechanical response to the allowable range

σ(x) =
⎧⎨
⎩

0 , x ≤ 0
x , 0 < x < 1
1 , x ≥ 1 .

(7)

A minimum muscle length Lmin,m prevents the muscles from
contracting unrealistically. To allow the same curvatures to be
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FIGURE 3 |The worm’s locomotion wave exhibits a posteriorly

decreasing gradient in curvature, averaged over time (κ̄).S is a

measure of the position along the worm’s body, with S = 0

corresponding to the head and S = 1 corresponding to the tail. (A)

Experimentally observed curvature gradient obtained by averaging the

curvature at each point along the body, first over time (≈10 s) and then
over several worms (n = 3 for agar and n = 5 for water). Bars indicate the
standard deviation over the n worms. (B) Qualitatively similar curvature
gradients exhibited by the model, due to the gradients in muscle efficacy
and stretch receptor weighting.

attained for all segments along the worm, Lmin,m is modulated
according to the shape of the worm (see Table 1). Muscle parame-
ters were chosen such that the worm was strong enough to bend its
body on agar, but could not generate unrealistically tight curvature
(Table 1).

2.3. THE NEUROMUSCULAR SYSTEM
C. elegans forward locomotion is controlled by head and ventral
nerve cord circuits. The ventral cord subcircuit associated with
forward locomotion contains four main classes of motoneurons
(11 VB, 7 DB, 13 VD, and 6 DD neurons) and one key pair of
interneurons (class AVB). Longitudinal body wall muscles line
the body. These muscles contract and relax in the dorso-ventral
plane. The individual members of each motoneuron class are
arranged sequentially along the body such that their motor output
regions do not overlap (White et al., 1986). In line with previ-
ous models (Niebur and Erdös, 1991; Bryden and Cohen, 2004,
2008; Karbowski et al., 2008), we consider a simplified, sym-
metrized neural circuit, disregarding the asymmetry in neuron
numbers, and thus allowing us to create the model as a series of
repeating units. In a rough correspondence with muscle and neu-
ron numbers (on the ventral side), we chose to model N = 12
neural units, with each controlling M /N = 4 muscle segments.
These neural units are identical, except for changes in certain
parameters. These simplifications are designed to aid the analy-
sis of the circuit and its dynamics and to reduce the number
of free parameters. While this approximation is reasonable for
a model that is restricted to generating sinuous undulations,
it may need revisiting for models to capture a richer set of
behaviors, in particular where additional classes of neurons are
included.

The neural circuit
In the worm, VB and DB neurons receive input from AVB
interneurons via electrical synapses and excite muscles on the
(V)entral and (D)orsal sides. DD (VD) neurons receive input from
VB (DB) motoneurons and inhibit the opposing dorsal (ventral)
muscles. Thus excitation of muscles on one side of the body is
likely to result in inhibition of muscles on the opposite side. Chen
et al. (2006) have also reported some inhibitory connections from
VD to VB neurons which provide motoneuron-to-motoneuron
inhibition on the ventral side. These connections do not feature
in the connectivity diagrams of White et al. (1986) and are sel-
dom discussed. In addition to these chemical synaptic connections,
electrical synapses exist between adjacent VB (DB) neurons and
between adjacent muscle cells (White et al., 1986; Chen et al.,2006).

In the model, the ventral cord circuit (White et al., 1976,
1986; Chen et al., 2006) is simplified to a single AVB command
neuron that drives a series of N = 12 repeating units, each con-
taining one motor neuron of each class DBn,VBn, DDn, and VDn,
with n = 1, . . ., N (see Figure 1C). Note the inclusion of neural
inhibition from VD to VB, that is partially consistent with the
connectivity data (Chen et al., 2006). Within each unit, B-class
neurons receive a constant-current input from AVB, switching
the entire circuit on and off. D-class neurons are modeled as
passive (linear) elements. Postulated stretch-receptor-mediated
proprioception in B-class neurons forms the fundamental oscil-
latory mechanism of the model. Each DB (VB) neuron inte-
grates stretch-receptor currents from the dorsal (ventral) side,
both locally and posteriorly, along its axon. Finally, all electri-
cal synapses except those between AVB and VB/DB are neglected
in our model. Indeed, a modeling study on the role of inter-
muscle coupling (Boyle and Cohen, 2008) suggested that the
coupling may be too weak to have any observable effect and
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our simulation experiments found that electrical coupling among
adjacent motoneurons was similarly insignificant in the present
model (data not shown).

Motor neurons
Motivated by electrophysiological recordings of RMD motor neu-
rons in the head (Mellem et al., 2008), we model B-class neurons as
binary bistable elements. For simplicity, a binary variable S = {0, 1}
denotes off and on states (and abstractly represents polarized and
depolarized membrane potentials). Each B-neuron turns on in
response to a supra-threshold input signal which includes internal
activation from stretch receptors (see below) and synaptic inputs.
B-neurons turn off when this signal falls below some threshold.
Hysteresis is implemented by making the activation/deactivation
threshold state dependent (see arrows in Figure 7A). Given the
short time scale of RMD neurons, which we estimate to be ≤10 ms
(see Figure 2 of Mellem et al., 2008), it is reasonable to model these
neurons as instantaneous.

