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Peroxisome proliferator-activated receptors (PPARs) have via their large set of target genes a critical impact on numerous diseases
including cancer. Cancer development involves numerous regulatory cascades that drive the progression of the malignancy of the
cells. On a genomic level, these pathways converge on regulatory modules, some of which contain colocalizing PPAR binding
sites (PPREs). We developed an in silico screening method that incorporates experiment- and informatics-derived evidence for
a more reliable prediction of PPREs and PPAR target genes. This method is based on DNA-binding data of PPAR subtypes to a
panel of DR1-type PPREs and tracking the enrichment of binding sites from multiple species. The ability of PPARγ to induce
cellular differentiation and the existence of FDA-approved PPARγ agonists encourage the exploration of possibilities to activate
or inactivate PPRE containing modules to arrest cancer progression. Recent advances in genomic techniques combined with
computational analysis of binding modules are discussed in the review with the example of our recent screen for PPREs on human
chromosome 19.

Copyright © 2008 M. Heinäniemi and C. Carlberg. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

1. INTRODUCTION

Cellular proliferation and differentiation are controlled by
transcriptional regulation of a large subset of the human
genome. The transcriptomes of normal and tumor cells as
revealed by microarray analysis show significant differences
[1] suggesting that in cancer the precise transcriptional
control got lost due to overactive oncogenes and loss of
function of tumor suppressor genes, many of which are
coding for transcription factors. For a molecular insight into
cancer, the transcriptional regulation of probably thousands
of genes has to be uncovered in detail by integrating
expression array data with regulatory site location data [2].
Although the understanding of the regulation of a couple
of key genes, like the cyclin-dependent kinase inhibitor
p21WAFI/CIPI [3], is already quite advanced, for the majority
of the cancer-associated genes such detailed analyses have
not been performed. Even “big biology” projects, such as
ENCODE [4], have focused only on 1% of the human
genome sequence so far, while other genome-wide scans, for
example, for histone modifications [5–7] or transcription
factor binding [8, 9], had to concentrate on only a subset
of modifications and factors under limited experimental
conditions. Databases, such as oncomine [1] for gene

expression data and the UCSC genome browser [10] for
visualization of genome-wide chromatin immunoprecipi-
tation data and transcription factor binding site location
data, allow the combination of data from various projects.
Together, these data resources may provide sufficient insight
to understand the regulation of an individual gene in a
complex disease state, such as cancer. In addition, efforts
to improve bioinformatics methods predicting the binding
and interaction of transcription factors together with more
extensive experimental datasets will fill important gaps [11].

Each individual gene is under the control of a large
set of transcription factors that can bind upstream and
downstream of its transcription start site (TSS) [12]. These
sites typically arrange into collections of neighboring sites,
the so-called modules or enhancers. Modules of transcrip-
tion factors that act on focused genomic regions have been
shown to be far more effective than individual factors
on isolated locations and can act from large distances up
to hundreds of thousands of base pairs. In an ideal case
such transcription factor modules can be identified by
parallel and comparative analysis of their binding sites. Here,
bioinformatics approaches can be of great help, in case they
can predict the actions of the transcription factors precisely
enough [13].
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PPARs are transcription factors that have the special
property to be ligand-inducible, which they share with
most other members of the nuclear receptor superfamily
[14]. This property has attracted a lot of interest in the
nuclear receptor family as possible therapeutical targets in
context of cancer. PPARs were initially described as the
nuclear receptors for compounds that induce peroxisome
proliferation in rodents [15], but now they are know to
be important sensors of cellular levels of fatty acids and
fatty-acid derivatives that are mainly derived from the
lipoxygenase and cyclooxygenase pathways [16]. Polyunsat-
urated fatty acids activate the three PPAR subtypes with
relatively low affinity, whereas fatty acid derivatives show
more binding selectivity [17]. PPARs are prominent players
in the metabolic syndrome because of their role as important
regulators of lipid storage and catabolism [18], but they also
regulate cellular growth and differentiation and therefore
have an impact on hyperproliferative diseases, such as cancer
[19]. Bioinformatic approaches to identify genomic targets
of PPARs and important cancer regulatory modules with
colocalizing PPREs, as they will be described below, should
have a major impact on understanding the role and potential
therapeutic value of PPARs in cancer.

