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Purpose: Stargardt disease is the most common inherited juvenile macular dystrophy
and is characterized by yellowish flecks across the posterior pole. The purpose of this study
was to investigate fluorescence lifetime changes of retinal flecks over time using
fluorescence lifetime imaging ophthalmoscopy.

Methods: Longitudinal fluorescence lifetime data of 12 patients with Stargardt disease
(mean age ± SEM, 42.25 ± 2.1 years; range, 28–58 years) were acquired using a fluores-
cence lifetime imaging ophthalmoscope based on a Heidelberg Engineering Spectralis
system. Retinal autofluorescence was excited with a 470-nm laser. The emitted fluores-
cence was detected in two wavelength channels: a short spectral channel (498–560 nm)
and a long spectral channel (560–720 nm). The mean retinal autofluorescence lifetimes
were calculated and further analyzed with corresponding color fundus images, autofluor-
escence intensity images, and spectral domain optical coherence tomography. Patients
were classified into three subtypes.

Results: All patients with Stargardt disease displayed characteristic autofluorescence
lifetime patterns. Mean fluorescence lifetime values within areas of yellow flecks were
significantly prolonged (long spectral channel 484 ps) compared with the surrounding
tissue (long spectral channel 297 ps). In 91.6% of the eyes, flecks with short fluorescence
lifetimes (long spectral channel 255 ps) were identified. Short lifetime flecks progressed to
flecks with characteristic long lifetimes in 75.1% of eyes within a mean interval of 29.2
months (range 3–45 months). Between baseline and follow-up, the rate of newly developed
short lifetime flecks (number/per year) based on subtypes was 2.62 in Group 1, 1.43 in
Group 2, and 0.81 in Group 3.

Conclusion: Recent onset flecks in Stargardt disease display short fluorescence
lifetimes and convert into longer fluorescence lifetime flecks over time. This transition
may represent a change in the composition of retinal deposits with accumulation of
lipofuscin and retinoid by-products from the visual cycle. With emerging treatment options,
these findings may prove useful to monitor disease progression and therapeutic effects.
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Stargardt disease (STGD) is the most common in-
herited macular dystrophy. It is a form of macular

degeneration initially described by Stargardt in 1909.1

Stargardt disease classically presents during the first
two decades of life and is characterized by a progres-
sive bilateral loss of central vision. Morphological fea-
tures include central macular atrophy and well-defined
yellowish deposits visible on the posterior pole around
the macular, known as “flecks.”1,2 Histologically,
flecks are located at the level of the retinal pigment
epithelium (RPE).3,4

Over the course of the disease, initially well-defined
flecks progress outward from the central macula in
a centrifugal pattern. Flecks then fade, leaving poorly
demarcated yellow lesions and residual atrophy.2,5,6

Thus, at advanced stages of the disease, a progressive
bilateral atrophy of the RPE, photoreceptors, and cho-
roidal vasculature can be found.7 The severity of fun-
dus abnormalities seen on ophthalmoscopy is often not
directly associated with the visual acuity. However,
the overall prognosis of STGD is poor, and visual
acuity often deteriorates to 20/200 or less.8,9
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Stargardt disease is predominately inherited in an
autosomal recessive trait, and most cases are caused
by pathogenic variants in the retinal-specific ATP-
binding cassette transporter gene ABCA4, located on
chromosome 1p13 (STGD1; OMIM #248200).10–12

ABCA4 expression is predominantly localized to the
rim of photoreceptor outer segments and at lower
levels in the retinal pigment epithelium.13 The AB-
CA4 transporter flips the N-retinylidene-phosphati-
dylethanolamine (N-ret-PE) that forms in the visual
cycle by reversible combination of toxic retinalde-
hyde with phosphatidylethanolamine (PE), from the
luminal to cytoplasmic surface of photoreceptor
outer disc membranes. In the absence of ABCA4
flippase activity, clearance of retinaldehyde is de-
layed, favoring a secondary condensation of N-ret-
PE with another retinaldehyde to form phospholipid-
conjugated bisretinoids, v.g. dihydro-N-
retinylidene-N-retinyl-phosphatidylethanolamine
(A2PE-H2), or its oxidized form (A2PE).12,14 Char-
acteristic phenotypic features, such as pisciform
flecks and atrophy, are then believed to develop as
a result of the accumulation of these retinoid by-
products or lipofuscins in the RPE.10 In rare cases,
STGD is caused by dominantly inherited variants in
ELOVL4 encoding the elongation of very long chain
fatty acids protein 4 (STGD3; OMIM #600110) and
in PROM1 encoding the rim protein prominin-1
(STGD4; OMIM #603786).
Several noninvasive imaging techniques have been

established in the diagnosis of STGD, and for
monitoring disease progression. Spectral domain opti-
cal coherence tomography (OCT) is a recognized
imaging tool that provides morphologic information
by visualizing the retinal architecture. Spectral domain