The state variables for model B-class neurons are given by

Sk
n =

{
1 , I k

n > 0.5 + εhys
(
0.5 − Sk

n

)
0 , otherwise ,

(8)

where Sk
n is the neuronal state variable for the nth neuron on side

k; εhys sets the width of the hysteresis band; and I k
n is the total

input (or “electrical current”) into the neuron in question. Hys-
teresis is achieved by introducing state-dependent activation and
deactivation thresholds 0.5(1 ± εhys). This prevents oscillations of
arbitrarily small amplitude and, in conjunction with the stretch
receptor weight, controls the extent of body bending. Each D-
class neuron is excited by a single B-class neuron and assumed to

respond instantaneously (with state Sk̄
n ).

The input term I k
n for B-class neurons is given by

I k
n = I k

AVB + I k
SR, n + wk−Sk̄

n ,

where I k
AVB (a constant input current from forward locomotion

command interneurons AVB) differs for dorsal and ventral neu-
rons; I k

SR, n is the stretch receptor (SR) current; and wk− sets the
inhibitory (GABAergic) synaptic weight. Note that only ventral
neurons receive inhibitory synaptic inputs (wD− = 0).

Stretch receptors
Mechanosensory feedback and its importance in the regulation of
locomotion has been reported in C. elegans interneurons (Li et al.,
2006). While direct evidence for proprioception is still lacking
in the motoneurons themselves, mechanosensitive stretch recep-
tor channels have long been postulated to exist in B (and A)
class motoneurons. This suggestion was originally motivated by
the morphology of these neurons, specifically their long, posteri-
orly directed undifferentiated processes on which no synapses are
found (White et al., 1986). Indeed, the stretch receptor hypothe-
sis is widely recognized as an attractive and plausible conjecture
(Riddle et al., 1997; Tavernarakis et al., 1997; Bryden and Cohen,
2004, 2008; O’Hagan and Chalfie, 2005; Karbowski et al., 2008)
and forms the basis of our model. The proposed mechanosen-
sitive channels in these processes would respond to the changes

in length associated with body bending. In our model, stretch
receptors integrate over local and posterior body segments, in line
with the anatomy.

The stretch receptor current

I k
SR,n = AnGSR,n

s∑
m=(n−1)Nout+1

hk
m (9)

sums over contributions from a number of segments m of the
physical model, where s = min{M ; N SR + (n − 1) N out} sets the
number of segments sensed to either N SR or to the number of
remaining posterior segments. A prefactor

An =
{

1 , (n − 1) Nout ≤ M − NSR√
NSR

(M−(n−1)Nout)
, (n − 1) Nout > M − NSR

(10)

compensates for the variable number of contributing segments.
The conductance parameter GSR,n increases linearly from head
to tail to compensate for the decreasing curvature of undula-
tions down the worm, imposed by the gradient in muscle efficacy.
Finally, hk

m is the effective stretch receptor activation function. We
allow the stretch receptor conductance to generate a depolarizing
response to stretch and a polarizing response to compression, rel-
ative to the local segment resting length. (A similar effect could be
achieved in the worm with stretch sensitive channels that are par-
tially open at the rest length.) For simplicity, we take this function
to be linear (bilinear) on the ventral (dorsal) sides:

hk
m = λmγ k

m

Lk
L,m − L0L,m

L0L,m
, (11)

where L0L,m is the segment rest length and Lk
L,m is the current

length of the kth side of the mth segment. Here,

λm = 2R

Rm + Rm+1
(12)

is required due to the elliptical shape (and variable radius) of the
body, and

γ k
m =

⎧⎨
⎩

1 , k = V
0.8 , k = D; Lk

L,m > L0L,m

1.2 , k = D; Lk
L,m < L0L,m

(13)

modifies the dorsal stretch receptors to ensure that the worm will
move straight despite the asymmetry in the neural circuit.

Conductance-based neurons
The neural model presented above makes use of two key simplifi-
cations, namely treating the neurons as binary and instantaneous.
However, it could certainly be argued that a mechanism that works
with simple binary neurons would not necessarily work with
more realistic continuous-valued (and non-instantaneous) neu-
rons. To validate the binary model, we developed a conductance-
based model of the B-class neurons based on the RMD dynamics
presented in Mellem et al. (2008).
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We begin by replacing the binary neural states Sk
n , which

were updated according to equation (8), with continuous-valued
membrane potentials V k

mem,n which evolve according to

Cmem
dV k

mem,n

dt
= −I k

leak,n + I k
act,n + I k

SR,n + I k
AVB,n + I k

inh,n , (14)

where Cmem is the membrane capacitance, and the individual
terms in these equations are as follows:

I k
leak,n = Gmem

(
V k

mem,n − Vrest

)

is the leak current, where Gmem and Vrest are the membrane leak
conductance and reversal potential respectively.

Iact = Gact

1 + e−kact(V k
mem,n−Vact)

is a state dependent self-exciting current responsible for the bista-
bility, with a maximum conductance Gact and activation function
parameters kact and Vact.