2. THE PPAR SUBFAMILY

The three PPAR subtypes α (NR1C1), β/δ (NR1C2), and γ
(NR1C3) are coexpressed in numerous cell types from either
ectodermal, mesodermal, or endodermal origin, although
their concentration relative to each other varies widely [20,
21]. Importantly, most tumor cells express at least one PPAR
subtype at higher levels suggesting that PPAR ligands may
modulate the transcription of many PPAR target genes in a
beneficial way.

PPARα is highly expressed in cells that have active fatty
acid oxidation capacity including hepatocytes, cardiomy-
ocytes, enterocytes, and the proximal tubule cells of the kid-
ney [22]. This PPAR subtype is a central regulator of hepatic
fatty acid catabolism and glucose metabolism. Furthermore,
it potently represses the hepatic inflammatory response by
downregulating the expression of numerous genes, such as
various acute-phase proteins. PPARα is the molecular target
for the hypolipidemic fibrates, a group of drugs that are
prescribed for their ability to lower plasma triacylglycerols
and elevate plasma HDL (high-density lipoprotein) levels.

PPARβ/δ is expressed ubiquitously and often displays at
higher expression levels than PPARα and γ. It stimulates fatty
acid oxidation in both adipose tissue and skeletal muscle,
regulates hepatic VLDL (very low-density lipoprotein) pro-
duction and catabolism and is involved in wound healing by
governing keratinocyte differentiation [23].

PPARγ is expressed predominantly in adipose tissue
and the immune system and exists as two distinct protein
forms γ1 and γ2, which arise by differential TSSs and
alternative splicing [22]. PPARγ is the master regulator of
adipogenesis and regulates cell-cycle withdrawal, as well as
induction of fat-specific target genes that are involved in
adipocyte metabolism [24]. PPARγ stimulates the expression
of numerous genes that are involved in lipogenesis, including

those for adipocyte fatty acid-binding protein, lipoprotein
lipase, and fatty acid translocase (CD36). The general
role for PPARγ in the regulation of lipid metabolism is
underlined by the therapeutic utilization of the PPARγ
ligands thiazolidinediones in obesity-linked type II diabetes
[25].

3. PPARs AND THE TRANSCRIPTIONAL MACHINERY

An essential prerequisite for the direct modulation of
transcription by PPAR ligands is the location of at least one
activated PPAR protein close to the TSS of the respective
primary PPAR target gene. This is commonly achieved
through the specific binding of PPARs to a DNA binding
site, the so-called PPRE, and DNA-looping towards the
TSS [26]. In detail, the DNA-binding domain of PPARs
contact the major groove of a double-stranded hexameric
DNA sequence with the optimal AGGTCA core binding
sequence. PPARs bind to DNA as heterodimers with the
nuclear receptor retinoid X-receptor (RXR) [27]. PPREs are
therefore formed by two hexameric core binding motifs
in a direct repeat orientation with an optimal spacing of
one nucleotide (DR1), where PPAR occupies the 5′-motif
[28]. However, characterization of PPREs from regulated
gene promoters has resulted in a large collection of PPREs
that deviate significantly from this consensus sequence. An
extensive binding data collection for PPARs was recently
published [29], where more critical deviations and well-
tolerated deviations from the consensus were identified as
will be further explained in the following chapters.