OCT may demonstrate thinning of retinal layers and
a loss of photoreceptor segment layers.15,16

Fundus autofluorescence (FAF) intensity imaging is
an established imaging technique providing informa-
tion on the retinal status by enabling the visualization
of hyperautofluorescent material such as bisretinoid
components, such as lipofuscin, originating from the
RPE.17 In early stage of STGD, FAF imaging reveals
hyperautofluorescent lesions consistent with visible
flecks on fundus examination. In later stages, hypoau-
tofluorescent areas appear, consistent with RPE atro-
phy and photoreceptor loss.6

Despite substantial research efforts in the past
decades, there are no approved therapeutic treat-
ments for STGD. The disease causes significant
morbidity with psychological and economic impli-
cations. However, promising new options, including
gene replacement therapy, stem cell transplantation,
and deuterated vitamin A, are emerging and are
currently being reviewed in clinical trials.18,19 A fur-
ther challenge researchers face in treating STGD is
the lack of a highly sensitive measurement tool to
monitor short-term changes in disease progression.19

This will be vital to assess effects of future therapies
accurately.
Fluorescence lifetime imaging ophthalmoscopy

(FLIO) measures lifetimes of endogenous retinal
fluorophores after excitation using a picosecond-
pulsed blue laser light. A previous report from our
group demonstrated characteristic fluorescence life-
time changes across the posterior pole in patients
with STGD. In this previous study, retinal flecks
with a broad range of autofluorescence lifetimes
were identified, and it was speculated that short
lifetime flecks represent recent lesions, whereas
flecks with longer lifetimes represent older lesions.20

The aim of this study was to investigate the dynam-
ics of fluorescence lifetimes within retinal flecks
over time.

Methods

Twelve patients with a clinical diagnosis of STGD
were included in the study. The patients were consec-
utively recruited at the University Hospital in Bern,
Switzerland. The diagnosis of STGD was established
by findings on clinical examination and ancillary
studies including color fundus images, FAF intensity
images, and electroretinographic results.21 Moreover,
11 of 12 patients with STGD included had a molecular
diagnosis of STGD (see Table 1, Supplemental
Digital Content 1, http://links.lww.com/IAE/A990).
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All patients had a baseline and a follow-up exam-
ination. At each visit, best-corrected visual acuity
(BCVA; according to Early Treatment Diabetic Ret-
inopathy Study [ETDRS] letters22) was measured in
all patients, and a general dilated ophthalmologic
examination was performed. Maximal pupil dilation
was achieved using tropicamide 0.5% and phenyleph-
rine HCl 2.5%. Fundus color images (Zeiss FF
450plus; Zeiss, Oberkochen, Germany), OCT scans
of the macula (Heidelberg Spectralis HRA + OCT;
Heidelberg Engineering, Heidelberg, Germany), and
fluorescence lifetime images were obtained of both
eyes.
Patients with STGD were assigned to phenotypic

subtypes at baseline and follow-up. Based on the
clinical appearance of the color fundus and FAF
images, patients were assigned to one of three groups:

1. Group I: flecks and atrophy are confined to the
central macular area.

2. Group II: flecks are scattered, can spread nasally to
the optic disk, and/or exceed the vascular arcades.

3. Group III: flecks are ill-defined “resorbed” lesions,
and extensive RPE atrophy is visible.23

The study was conducted at the Department of
Ophthalmology at the University Hospital in Bern,
Switzerland, with the approval of the local ethics
committee and in accordance with the Declaration of
Helsinki. All participants provided written informed
consent before study entry. This study is registered at
ClinicalTrials.gov as “Measurement of Retinal Auto-
fluorescence with a Fluorescence Lifetime Imaging
Ophthalmoscope (FLIO Group),” with the identifier
number NCT01981148.