I k
AVB,n = GAVB

(
VAVB − V k

mem,n

)
+ I k

bias

is the external AVB input, where GAVB is the corresponding gap
junction conductance, V AVB is the AVB membrane potential; the
bias current I k

bias is responsible for breaking symmetry between
dorsal and ventral neurons (and is set to 0 dorsally). The inhibitory
input is set to 0 dorsally and is given by

I V
inh,n = − GGABA

1 + e−kGABA(V D
mem,n−V0,GABA)

on the ventral side, where GGABA is the maximum synaptic con-
ductance for neural inhibition and kGABA and V0,GABA are the
corresponding activation parameters. Finally, the muscle inputs
that would otherwise be given by equation (16) are replaced by

I k
NMJ,m =

⎛
⎝ wACh

1 + e
−kNMJ

(
V k

mem,n(m)
−V0,NMJ

)

+ wGABA

1 + e
−kNMJ

(
V k̄

mem,n(m)
−V0,NMJ

)
⎞
⎠ , (15)

where the wACh and wGABA set the weights of the excitatory (ACh)
and inhibitory (GABA) neuromuscular junctions, and the para-
meters V 0,NMJ and kNMJ determine the NMJ activation function.
Parameter values for the conductance-based model are given in
Table 2.

Muscle electrophysiology
Ventral (dorsal) muscle cells m receive both excitatory and
inhibitory current inputs from the local VBn (DBn) and VDn
(DDn) motor neurons n(m) = ceil[m/N out] (with each neuron
outputting to N out = 4 muscles). The total input “current” to the

Table 2 | Continuous model parameters.

Param. Val.

Gmem 500 pS

Gact 20 pS

GGABA 10 pS

wACh 3

wGABA −0.5

IV
bias 8 pA

Cmem 1 pF

kact 500

kGABA 100

kNMJ 50

GAVB 150 pS

ID
bias 0

V rest −72 mV

V act −60 mV

V 0,GABA V rest

V 0,NMJ −22 mV

V AVB −87.5 mV

Any parameters not given here are the same as in the binary model.

Table 3 | Parameters of the neuromuscular model.

Parameter Value

N 12

M 48

NSR M /2

Nout M /N

wV− −1

wNMJ 1

τM 100 ms

εhys 0.5

IV
AVB 1.175

ID
AVB 0.675

GSR,n (0.224 + 0.056n)/Nout

wD− 0

w̄NMJ −wNMJ

muscles is therefore given by

I k
NMJ,m = wNMJ Sk

n(m) + w̄NMJ Sk̄
n(m) , (16)

where wNMJ are the excitatory neuromuscular junction (NMJ)
weights and w̄NMJ = −wNMJ denote the strength of GABAergic
muscle inhibition by D-class neurons (Table 3).

Muscles respond as leaky integrators with a characteristic time
scale of τM = 100 ms, which crudely agrees with response times
of obliquely striated muscle (Milligan et al., 1997). The muscle
activation is represented by the unitless variable Ak

M ,m that evolves
according to

dAk
M,m

dt
= 1

τM
(I k

NMJ,m − Ak
M,m) , (17)

where I k
NMJ,m is the total current driving the muscle.

Frontiers in Computational Neuroscience www.frontiersin.org March 2012 | Volume 6 | Article 10 | 7

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Boyle et al. Neuromechanical model of C. elegans locomotion

2.4. NUMERICAL METHODS
The model was implemented in C++ and uses a freely available
implicit solver (SUNDIALS IDA 2.3.0; Hindmarsh et al., 2005) as
a physics engine. The neuromuscular system was solved by Euler
integration (with a 1 ms step); the Sundials physics solver used
adaptive time steps with a base relative error tolerance of 10−12 and
absolute spatial tolerances of 10−9 for the coordinates and 10−5

for rod angles. For less resistive media C || ≤ 27.3 × 10−6 kg·s−1 or
C⊥ ≤ 51.2 × 10−6 kg·s−1, all tolerances were reduced by a factor
of 10.

3. RESULTS
Having developed our neuromechanical model of C. elegans for-
ward locomotion, the first key question is to what extent this model
can capture swimming and crawling behaviors in different phys-
ical environments. In particular, one would expect that placing
model worms in different virtual environments would result in
different motor behaviors, but it is not clear a priori what range of
motor behaviors can be obtained in this way. For example, what
would a model that was optimized for replicating crawling behav-
ior yield when placed in virtual water, or vice versa? And are two
different parameter sets needed to generate crawling and swim-
ming patterns? If so, some form of neural or muscular modulation
mechanism may need to be conjectured to account for parameter
changes.

3.1. A SINGLE NEURAL MECHANISM ACCOUNTS FOR SWIMMING
AND CRAWLING

We find that a single model with a single set of parameters is able
to reproduce both crawling and swimming with realistic undula-
tion frequencies and waveforms (Figures 4B and 5A,C; Movie S2
in Supplementary Material). Crucially, this is accomplished with-
out any explicit modulatory mechanism (beyond proprioceptive
feedback). Indeed, the only changes necessary to obtain these dif-
ferent behaviors are to the effective drag coefficients that define
the model environment. We conclude that a single, fixed neural
circuit is sufficient to model both behaviors, without recourse to
neuromodulation, additional sensory input to head neurons, or
variations in proprioceptive fields or properties.