When a nuclear receptor, such as PPAR, is bound to
PPREs in the regulatory regions of its target genes, it
recruits positive and negative coregulatory proteins, referred
to as coactivators [30] and corepressors [31], respectively.
In consequence, the transcriptional output is dependent on
cell- and time-specific expression patterns of these coregula-
tors and can produce distinct modulations of transcription
factors, such as PPARs, due to differences in the relative
corepressor and coactivator protein levels. This aspect has
diagnostic and therapeutic value and can be extracted from
expression level data in different types of cancer [32]. Most
unliganded nuclear receptors preferentially interact with
corepressors to mediate repression, but PPARs have been
found to show a reasonable level of constitutive activity [33],
that is, in the absence of ligand coactivator proteins can
compete for binding. Most coregulators are not exclusive
to PPARs and even not specific to nuclear receptors, but
are also used in a similar manner by other transcription
factors [34]. One group of coregulators covalently modifies
histone proteins, which are as nucleosome constituents the
main chromatin proteins. This acetylation/deacetylation and
methylation/demethylation follows a precise and combi-
natorial code, the so-called histone code [35]. The sec-
ond group of coregulators includes ATP-dependent chro-
matin remodeling factors that modulate the accessibility of
genomic regions to transcription factors and to the basal
transcriptional machinery [36]. Recently, their actions have
been monitored on genome-wide level to reveal common
patterns of transcriptionally active regions and regulatory
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sites [5, 7, 9]. These snap-shots have provided important
insights to common regulatory code, whereas more detailed
studies have explored the dynamics of these processes as
described below.

Repression and activation are more likely achieved
by a series of sequential events that are mediated by
multiple enzymatic activities that are promoter and cell-
type specific. Transcriptional regulation is a highly dynamic
event of rapid association and dissociation of proteins
and their modification, including degradation and de novo
synthesis. A pattern of recruitment and release of cohorts
of coregulatory complexes was demonstrated on a single
region of the trefoil factor-1 promoter in breast cancer cells
[37]. This study revealed detailed and coordinated patterns
of coregulator recruitment and preferential selectivity for
factors that have similar enzymatic activities. Similar cycling
was also observed for the recruitment of PPARβ/δ to the
TSS of the pyruvate dehydrogenase kinase 4 (Degenhardt et
al., unpublished). Understanding the events that lead to the
disturbance of such coordinated action of regulatory proteins
in cancer progression could help finding means to reinitiate
the coordinated regulation. Partial restoration of regulation
was demonstrated on the trefoil factor-1 promoter by removal
of methylation in an unresponsive cell line [38].

4. PPARs IN CANCER

The rapid growth of tumor cells is highly dependent on the
availability of macronutrients and their metabolism. In their
role as master regulators of lipid metabolism, all three PPAR
subtypes have at least an indirect function in controlling
cellular growth [26]. Moreover, the dominant function of
PPARγ in adipocyte differentiation and the suppression of
apoptosis in keratinocytes by PPARβ/δ suggest a direct role
of PPARs in the control of cellular growth and death [19].
As a consequence, a number of prominent PPAR target
genes, such as angiopoietin-like 4, lipoprotein lipase, LDL-
receptor-related protein 1, and caveolin-1, were described to
be involved in the control of tumor cell growth [39–42].
Furthermore, there is a strong physiological link between
chronic inflammation and the onset of cancer [43]. In this
way, the anti-inflammatory actions of PPARs [44] provide
an additional argument for their control function on cellular
proliferation, differentiation, and apoptosis.

However, there is also evidence to state that PPARs may in
some cases promote cancer progression. PPARβ/δ has been
implicated in colorectal carcinogenesis [45], its mRNA is
often upregulated in tumors and the deletion of the PPARβ/δ
gene results in a profound loss of tumorigenicity in nude
mice [46]. Moreover, PPARβ/δ was found to have an essential
role in constraining tumor endothelial cell proliferation to
allow the formation of functional tumor microvessels, that
is, the receptor is important for angiogenesis [47].