Fluorescence Lifetime Imaging Ophthalmoscope

Fluorescence lifetime imaging ophthalmoscope,
based on an HRA Spectralis system (Heidelberg
Engineering), was used to obtain retinal fluorescence
lifetime data. The principles and details of FLIO have
been described elsewhere.22,24

In summary, the technique is based on the excitation
of retinal autofluorescence using a 470-nm pulsed laser
at 80-MHz repetition rate. Highly sensitive hybrid
photon-counting detectors (HPM-100–40; Becker &
Hickl, Berlin, Germany) were used for the registration
of emitted fluorescence light by time-correlated single-
photon counting modules (SPC-150; Becker & Hickl).
Emitted fluorescence photons were measured in two
separate wavelength spectrums: a short spectral chan-
nel (SSC: 498–560 nm) and a long spectral channel
(LSC: 560–720 nm). In both wavelength channels, at
least 1,000 photons per pixel were obtained, which

requires scan duration of 90 seconds per eye approx-
imately in patients with STGD. During data accumu-
lation, an eye movement tracking system with a high-
contrast confocal infrared image ensures the correct
location of each detected photon within a field of
256 · 256 pixels.

Fluorescence Lifetime Data Analysis

Fluorescence lifetime data collection resulted in
a decay curve which was biexponentially approxi-
mated using SPCImage software version 4.6 (Becker
& Hickl). The chi-square value evaluated appropriate-
ness of the exponential fit. The resulting short and long
lifetime components (T1 and T2) along with their
respective relative amplitudes a1 and a2 were used
to calculate the mean fluorescence lifetime Tm, which
signifies the amplitude weighted mean fluorescence
lifetime.
The mean fluorescence lifetimes were analyzed

using “FLIO reader” software (ARTORG Center for
Biomedical Engineering Research, University of Bern,
Switzerland). To spatially quantify retinal autofluores-
cence lifetimes, a standard ETDRS grid was used with
following circle diameters: 1 mm for the central area,
3 mm for the inner ring, and 6 mm for the outer ring.
Smaller region of interests with diameters of 0.16 mm
and 0.5 mm were used to analyze specific areas of
interest, for example, flecks. Fluorescence lifetimes
within flecks were analyzed by averaging three regions
of interest.

Statistical Data Analysis

Fluorescence lifetime values for the SSC and the
LSC were analyzed separately. All data were presented
as mean ± SEM. Statistical analysis was performed
using GraphPad (Prism 6; GraphPad Software, Inc,
La Jolla, CA). To compare the results, the Mann–
Whitney test with a confidence interval of 95% was
used. P values ,0.05 were considered as statistically
significant. A stepwise forward regression analysis
was performed using SigmaPlot Version 12.3 (Systat
Software, Inc, San Jose, CA).

Results

Twenty-four eyes of 12 patients with a clinical
diagnosis of STGD were included in this study (53.8%
female). Patient characteristics are shown in Table 1.
The mean age ± SEM at baseline was 42.25 ± 2.1
years (range, 26–56). All participants were white,
phakic with clear media, and had no concomitant oph-
thalmic diseases. The examined patients displayed

FLUORESCENCE LIFETIME IMAGING IN STARGARDT DISEASE � SOLBERG ET AL 881



various stages of hyperautofluorescent flecks and hy-
poautofluorescent lesions, consistent with RPE
changes and atrophy. All patients had a baseline and
at least one follow-up examination with a mean inter-
val of 29.2 months (range, 3–45 months). All patients
developed new flecks during the clinical follow-up
period.
Mean age at the initial diagnosis of STGD was 29.7

± 3.1 years (range 12–43). The mean disease duration
at the time of the first and the last FLIO measurement
was 12.1 ± 3.1 years (range, 0.08–31), and 14.6 ± 3.24
years (range, 5–30), respectively. The mean BCVA at
baseline and at follow-up was 53.6 ± 4.9 (range
17–84) and 51.2 ± 4.8 (range 16–83) ETDRS letters,
respectively, with a mean EDTRS visual acuity reduc-
tion during the follow-up interval of 2.4 letters. There
was a significant correlation between the BCVA and
the mean fluorescence lifetime of the central ETDRS
subfield in both spectral channels when analyzing the
data of all study eyes at baseline (SSC: r2 = 0.35, P =
0.002; LSC: r2 = 0.32, P = 0.004) and follow-up (SSC:
r2 = 0.51, P , 0.0001; LSC: r2 = 0.45, P = 0.0001)
(Figure 1). A central atrophic lesion was found in
33.3% patients (10 eyes), with a mean size of
7.35 mm2 (range 0.48–20.3 mm2) at baseline, and
10.6 mm2 (range 1.69–28.7 mm2) at follow-up. The
mean progression rate of the atrophic area was
1.7 mm2 per year.