How does the same model generate both crawling and swim-
ming patterns? To understand the common oscillatory mechanism
underpinning these behaviors, it is helpful to follow an oscillation
in a single neural unit connected to a section of body. Consider
such a system that is initialized with both DB and VB states off,
with the body shape completely straight. Switching the AVB input
on drives VB above its activation threshold, and causes the ventral
muscles to contract, stretching the dorsal side. At some point the
dorsal stretch will be sufficient to activate DB and VD. Ventral inhi-
bition resetsVB (switching it off). At this stage bending will reverse,
with the dorsal side contracting and the ventral side stretching,
until the dorsal contraction drops the input to DB below the deac-
tivation threshold, turning it off and indirectly releasing VB from
inhibition. Note the importance of dorso-ventral asymmetry that
allows the ventral side to be activated first and to de-activate only
in response to ventral inhibition (with AVB on).

For the oscillation to propagate down the length of the body,
some form of coupling among units is required. In our model,

the neural units are indirectly coupled through the shape of the
body (i.e., through posterior stretch receptors) and through the
physical properties of the body and environment. The relative
importance of these contributions depends on the properties of
the medium (Boyle, 2010; Fang-Yen et al., 2010). First let us con-
sider highly resistive environments, such as agar. With the body
initialized along a straight line, as above, all VB neurons are on.
During forward motion, the worm’s body exhibits a decreasing
undulation amplitude from head to tail. Accordingly, in the model,
ventral muscles exert a contractile force with a decreasing gradient
toward the tail. Thus the head is the most strongly activated and
will bend first, pulling the worm forward slightly and allowing
more of the body to bend. Sufficient bending of the head will
eventually activate dorsal neurons and bending will reverse. It is
the delay in bending (rather than in actuation) imposed by strong
lateral drag forces that gives rise to the crawling wavelength. In less
resistive media such as water, neural units cannot rely on physical
coupling via the environment for entrainment, so the synchroniz-
ing effect of non-local stretch receptor signals must determine the
spatial wavelength.

To test the above reasoning we used the model to experiment
with variable length stretch receptor fields in B-class motor neu-
rons. Comparison of Figure 6 to Figure 4D confirms that forward
crawling (but not swimming) can be generated by a model with
exclusively local proprioceptive feedback. Thus the model predicts
that shortening the distal processes of B-class neurons through
laser axotomy or mutation would lead to a locomotion defect that
is significantly more pronounced in less resistive media like water.

3.2. INCREASING FLUID VISCOSITY OR VISCOELASTICITY IS
SUFFICIENT TO ACCOUNT FOR THE SWIM-CRAWL TRANSITION

Having developed a model that can swim and crawl, we performed
simulations of the same model in a range of additional model
environments and compared our results with experimental data.
In the model, fluid environments are represented by local drag
coefficients resisting motion tangential (C ||) and normal (C⊥)
to the local body surface. In Newtonian environments, the ratio
K = C⊥/C || is constant. More general, viscoelastic environments
(like gels), are also well described by a pair of drag coefficients, but
the ratio K can vary. We tested our model in a range of viscous
and viscoelastic model environments.

First, we sought to test the model’s swim-crawl transition. This
transition has been experimentally mapped in gelatin solutions
with different concentrations (Berri et al., 2009), and is character-
ized by a smooth and monotonic frequency-wavelength relation
(Figure 4A). Our model is also capable of intermediate behav-
iors (Figures 4D and 5; Movie S2 in Supplementary Material)
and follows a similar frequency-wavelength relation (Figure 4B)
across a large class of intermediate environments, qualitatively
reproducing the smooth swim-crawl transition. Thus, we find
that the entire swim-crawl transition can be modeled by a single
(fixed parameter) neuromechanical system that is being mod-
ulated purely by modifying the drag coefficients of the fluid
environment.

A waveform modulation similar to that reported by Berri et al.
(2009) for viscoelastic media was consequently reported also for
increasing viscosities (Fang-Yen et al., 2010; Shen and Arratia,
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FIGURE 4 | (A) Experimentally observed transition from swimming to
crawling, from Berri et al. (2009), showing locomotion in gelatin (circles;
color bar indicates percent gelatin concentrations) and agar (black
triangles). (B) The swim-crawl transition. The model reproduces the
smooth regulation of undulation frequencies and wavelengths with good
quantitative agreement [colors as in (C)]. Selected points used in (D) are
highlighted with pink circles. Wave properties are extracted as described in
Berri et al. (2009). (C) Values of C || and C⊥ used to evaluate the swim-crawl

transition (1.5 ≤ K ≤ 40). Colors denote the product C || × C⊥, ranging from
light yellow (virtual water) to dark red (virtual agar). Newtonian
environments (K = 1.5) are marked with blue crosses, as are the
corresponding points in (B). A few combinations of drag coefficients
yielded uncoordinated behavior (black dots), and were omitted from (B).
(D) Contour plots for locomotion in (from top) water, two intermediate
environments and agar. The plots show the local curvature (color) along the
worm (vertical axis) and in time (horizontal axis).