As a general argument, we can propose that the main role
of PPARs, the control of metabolism or inflammation, may
also contribute to the regulation of cellular growth. How that
translates (via transcriptional regulation) into interference in
cancer progression or change to a more benign phenotype,
may be highly dependent on cancer type and state. In fact,

the net effect of the activation of some PPAR target genes
may rather result in the stimulation of cellular proliferation
than in its inhibition, when examined alone. Data on gene
expression, on regulatory modules, on their accessibility, and
on the binding of PPARs to those modules need to be joined,
in order to get a handle on the pleiotropic effects of PPARs in
cancer.

5. METHODS FOR IN SILICO SCREENING OF
TRANSCRIPTION FACTOR BINDING SITES

The specificity of PPARs for their binding sites allows
constructing a model to describe the PPRE properties that
can be used to predict potential binding sites in genomic
sequences. For this, the PPAR binding preference, often
expressed as position weight matrix (PWM), has to be
described on the basis of experimental data, such as series
of gel shift assays with a large number of natural binding
sites [48–51]. However, PPAR-RXR heterodimers do not only
recognize a pair of the consensus binding motifs AGGTCA,
but also a number of variations to it. Dependent of the
individual PWM description, this leads to a prediction of
PPREs every 1000 to 10000 bp of genomic sequence. This
probably contains many false positive predictions, which
is mainly due to scoring methodology and the limitations
that are imposed by the available experimental data. For
example, the quantitative characteristics of a transcription
factor, that is, its relative binding strength to a number of
different binding sites, is neglected in a position frequency
matrix, where simply the total number of observations of
each nucleotide is recorded for each position. Moreover, in
the past there was a positional bias of transcription factor
binding sites upstream in close vicinity to the TSS. This
would be apparent from the collection of identified PPREs,
but is in contrast with a multigenome comparison of nuclear
receptor binding site distribution [52] and other reports on
wide-range associations of distal regulatory sites [7].

Internet-based software tools, such as TRANSFAC [53],
screen DNA sequences with databases of matrix models. One
approach used PWMs to describe the binding preferences
of PPARs using all published PPREs [54]. The accuracy of
such methods can be improved by taking the evolutionary
conservation of the binding site and that of the flanking
genomic region into account. Moreover, cooperative inter-
actions between transcription factors, that is, regulatory
modules, can be taken into account by screening for binding
site clusters. The combination of phylogenetic footprinting
and PWM searches applied to orthologous human and
mouse gene sequences reduces the rate of false predictions
by an order of magnitude, but leads to some reduction in
sensitivity [11]. Recent studies suggest that a surprisingly
large fraction of regulatory sites may not be conserved but
yet are functional, which suggests that sequence conservation
revealed by alignments may not capture some relevant
regulatory regions [55].

In effect, these approaches and tools are still insufficient
and there has to be a focus on the creation of bioinfor-
matics resources that include more directly the biochemical
restrains to regulate gene transcription. One important
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aspect is that most putative transcription factor binding sites
are covered by nucleosomes, so that they are not accessible
to the transcription factor. This repressive environment is
found in particular for those sequences that are either
contained within interspersed sequences, are located isolated
from transcription factor modules, or lie outside of insulator
sequences marking the border of chromatin loops [56].
This perspective strongly discourages the idea that isolated,
simple PPREs may be functional in vivo. In turn, this idea
implies that the more transcription factor binding sites
a given promoter region contains and the more of these
transcription factors are expressed, the higher is the chance
that this area of the promoter becomes locally decondensed.

The PAZAR information mall [57] is a tertiary database
that is build on the resource of a multitude of secondary
databases and provides a computing infrastructure for the
creation, maintenance, and dissemination of regulatory
sequence annotation. The unambiguous identification of
the chromosome location for any given transcription factor
binding site using genomic coordinates allows to link the
results from “big biology” projects, such as ENCODE [4],
and other whole genome scans for histone modification
and transcription factor association. Unfortunately, so far
only a few boutiques have been opened inside the PAZAR
framework. In order to benefit from binding site predictions,
it is still necessary to explore dedicated resources. For
example, the well-known regulator of cell cycle progression,
the transcription factor p53, has an own dedicated database
(p53FamTaG) for integration of gene expression and binding
site data [58].