Autofluorescence Lifetimes in Patients With
Stargardt Disease

The white-yellow STGD flecks visible on fundus
examination correlated with hyperautofluorescent le-
sions in FAF intensity images and hyperreflective
changes seen in OCT. In FLIO, flecks exhibited both

short and long fluorescence lifetimes, when compared
with the surrounding retina, and were represented as
red and blue lesions in color-coded images with
a range between 200 ps (red) and 600 ps (blue).
Most flecks displayed long (blue) fluorescence

lifetimes (SSC: 4,715 ± 17 ps; LSC: 484 ± 21 ps).
However, in 91.7% (n = 22) of eyes, a smaller number
of flecks with shorter lifetimes, color-coded in red
(SSC: 265 ± 2 ps; LSC: 255 ± 4 ps), were identified
(Figure 2).
Compared with the surrounding retina (SSC: 270 ±

6 ps; LSC: 297 ± 7 ps), Ƭm was significantly pro-
longed in long fluorescence lifetime flecks by +74%
in the SSC and +63% in the LCS (both P , 0.0001).
While in short fluorescence lifetime flecks, Ƭm was
shortened by 22% in the SSC and 216% in the
LSC (SSC: P = 0.21, LSC: P , 0.0001) compared
with the surrounding retina.
Fluorescence lifetime imaging ophthalmoscopy was

used to examine the progression of the disease in our
study eyes. Long fluorescence lifetime flecks pre-
sented as isolated deposits or as several flecks merging
with each other in a meshwork pattern. As expected,
fleck formation progressed centrifugal outward from
the central macular area as the disease advanced. On
follow-up, new flecks developed in all patients;
however, the rate and extent varied between patients.

Short fluorescence lifetime flecks. A larger number
of short fluorescence lifetime flecks were identified in
patients at early stages of disease (Group 1 and Group
2), while at later stages, they were only found
occasionally. The ratio of short fluorescence lifetime
flecks identified at baseline between Group 1 versus
Group 3 was 9:5. Quantitative analysis of flecks with
short fluorescence lifetimes at two points in time

Table 1. Baseline Patient Characteristics

Patient ID Sex Baseline Age, year Age of Onset, y

Visual Acuity Phenotype Atrophy

Right Left Right Left Right Left

STGD 1 M 34 28 80 81 2 2 — —

STGD 2 M 33 30 79 84 2 2 — —

STGD 3 M 53 40 35 34 2 2 Y Y
STGD 4 F 43 12 32 34 3 3 GA GA
STGD 5 M 41 34 38 40 2 2 Y Y
STGD 6 M 45 18 19 17 3 3 GA GA
STGD 7 F 45 40 82 83 2 3 — —

STGD 8 F 56 33 34 36 2 2 GA GA
STGD 9 M 47 42 70 84 1 2 — —

STGD 10 M 41 18 44 47 2 2 GA GA
STGD 11 F 26 18 34 34 2 2 GA GA
STGD 12 F 43 43 83 83 2 2 — —

Patient ID number, sex, age, age of onset, BCVA (ETDRS letters) at the last follow-up, fundus phenotype 1 to 3 according to Fishman
classification, presence of areas with geographic atrophy (GA), and presence of atrophy (Y).
M, male; F, female.
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(baseline and last follow-up) revealed that new flecks
visible in FLIO developed at a rate of 2.62/year in
Group 1, 1.43/year in Group 2, and 0.81/year in Group
3. Short lifetime lesion progressed to flecks with
characteristic long lifetimes in 75.1% (n = 22) within
29.2 months. In the transition phase, longer lifetimes
initiate in the center of the flecks, and radiate outward
with time. Borders of short lifetime flecks shifted to
long lifetimes last (Figure 3).
Long fluorescence lifetime flecks. In general, there

was a predominance of long fluorescence lifetime
flecks in all stages of STGD in our cohort. On
analysis of long lifetime flecks, borders were identi-
fied to feature shorter mean fluorescence lifetime
values than the center of the fleck (SSC: 446.5 ± 17

ps, vs. 522.6 ± 20, P , 0.0001) (LSC: 462.7 ± 14 ps,
vs. 548.3 ± 21 ps, P , 0.0001). Borders demon-
strated progression from sharp defined edges to
a more diffuse pattern (Figure 4).