2011). It is therefore natural to ask whether the model could
also generate a swim-crawl transition in Newtonian media of
increasing viscosity. Figures 4B,C confirm that, in the model, New-
tonian media can modulate the waveform and kinematics of the
locomotion, similarly to the modulation observed in viscoelastic
media.

Combined, these results suggest that it is the resistivity of the
medium, rather than the ratio of drag coefficients that modulates
the waveform and kinematics of locomotion. Such a conclusion
would be consistent with our previous observation (Berri et al.,

2009) that the worm can generate crawling-like undulations even
in isotropic environments with K ≈ 1.

3.3. THE MODEL REPRODUCES OBSERVED LOCOMOTION DYNAMICS
IN ARTIFICIAL DIRT ENVIRONMENTS

While in the lab C. elegans is studied mostly on agar environ-
ments, its natural habitat is far more heterogeneous and likely
to include many solid obstacles. Studying locomotion in com-
plex environments can inform our understanding of the worm’s
behavior in more natural environments. Furthermore, studying
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FIGURE 5 | Selected stills showing behavior of the integrated model

in, virtual water (A), intermediate gelatin (B), and agar (C). The
corresponding movie clips are available in Supporting Information (Movie S2
in Supplementary Material). The time (in seconds) for each frame is given in
the top right hand corner. Note the different time intervals between stills in
(A) versus (B) and (C).

the worm’s response to solid obstacles can shed light on its proprio-
ceptive mechanisms and closed-loop motor control. In particular,
arrays of microfluidic posts (“artificial dirt”) have recently been
developed specifically for this purpose (Lockery et al., 2008; Park
et al., 2008). We recreated model microfluidic chambers with the
same quasi-2D hexagonal arrays as in Lockery et al. (2008) and
cubic arrays as in Park et al. (2008) and used these to perform
simulations of our integrated model. We find that the model
copes well with these environments, producing remarkably realis-
tic locomotion when compared to the reported behavior (Lockery
et al., 2008; Park et al., 2008). Specifically, as in the experiments,

the model yields crawling behavior in the hexagonal post con-
figuration (Movies S3–S5 in Supplementary Material; Lockery
et al., 2008) and swimming like motion in the cubic configuration
(Movie S6 in Supplementary Material; Park et al., 2008).

To investigate whether the difference in behavior can be attrib-
uted to the layout of the posts or increased resistance, we per-
formed simulations with variable post sizes and inter-post sepa-
rations; with either water- or agar-filled chambers; and with or
without an effective ceiling (Lockery et al., 2008). We found that
both the post layout and the properties of the filler medium can
affect the locomotion behavior. When the filler medium has low
resistance (i.e., water) the undulation frequency is high, but the
amplitude and wavelength depend on the post layout (Movies
S7–S9 in Supplementary Material). In contrast, when the filler
medium is highly resistive (i.e., agar) the behavior tends to be
crawling-like. In cases where the post layout is roughly compatible
with crawling, the locomotion waveform adapts to these con-
straints (Movie S10 in Supplementary Material). However, when
the layout is not compatible, the posts essentially become obstacles
(Movie S11 in Supplementary Material).

3.4. THE MODEL REPRODUCES CONTACT FORCES
One advantage of a fully integrated neuromechanical model is its
physical grounding that can be tested against measurable proper-
ties or even actual force measurements. Indeed, the force exerted
by C. elegans as it moves against a microfluidic pillar was recently
reported to be 2.5 ± 2.5 μN (Doll et al., 2009). Recreating the same
setup in our model, we obtain a value of F = 0.84 ± 0.22 μN for
the mean peak contact force when the worm touches a pillar in
model simulations. This value is totally consistent with the exper-
imentally reported value, which is particularly remarkable when
considering that parameters in our physical model were chosen
purely on the basis of estimates of environmental properties and
behavioral observations (Sauvage, 2007).

3.5. BISTABLE NEUROMUSCULAR CONTROL IS ESSENTIAL FOR
SUSTAINING PROPRIOCEPTIVELY DRIVEN UNDULATIONS
ACROSS THE RANGE OF OBSERVED BEHAVIORS

Previous models of locomotion have typically assumed graded
potential neurons (Niebur and Erdös, 1991; Karbowski et al., 2006;
Bryden and Cohen, 2008), in line with available data at the time
(Goodman et al., 1998; Nickell et al., 2002; Francis et al., 2003;
O’Hagan et al., 2005). In fact, the richness of neuronal dynamics
has only recently come to light (Mathews et al., 2003; Suzuki et al.,
2003; Mellem et al., 2008). In particular, the finding of bistable
motoneurons with discrete membrane potential states (Mellem
et al., 2008) suggests that motor control circuits may be modeled
as a network of binary motoneurons with hysteresis.

Bistability introduces memory into the system, allowing neu-
rons to respond differently to inputs when the body is bending
one way or the other. This allows the system to generate robust
oscillations with a broad range of frequencies (here, ≈0.5–2 Hz)
that depend on the physical load. Indeed, in the absence of such
bistability (or explicit modulation of the neuronal properties), one
would expect oscillations to occur only over a relatively narrow
range, determined by the interplay between relevant neuronal time
constants.
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FIGURE 6 | Curvature plots showing the effect of eliminating posterior

stretch receptor input such that feedback is from local segments only.