The concept of cancer-specific regulatory modules has
raised increasing attention recently. Genome-wide predic-
tion of enhancers based on analysis of transcription factor
binding affinity by a computational tool, called enhancer
element locator [8], was shown effective to dissect which
types of cancer can be targeted by a given transcription
factor. Predictions validated in transgenic mouse embryos
revealed the presence of multiple tissue-specific enhancers in
mouse c-myc and N-myc genes, which has implications for
organ-specific growth control and tumor-type specificity of
oncogenes.

6. THE CLASSIFIER METHOD FOR PPREs

Approaches for PPRE predictions have been based on a
collection of disparate binding data. To combine evidence
from several publications for an efficient binding model has
challenges thus creating a demand for a coherent binding
dataset. The recently published classifier method [29] used
the in vitro binding preferences of the three PPAR subtypes
on a panel of 39 systematic single nucleotide variations of
the consensus DR1-type PPRE (AGGTCAAAGGTCA) [59]
as an experimental dataset. The single nucleotide variants
were sorted into three classes, where in class I the PPAR
subtypes are able to bind the sequence with a strength
of 75 ± 15% of that of the consensus PPRE, in class II
with 45 ± 15%, and in class III with 15 ± 15%. Although
the overall binding pattern of the three PPAR subtypes
showed no major differences, some variations gave rise to
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Figure 1: Comparison of in silico and experimental analysis of
PPAR target genes. Overview of the genomic organization of the
UCP3 gene; 10 kB upstream and downstream of its TSS are shown
(horizontal black line). Putative PPREs were identified using the
classifier method performing in silico screening of the genomic
sequences. For each predicted PPRE, the calculated binding strength
of PPARγ is represented by column height. The average in vitro
DNA binding strength of PPARγ-RXR heterodimers was also
determined by gel shift experiments.

a PPAR subtype-specific classification. Additional 130 DR1-
type PPREs were sorted on the basis of counting increasing
number of variations from the consensus and taking into
account the single nucleotide variant binding strength. Those
variants that alone decrease the binding only modestly (class
I) could be combined with even three deviations from
consensus still resulting in more than 20% binding relative
to consensus. Other combinations resulted in faster loss of
binding detailed in 11 categories, where such combinations
still resulted in more than 1% relative binding.

The in silico binding strength predictions of PPAR-RXR
heterodimers were confirmed by gel shift assays for the six
PPREs of the uncoupling protein 3 (UCP3) gene and showed
a deviation of less than 15% (Figure 1). Moreover, from
23 investigated genomic regions that were selected from
eight genes, 17 regions display significant inducibility in the
presence of PPAR ligands and in living cells. PPARα and
RXRα associated with 16 of these regions. For the UCP3
gene, for which previously no regulatory regions had been
described to account for the effect of PPAR ligands on its
mRNA transcription, three functional areas were identified
[29].

The main advantage, when comparing the classifier to
PWM methods, is a clear separation between weak PPREs
and those of medium and strong strength [29]. For the
discovery of potential binding sites, this is extra information
that could be especially of interest in processes considered
context dependent, for example, for PPREs that reside in
genomic context of transcription factor modules. Predicting
the strength of PPAR binding can be a predictor of how
prominent effect this receptor can have on a target gene. For
example, if binding is easily competed by other transcription
factors, the effect may not manifest in most tissues or it may
manifest only in tissues expressing all transcription factors
of a module containing the PPRE. As an example of the
latter case, the insulin-like growth factor binding protein 1
gene has a weak PPRE located inside a well-conserved area
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Figure 2: Possible evolutionary changes to PPRE location, strength,
and conservation. Hypothetical genes from two different species
(e.g., human and mouse) were compared for their PPREs (black
bars, their height indicates relative strength). When the PPRE
pattern is preserved, the genes will be sorted into cluster I, when
extended in cluster II, when replaced in cluster III and when not at
all conserved (e.g., when turned-over) in cluster IV.