Correlation of Fluorescence Lifetime Data With
Optical Coherence Tomography Findings

Colocalization of flecks in FLIO with OCT dis-
played hyperreflective material of variable size and
shape. At the level of the flecks, OCT bands displayed
convex, pyramidal-shaped, or ill-defined deposits,
interrupting the photoreceptor ellipsoid zone (EZ)
and/or external limiting membrane bands. Some
deposits displayed hyperreflective foci extending into
the outer nuclear layer, with a remaining connection to
the RPE. Depending on the location of hyperreflective
deposits in OCT, FLIO images displayed characteristic
lifetime patterns. Long fluorescence lifetime flecks
generally demonstrated intraretinal migration of de-
posits of varying extents (Figures 4 and 5), while short
fluorescence lifetime flecks usually presented as dome-
shaped deposits located within the outer retina at the
level of the RPE, with displacement or interruption of
the photoreceptor segments (Figure 3).

Individual Fluorescence Lifetime Components

As described in the method section, Tm is composed
of the separate lifetimes components T1 (short portion)
and T2 (long portion), along with their corresponding
amplitudes or intensities (a1 and a2). We analyzed
these individual fluorescence lifetime components
independently using 2D histograms to observe their
effect on Tm as described in previous publications.22,24

Our data revealed that both short and long fluores-
cence lifetime flecks can be isolated from the surround-
ing retina. Short lifetime flecks characteristically
showed a shorter T1 and T2 component in comparison
to the surrounding retina and the long lifetime flecks
(Figure 5).

Regression Analysis

The influence of the independent variables patient’s
age, disease duration, and Fishman score was analyzed
against the dependent variables mean fluorescence
lifetime (Tm) in the SSC and the LSC. When analyz-
ing mean fluorescence lifetime values within the cen-
tral ETDRS grid area, the disease duration
significantly contributed to the ability of the equation
to predict lifetimes in the short and long wavelength
spectrum (SSC: P = 0.02 and LSC: P = 0.04). When
analyzing unaffected surrounding retina, only age

Fig. 1. Correlation of BCVA (ETDRS letters) with mean fluorescence
lifetime (ps) within the central ETDRS subfield of the short (white
circle, SSC, 498–560 nm) and the long (black circle, LSC) spectral
channels at (A) baseline (SSC: r2 = 0.35, P = 0.002; LSC: r2 = 0.32, P =
0.004) and (B) follow-up (SSC: r2 = 0.51, P , 0.0001; LSC: r2 = 0.45,
P = 0.0001). Representative fluorescence lifetime (FLIO, LSC) images
of three identified groups and correlating OCT scan of the indicated
lines in the FLIO images are shown below.
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significantly correlated with longer mean fluorescence
lifetimes within the SSC (P = 0.006).

Discussion

In this prospective study, we investigated retinal
fluorescence lifetimes in 24 eyes of patients with
STGD using fundus autofluorescence lifetime
(FLIO) imaging. Previously described characteristic
lifetime patterns20 were confirmed. Our data showed
that most retinal hyperautofluorescent flecks and de-
posits displayed longer lifetimes compared with the
surrounding retina. However, particularly at early
stages of disease (Groups 1 and 2), lesions with very
short fluorescence lifetimes were identified. These
lesions were more apparent in the LSC (560–720
nm). On correlation to other imaging modalities,
we observed that flecks with short fluorescence life-
times were either not yet visible, or faint and

ill-defined on FAF intensity images, while flecks
with prolonged lifetimes were clearly identifiable.
Interestingly, our follow-up measurements showed
that lesions with initially short lifetime values which
were faintly visible in FAF intensity measurements
progressed to flecks which were clearly visible as
hyperautofluorescent flecks and displayed long fluo-
rescence lifetimes. These results are in keeping with
our previous study of FLIO in STGD.20 In this
study, we provide evidence that flecks with short
lifetimes occur more frequently at earlier and more
active stages of the disease, and may be the result
from the buildup of intermediate components of the
retinoid cycle.11 On the other hand, blue flecks rep-
resent a more advanced stage of the lesion, possibly
indicating a more severe dysfunction of the under-
lying retina as by-products of the visual cycle accu-
mulate. Sparrow et al25 proposed that in STGD by-
products of the visual cycle can buildup in the outer
segment of photoreceptor cells.