(A) On virtual agar, model worms still propagate coordinated waves from
head to tail. (B) In contrast, locomotion in water is highly uncoordinated.

FIGURE 7 | Dynamics of binary (A) and continuous (B) model B-class neurons. Note the different thresholds for activation and deactivation (arrows).

In our model bistability is implemented by modeling B-class
neurons as binary entities with bistable activation functions (see
Figure 7). This simplification approximates the behavior of RMD
neurons as reported in Mellem et al. (2008). The strong non-
linearity imposed by binary threshold elements (even without
bistability) turns the B-neurons into on-off elements and ensures
on-off switching of inputs to the muscles, and hence anti-phase
(dorso-ventral) muscle contractions that are entrained to the
neurons. Interestingly, previous models of locomotion have intro-
duced non-linearities elsewhere in the locomotion circuit. In the
case of Bryden and Cohen (2008) for example, stretch receptor
conductances have strong non-linearity that effectively leads to
“on-off” neuronal states, even though the underlying equations
were of a graded potential neuron. The introduction of bista-
bility into the stretch receptor conductances, or indeed into any
of a number of components of the model, may lead to similar
network dynamics that can robustly adapt to a range of physical
environments.

3.6. BISTABLE NEURAL DYNAMICS ARE CONSISTENT WITH RECENT
RECORDINGS OF NMJ CURRENTS

While the relative simplicity of the binary model makes it prefer-
able to use for most of our simulations, certain questions remain
outside its scope. Specifically, the simplified dynamics of the

binary neurons, with discrete on and off states, makes it impos-
sible to evaluate their behavior against electrophysiological data
in a meaningful way. A recent publication by Liu et al. (2009)
provides the first characterization of the C. elegans body wall neu-
romuscular junction (NMJ) response to optogenetic activation
and inhibition of B-class neurons.

In their experiments, Liu et al. used channelrhodopsin, a light
activated depolarizing ion channel, to stimulate the presynaptic B-
class neuron with light of increasing intensity, and recording the
response current in the muscle cells. They found that the postsy-
naptic current increases smoothly as shown in Figure 8A. Liu et
al. also used halorhodopsin, a light activated hyperpolarizing ion
channel, to inhibit the presynaptic neuron, finding that the post-
synaptic current is reduced. Looking at these results, the obvious
interpretation is that the cholinergic motor neurons exhibit tonic,
graded release of neurotransmitter at resting membrane poten-
tial that can be up- and down-regulated by membrane potential.
This elegant result is an important contribution to understand-
ing (and modeling of) this and other neural circuits in C. elegans.
Moreover, the results might be taken to suggest that the motor
neuron membrane dynamics are similarly graded. Indeed, had the
neurons fired classical all-or-nothing action potentials then one
might expect the postsynaptic currents to be similarly binary, or
at least strongly non-linear. It might appear, therefore, that the
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FIGURE 8 | Postsynaptic currents in response to excitation of motor

neurons, normalized by the maximum current. (A) Postsynaptic currents in
response to light stimuli (reproduced with permission from Liu et al., 2009).
Symbols indicate experimental data points and the solid lines are the best
single exponent fits. (B) Postsynaptic currents at the conductance-based
model NMJ in response to depolarizing current injection to a VB motor

neuron. Red squares highlight specific points for comparison with (A). (C)

Postsynaptic response of the conductance-based model to hyperpolarizing
and depolarizing currents. The blue circle indicates the postsynaptic current at
the neuron’s rest potential. Limited up- and down-regulation of the membrane
potential in either the “on” or “off” state will result in smooth modulation of
the postsynaptic current.

findings of Liu et al. (2009) do not support the model proposed
here.

To examine this apparent inconsistency, we developed a
conductance-based model of B-class neurons (see Section 2.3).
Using this neural model and a simpler, rectangular body model,
we were able to demonstrate reasonably realistic locomotion in
water and on agar (Boyle, 2010), confirming that the locomo-
tion mechanism presented here does not depend on the binary
approximation.

Like the binary model, here too B-class neurons exhibit rapid
(though not instantaneous) switching between low and high mem-
brane potentials. However, the binary discrete “on”/“off” states
are replaced by continuous-valued ranges of membrane potentials
(Figure 7).

Using this conductance-based model, we compared the behav-
ior of our continuous neural model (Figure 8B) to the data (Liu
et al., 2009; Figure 8A). Specifically, we compared the postsynaptic
current in the real and virtual muscles, measured as a function of
the presynaptic current stimulus or light intensity. We find that,
despite the strongly non-linear response in the B-class model neu-
rons, there exists good quantitative agreement with the reported
experimental currents. Figure 8C shows that the postsynaptic
current in the model also decreases significantly in response to
presynaptic hyperpolarization, in line with the experimental find-
ing of tonic neurotransmitter release. While this model cannot
be used conclusively to infer a single model of B-class neurons
(or even to rule out passive behavior of these neurons), we can
conclude that the data of Liu et al. (2009) are consistent with the
bistable B-class neuron dynamics.