(suggesting presence of other transcription factor binding
sites) and was only in liver responsive to PPAR ligands
[59]. In contrast, genes with strong PPREs, such as carnitine
palmitoyltransferase 1A and angiopoietin-like 4, are PPAR
responsive in many tissues (Heinäniemi et al., unpublished
data).

7. CLUSTERING OF KNOWN PPAR TARGET GENES

The data added by binding strength analysis and by covering
a larger regulatory region (±10 kB) was examined with
all 38 human genes that are known to be primary PPAR
targets together with their mouse ortholog. The clustering by
predicted binding strength and evolutionary conservation of
their PPREs resulted in four groups [29]. In general, clusters
I to II contain genes that are well conserved between human
and mouse. Cluster I contains genes that carry multiple
conserved PPREs, while genes in cluster II have only one or
two strong or medium conserved PPRE in human, which
are found in comparable strength and location in the mouse.
Cluster III contains genes that have strong or medium PPREs
in one species that are conserved only as weak PPREs in the
other species. Finally, cluster IV contains more than 25% of
all tested genes, which have the common property that they
carry one or more PPREs, but none of them is conserved.
These examples suggest that regulation of target gene can
survive turnover of binding sites and might even benefit from
it as indicated in Figure 2.

The clustering analysis indicated some useful features for
whole genome PPRE screens. Either the presence of at least
one strong PPRE or more than two medium PPREs within
the 20 kB surrounding the annotated TSS of a gene is a strong

indication for a PPAR target gene. In this way, 28 out of the
38 the human genes would have been identified as PPAR
targets. Similarly, for 29 of these 38 genes the analysis of their
murine ortholog would have come to the same conclusion.
A combination of these two criteria (passing the threshold in
either the human or mouse ortholog) would have identified
37 of the 38 genes as PPAR targets.

7.1. A look at PPREs in their genomic context: putative
target genes and binding modules

In the paper described above, the gene-dense human chro-
mosome 19 (63.8 MB, 1445 known genes) and its syntenic
mouse regions (956 genes have known orthologs) were
selected for an in silico screening based on the above
explained criteria; that is, both species were investigated for
medium and strong PPREs (based on a PPARγ prediction)
[29]. Interestingly, 20% of genes of chromosome 19 contain a
colocalizing strong PPRE and additional 4% have more than
two medium PPREs or a proximal medium PPRE. These
numbers suggest a total of 4000 to 5000 targets for PPARs
in the human genome, if no false positives are assumed.
Certainly, not all sites will be accessible and the human
genome also contains weak binding sites that could gain
function via interaction with other transcription factors. The
latter can also be screened with the acquired knowledge
on PPAR binding preferences down to 1% relative to the
consensus PPRE. Experimentally, a complete evaluation of
the selectivity of any such screen is complicated by the
restricted expression profiles of the predicted genes, which
prevents simple readouts from individual target tissues.
When requiring the detection in human and mouse, 12.1%
of genes from chromosome 19 were predicted as PPAR
targets. In this approach, full alignment was not required,
just preservation of what could be called PPAR binding
potential. The more strong PPREs a gene has accumulated,
the smaller the chances are that given all 250 human tissues
none of these sites would get accessible or be built into a
regulatory module with other transcription factor binding
sites. Of relevance to cancer several cell cycle regulating genes
were found by the screen, some of which have been reported
as PPAR targets by others, such as G1/S-specific cyclin
E [60], p19INK4d [61], prostate tumor overexpressed gene,
serine protease hepsin [62] and the serine/threonine kinases
associated with cell cycle regulation p21-activated kinase 4
(PAK4), and homeodomain-interacting protein kinase 4. In
addition, the prostate tumor marker kallikrein-3 [63] and
several other kallikrein gene family members were detected.
From novel targets, the regulatory regions of a ceramide
synthesis regulator, LASS1, were experimentally confirmed
[29]. Overexpression of this protein has been shown to
restore normal ceramide levels and inhibit the growth of
head and neck squamous carcinomas [64].