Fig. 2. A. Quantitative analysis
of mean retinal autofluorescence
lifetime values in the SSC and
LSC in patients with STGD.
Following areas were analyzed:
surrounding retinal tissue ( ),
flecks with long ( ) and short
( ) fluorescence lifetimes. B. A
small region of interest (circle
diameter: 0.16 mm) was used to
investigate mean retinal auto-
fluorescence lifetimes within
short lifetime flecks, long life-
time flecks, and the surrounding
retina. Areas of interest repre-
sent a mean value of three
individual measurement loca-
tions. Fluorescence lifetime data
of both spectral channels were
analyzed separately.
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Histopathological studies suggest that the hyper-
autofluorescent flecks originate from lipofuscin accu-
mulation in the RPE cells, which in STGD occurs at an
accelerated rate in comparison with the normal aging
process.26,27 Buildup of fluorescent lipofuscin in the
RPE is a hallmark of STGD, and the possible disease
mechanism due to the dysfunction of the ABCA4 flip-
pase could be the following.13 After photoactivation of
rhodopsin, all-trans retinal builds up in the photorecep-
tor outer segments and readily forms N-retinylidene-
phosphatidylethanolamine (N-ret-PE) by binding to
amine groups of phosphatidylethanolamine (PE). Loss
of ABCA4 flippase activity reduces clearance of all-
trans retinal and favors its condensation with a second
retinaldehyde to form the bisretinoids A2PE. On phago-
cytosis, A2PE is converted into the major lipofuscin

fluorophore A2E (N-retinylidene-N-retinylethanolamine)
in the acidic environment of RPE phagosomes.26–28

The recent identification of ABCA4 in RPE internal
membranes is in further support that accumulation
of autofluorescent precursors may contribute to
both RPE- and outer photoreceptor segment dys-
function, leading to lipofuscin buildup.13,29 These
equilibriums possibly contribute to the shorter life-
times identified in the newly formed deposits in
STGD.20,22

In addition, other components such as melanin have
been suggested to be involved in the disease process.
Melanin is concentrated at the fovea in the RPE cells
and has been shown to decrease in normal aging.30 It
has been speculated that lipofuscin buildup in the RPE
cells is partly influenced by melanin.31

Fig. 3. Disease progression
within 6- and 32-month follow-
up (Patient STGD 9). Color
fundus (CF), FAF intensity, and
fluorescence lifetime (FLIO,
LSC) images. Correlating OCT
scan of the indicated lines in the
FLIO images are shown below.
From baseline (left) to 6-month
follow-up (middle), to 32-month
follow-up (right), clear disease
progression is visible with tran-
sition of flecks with short fluo-
rescence lifetimes (red arrows
and corresponding black arrows
in FLIO) to flecks with long
fluorescence lifetimes (blue ar-
rows and corresponding black
arrows in FLIO) and appearance
of new hyperfluorescent flecks.
*Indicates a fleck with short
fluorescence lifetime initially
not visible on FAF intensity
image at baseline, but detectable
on follow-up.
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As described in previous clinical studies, our
longitudinal FLIO measurements revealed that fleck
formation begins centrally in the foveal area,
radiating outward as the disease progresses. In
addition, new lesions often develop in close prox-
imity to existing flecks, probably due to toxic effects
of visual by-products on neighboring RPE cells and
photoreceptors.5

Despite previous studies, the exact location of flecks
remains controversial. On colocalization of the flecks
to the OCT bands, we identified a variety of shapes
and sizes of hyperfluorescent accumulations at the EZ
and/or external limiting membrane bands. However,
an anatomical link to the RPE layer was present,
suggesting that the lipofuscin deposits begins in the
RPE and then migrates toward the inner retinal layers.
As previously observed by Voigt et al,32 we hypothe-
size that the different forms of deposits observed in the
OCT bands represent different phases in the natural
history of fleck progression. Although flecks with var-
ied fluorescence intensities were identified, we could
not detect a correlation to the interruption of EZ, exter-
nal limiting membrane, or outer nuclear layer bands.
On analysis of OCT sections, we observed that at
earlier stages of the disease, the hyperreflective mate-
rial was restricted to the area underneath the EZ,
whereas at later stages, lesions with longer lifetimes
tended to progress through the EZ into the outer retinal
layers.
A useful tool to investigate the characteristics and

progression of STGD is the 2D histogram analysis.