3.7. THE MODEL PREDICTS A ROLE FOR GABAergic D-CLASS
NEURONS IN FORWARD LOCOMOTION

In the worm’s ventral cord locomotion circuit, cholinergic neu-
rons of class B and A mediate forward and backward locomotion
respectively. The only inhibition in this circuit is mediated by
D-class GABAergic neurons. Individual D-class neurons receive
input from both A- and B-class neurons. They inhibit muscles,
and in some cases also motoneurons of class D, on either side,

and of classes A and B, on the ventral side only (Chen et al.,
2006; Boyle, 2010). The connectivity diagram of these inhibitory
D-class neurons suggests involvement in both forward and back-
ward locomotion (White et al., 1986; Chen et al., 2006). The
function of D-class neurons can be knocked out through muta-
tion of genes required in the GABA pathway (McIntire et al.,
1993b), by targeted killing of D-class neurons (Walthall et al.,
1993) and by laser axotomy (Yanik et al., 2004), yielding essen-
tially the same so-called shrinker phenotype (Hodgkin, 1983)
in all cases: When touched on the head, wild type worms will
back up, whereas worms whose GABA pathway is defective will
contract muscles along both sides of their bodies. Thus, D-class
neurons are implicated in backward motion, or at least its ini-
tiation. In contrast, forward locomotion in these mutants or
D-ablated worms is described either as wild type (Walthall et al.,
1993; Yanik et al., 2004), or nearly wild type with a reduction in
amplitude (McIntire et al., 1993b). This leads to the commonly
held conclusion that D-class neurons are not essential for forward
locomotion.

We therefore investigated the effect of removing inhibition from
our model. We find that removing all inhibition in our model leads
to grossly normal crawling behavior on model agar, but a total
inability to swim in water (Movies S12 and S13 in Supplemen-
tary Material). At first sight, this model result may appear in stark
contradiction to experimental data. In fact, in every case where for-
ward locomotion of GABA pathway defective worms was reported
(McIntire et al., 1993b; Walthall et al., 1993; Yanik et al., 2004), the
assay was performed on agar. Our model therefore makes a novel
prediction that these worms are forward swim-defective.

Further analysis of the swim-defective model phenotype sug-
gests that in the model, it is neural inhibition (of VB by VD
neurons) that is responsible for the swim-defective phenotype.
This effect is consistent with our description of the oscillation
mechanism which requires inhibition of VB neurons to switch
them off when the dorsal side is activated. Recall that in our model,
we have introduced asymmetries in the parameters of the ventral
and dorsal neurons that allow ventral (VBn) but not dorsal (DBn)
neurons to switch on even when the worm is completely straight.
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During crawling, the delay imposed by the physical interactions
between the body and environment allows the ventral side of the
body to contract sufficiently to switch the VB neurons off, even
in the absence of neural inhibition. However, during swimming,
the low resistivity of water no longer allows VB to reset except via
neural inhibition. Interestingly, muscle inhibition does not appear
to offer an appropriate resetting mechanism in the context of a
sensory feedback based oscillatory mechanism in which B-class
neurons are depolarized in response to local stretch (Boyle, 2010).
The role of a resetting mechanism is to ensure that when a given
neuron becomes depolarized, its opposite counterpart is immedi-
ately repolarized – something that is easily achieved through direct
neural inhibition. In contrast, if the opposite muscle is inhibited
instead, the resulting relaxation would indirectly depolarize the
opposite neuron (via stretch receptors) thus delaying, rather than
accelerating, its repolarization.

4. DISCUSSION
We have presented a fully integrated, biologically and physically
grounded model that accounts for C. elegans locomotion in a
variety of media ranging from water to agar, and in complex envi-
ronments such as artificial dirt. The model was motivated by the
recent finding that swimming, crawling, and a continuum of inter-
mediate locomotion waveforms represent different manifestations
of the same fundamental behavior in different physical environ-
ments (Berri et al., 2009; Fang-Yen et al., 2010; Boyle et al., 2011).
These findings strongly suggested that a single underlying neural
mechanism is at work, and posed a clear challenge to generate
a model of the neural control of locomotion that is valid across
more than a single environment.

Mechanisms of gait modulation in other model systems can
include gradual recruitment of neurons into an active pool (Li
et al., 2007) and local modulation of the appropriate pattern gener-
ating circuits (Harris-Warrick, 1993). In C. elegans, the sparsity of
motoneurons along the ventral cord of the animal appears to pre-
clude the former possibility, suggesting that the range of observed
behaviors results from the modulation of a single circuit.

Here, we have demonstrated that a model with ascending pro-
prioceptive control is sufficient to generate most of the observed
behaviors. In this model, the worm’s forward locomotion requires
neither central pattern generated control nor additional head
circuitry. Nor does our model require any modulation of the
neuronal or circuit parameters. Rather, the adaptation of the wave-
form in different media requires only indirect modulation via the
physical response of the body to the environment. The modula-
tion of the neural control circuit is then accomplished solely via
proprioceptive integration of the different body shapes.