The complete list of putative PPAR target genes in chro-
mosome 19 [29] offers interesting candidates representing
physiological functions connected to PPARs. It will gain
more power, when it can be integrated with other genomic
screens, both experimental and bioinformatics, as has been
outlined in the previous discussion. A vision for future of
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Figure 3: A gene module map compiled from bioinformatics data and experimental datasets. The superimposition of the PPRE track
(in green on top) on other genome-wide datasets can reveal promising PPRE-containing binding modules for targeted therapy via PPAR
activation. In this imaginary setting, transcription factor 1 (in blue) is known to be one main regulator of the hypothetical gene X and
this regulation is altered in cancer. Transcription factor 2 (in yellow) synergistically activates gene X, but is lost in cancer cells. Chromatin
immunoprecipitation data comparing normal and cancer binding profiles for this transcription factor reveal two main regulatory modules
under normal conditions and a weaker binding in cancer samples due to loss of transcription factor 2. A colocalizing PPRE in module 2
could enable PPARs to replace transcription factor 2 in this module and to restore strong activation of this gene.

targeting cancer regulatory modules with colocalizing PPREs
is depicted in Figure 3. A PPRE track (for simplicity binding
strength was not indicated) provided by bioinformatics
approaches can be compared against evidence of other
regulatory modules provided by conservation analysis and
screens for other transcription factors. Experimental data
comparing regulation in a specific cancer type versus normal
cells can be visualized in the same context to detect overlap
in functional binding sites. Given the high interest of the
scientific community to better characterize binding profiles
of different transcription factors and the improved exper-
imental techniques to detect genome-wide binding events,
such additional tracks combined with a PPRE binding track
could be available in near future.

8. CONCLUSION

The identification of genes showing a primary response to
PPARs and their ligands, the so-called PPAR regulome, can
be used as a prediction of their therapeutic potential as well
as their possible side effects. Methods incorporating both
experimental- and informatics-derived evidence to arrive
at a more reliable prediction of PPAR targets and binding
modules can bring all available data together with the aim to
predict outcome in specific context. Taking the chromosome
19 in silico screening trial as an example and extrapolating
the results to the whole human genome, we suggest that
approximately 10% of all human genes (an estimate of 2000
to 2500 genes) have the potential to be directly regulated by
PPARs by their PPRE content within 10 kB distance to their
TSS. Translated to regulatory modules that colocalize with
PPREs, an even larger number of genomic regions could be
targeted by PPARs. In conclusion, in this review we have
addressed the identification of direct targets using genomic
sequences and binding data. In parallel, we have discussed
the potential of looking for PPREs inside regulatory modules
foreseeing that in future, very likely the emphasis will shift
from target genes to target regulatory modules to alter a

physiological response and from individual genes to whole
genome response.

LIST OF ABBREVIATIONS

DR1: Direct repeat spaced by one nucleotide
PPAR: Peroxisome proliferator-activated receptor
PPRE: PPAR response element
PWM: Position weight matrix
RXR: Retinoid X-receptor
TSS: Transcription start site
UCP3: Uncoupling protein 3.

ACKNOWLEDGMENTS

Grants (all to CC) from the University of Luxembourg, the
Academy of Finland, the Finnish Cancer Organisation, the
Juselius Foundation, and the EU (Marie Curie RTN NucSys)
supported our research.

REFERENCES

[1] D. R. Rhodes, S. Kalyana-Sundaram, V. Mahavisno, et al.,
“Oncomine 3.0: genes, pathways, and networks in a collection
of 18,000 cancer gene expression profiles,” Neoplasia, vol. 9,
no. 2, pp. 166–180, 2007.

[2] D. R. Rhodes and A. M. Chinnaiyan, “Integrative analysis of
the cancer transcriptome,” Nature Genetics, vol. 37, no. 6, pp.
S31–S37, 2005.
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