Information from endogenous fluorophores can be
obtained by analyzing the individual short (T1) and
long (T2) decay components, which contribute to the
mean fluorescence lifetime (Tm). As different fluoro-
phores have distinct lifetime patterns, specific retinal
structures can be demarcated. This technique can be
used to identify short and long decay times in separate
clusters (Figure 5). Furthermore, analysis of long life-
time flecks revealed that the borders display shorter
lifetimes than the center of a fleck. These findings
are in keeping with the observation that short lifetime
flecks progress to long lifetime flecks from the center
outward. This suggests that the short fluorescence life-
time flecks are composed of slightly different fluoro-
phore components than the long lifetime flecks.
Sparrow et al33 identified an increased signal within
flecks using short-wavelength FAF. They purposed
that early on in STGD, the RPE cell layer is altered,
and that the enhanced short-wavelength FAF signal
could arise secondary to RPE atrophy and augmented
lipofuscin accumulation. These findings may provide
some insight into the possible sequence of retinal
changes in STGD.
There are some limitations to this study. Primarily,

in one patient, the diagnosis of STGD was largely
based on clinical assessment, and in one patient, an
autosomal dominant inheritance trait was identified.
Patients displayed a variable degree of disease severity
from early or childhood-onset to late-onset of STGD.
We also acknowledge that the data provided in this
report showed a cohort of patients with an atypical

Fig. 4. Analysis of disease
progression of hyperfluorescent
flecks within 44-month follow-
up: autofluorescence intensity
image (FAF), and fluorescence
lifetime (FLIO, LSC) with
selected hyperfluorescent flecks
(blue arrows) and corresponding
OCT scans. Follow-up exami-
nations show a clear progression
of flecks in different imaging
modalities, with changes in
intensities and hyperreflective
material deposits on OCT.

886 RETINA, THE JOURNAL OF RETINAL AND VITREOUS DISEASES � 2019 � VOLUME 39 � NUMBER 5



presentation including an older age of onset of
symptoms and a higher progression rate of atrophic
lesions in comparison to the ProgStar cohort.34,35 Fur-
thermore, a larger sample size would have provided
more information. However, despite the small cohort,
the findings of conversion of retinal flecks were con-
sistent between patients. Concerns about the long-term
effects and the relationship between short-wavelength
light and the generation of toxic products have been
raised, especially patients with STGD. However, the
light exposure of the FLIO device is well below the
limits recommended by the ANSI standard for safe use
of lasers.36

Conclusions

In STGD, retinal fluorescence lifetimes can be used
to analyze hyperfluorescent flecks. Fluorescence life-
time imaging ophthalmoscopy has the potential of
becoming a monitoring tool in retinal conditions by
illustrating metabolic malfunctions and providing
further information about the composition of endoge-
nous retinal fluorophores. This study establishes that
fundus autofluorescence lifetimes demonstrate
explicit, reproducible patterns in STGD, and confirms
the diagnostic value of FLIO as a non-invasive
imaging modality.
Using FLIO, we present a method of monitoring and

quantifying disease progression in patients with
STGD. Patterns of disease progression, when quanti-
fied, could be useful in the development of new
outcome measurements for clinical trials testing novel
therapies for STGD. Since these changing autofluor-
escence lifetime patterns may reflect intracellular
events in RPE cells, they may be helpful in gauging
the biological effect of potential therapies and in
interpreting treatment effects.

Key words: fluorescence lifetimes, fundus auto-
fluorescence, ophthalmic imaging, Stargardt disease,
macular dystrophy.

Acknowledgments

The authors thank Jörg Fischer, PhD, Yoshihiko
Katayama, PhD, Kester Nahen, PhD,(all from Heidel-
berg Engineering GmBH, Heidelberg, Germany),
Bernhard Weber, PhD (Universität Würzburg), Sus-
anne Kohl, PhD (Universität Tübingen), Wolfgang
Berger, PhD (Universität Zürich), André Schaller,
PhD (Inselspital), and Salome Allemann (Inselspital).

Fig. 5. A 2D analysis of short and long fluorescence lifetime compo-
nents T1 and T2. Distribution histograms (bottom) are shown of
a patient with STGD with short and long fluorescence lifetime flecks.
Specific areas are highlighted according to the lifetime distribution
clouds: surrounding retina, short fluorescence lifetime flecks, long
lifetime flecks, and optic nerve head. Corresponding fluorescence life-
time image (FLIO, LSC), FAF intensity, and OCT scan.
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