This novel mechanism is neurally economical and produces
robust locomotion in extremely varied environments. Thus, the
model here highlights the added insight that can be gained by
studying the worm’s locomotion nervous system in the context
of its physical embodiment. Of course, the sufficiency of this cir-
cuit and circuit mechanism in no way rules out a range of other
likely contributions to the locomotion system, including partici-
pation of other ventral cord motor neurons (e.g., of classes AS and
VC), effects due to the largely independent head motor circuit,
and indeed contributions from neuromodulation (Sawin et al.,

2000). That said, this model points to the power of proprio-
ceptive modulation in this system and predicts that the worm’s
forward locomotion should be robust to defects in these other
circuit mechanisms.

Our model contains a number of essential ingredients. First,
to adapt the neural activity patterns to the different media, the
proprioceptive (or stretch receptor) signal must span a sufficient
length of the body. Previously, the necessary extent of proprio-
ceptive receptive fields has been considered only for crawling-like
motor patterns (Niebur and Erdös, 1991; Bryden and Cohen,
2008), but we find that our model requires integration of pro-
prioceptive inputs over up to half a body length. Indeed, our
model suggests that the length of this receptive field should be
determined by the longest (i.e., swimming) wavelength of undu-
lations. That said, B-class axons in C. elegans do not extend to
half a body length, suggesting additional mechanisms may be
at play. For example, modifications to body properties, different
stretch receptor distributions and (possibly non-linear) conduc-
tances, and additional proprioceptive pathways (other than via
B-neurons) may all contribute to reducing the minimum required
receptive field.

Secondly, some bistability is essential in our model to support
the dynamic range of undulation frequencies. In line with data
on RMD neurons, we have chosen to implement such bistabil-
ity via state-dependent activation and deactivation of the B-class
motor neurons. In addition, some form of strong non-linearity is
likely to be needed somewhere along the neuromuscular pathway
to avoid muscle co-activation on the two sides of the body. In other
words, for wild type worms performing forward locomotion it is
reasonable to expect that when one side is contracting, the other
side should relax. In fact, RMD neurons exhibit such strong non-
linearities, and we conjecture that B-class neurons may exhibit
similar behavior. Thus, we have implemented bistability by defin-
ing binary activation states of B-class motor neurons. To validate
these assumptions against available data (Liu et al., 2009), we also
presented a complementary conductance-based model of B-class
neurons. The ability to fine tune the activation of motor neu-
rons within effective bands of “off” and “on” activation states may
confer important advantages to the worm in richer, more realistic
forms of motor pattern generation. However further experiments
would be needed to ascertain whether B-class neurons exhibit any
bistable behavior.

Finally, our model achieves robust proprioceptively driven pat-
tern generation that is not reliant on independent head oscillations
and can initiate locomotion from any initial worm conforma-
tion. To do so requires some asymmetry between the ventral and
dorsal sides. In our model, we have chosen to instantiate that
asymmetry by a lower activation threshold of the ventral side.
Consequently, an additional mechanism must be invoked in order
to reset the activation of the ventral side. Perhaps surprisingly,
muscle inhibition by D-class neurons is not likely to perform this
role (Boyle, 2010). By contrast, neural inhibition could in prin-
ciple provide a suitable mechanism and would be interesting to
investigate further experimentally. Specifically, if neural inhibi-
tion is responsible for VB resetting then our model predicts that
GABA-null worms should experience strong defects in forward
swimming, but not necessarily in crawling. Alternatively a range
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of other mechanisms could be involved in resetting neuronal states
on one or both sides of the body. Of those, perhaps the most likely
involves activity dependent changes in neuronal excitability or in
neurotransmitter release (Liu et al., 2009). Other mechanisms,
involving other inhibitory pathways (other than VD to VB inhi-
bition) or even modified body properties may contribute to the
predicted asymmetry.

Our model prediction that the extent of uncoordinated loco-
motion is medium dependent suggests that certain defects (such
as removal of inhibition) should lead to very little or no pheno-
type on agar and to severe defects in water. This discrepancy arises
from a purely mechanical perspective, which leads to qualitatively
different views of swimming and crawling (Fang-Yen et al., 2010).
During crawling, mechanical load by the external medium helps
to support the body shape and facilitates the generation of thrust.
Thus, sufficiently minor defects in the locomotion nervous system
may be masked or disguised. During swimming, external load is
insufficient, suggesting that defects in mechanisms that contribute
to locomotion may be more apparent.

The generation and propagation of sinuous undulations along
the body axis is arguably one of the simpler motor behaviors
orchestrated by C. elegans, and yet even this behavior is not yet fully

understood. Our integrated neuromechanical model proposes a
possible circuit mechanism that accounts for the worm’s forward
locomotion in a range of uniform and heterogeneous physical
environments. The model highlights the ability of biological sys-
tems to exploit their physical environments in order to achieve
effective and robust locomotion and sheds light on the neural
mechanisms that would be needed to achieve this. Further work
will build on our understanding of forward locomotion control to
study more complex motor pattern generation that may require
additional neural mechanisms as well as contributions from other
neural subcircuits.
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