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Turbulent coherent structures and early life below
the Kolmogorov scale
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Major evolutionary transitions, including the emergence of life, likely occurred in aqueous

environments. While the role of water’s chemistry in early life is well studied, the effects of

water’s ability to manipulate population structure are less clear. Population structure is

known to be critical, as effective replicators must be insulated from parasites. Here, we

propose that turbulent coherent structures, long-lasting flow patterns which trap particles,

may serve many of the properties associated with compartments — collocalization, division,

and merging — which are commonly thought to play a key role in the origins of life and other

evolutionary transitions. We substantiate this idea by simulating multiple proposed meta-

bolisms for early life in a simple model of a turbulent flow, and find that balancing the

turnover times of biological particles and coherent structures can indeed enhance the like-

lihood of these metabolisms overcoming extinction either via parasitism or via a lack of

metabolic support. Our results suggest that group selection models may be applicable with

fewer physical and chemical constraints than previously thought, and apply much more

widely in aqueous environments.
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At major transitions in the history of life, complexity has
emerged via cooperation1–4. Most saliently, cooperation
between groups of individuals is considered important for

the origins of life, as well as the emergence of multicellularity3–8.
One approach to formalize these events generally has been to
define “coming together” as the aggregation of independent
individuals, and “staying together” as the event where offspring
remain close to their ancestors4. However, the emergence of
cooperation at each of these transitions includes challenges that
can be primarily ascribed to the exploitation of cooperators by
parasites6,7,9–11—if cooperators interact and provide benefits to
individuals in the population with equal probability, i.e. the
population is well-mixed, those that receive benefits but do not
reciprocate gain a competitive advantage and drive cooperators to
extinction, thereby preventing the emergence of more complex
entities11. To resolve this conflict, population structure models for
early life were introduced in which individuals selectively interact
with others6,11–13. These include lattice models, where individuals
are restricted to interactions with particular neighbors (e.g. on a
2D surface)13–16, and group (or multi-level) selection models17,
where individuals only interact with elements within their
groups6,11–13,18–20. In particular, these models6,10 and recent
experimental studies21,22 have been most intensively applied to
problems in early biology and the origin of life. This is perhaps a
natural domain of application because groups may be defined as
concrete physical structures (e.g. droplets or protocells5) and the
complexity of the underlying processes is relatively minimal.

In the context of abiogenesis, the study of spatial lattice models
showed that cooperation can be maintained in spiral waves on
simple 2D structures without flows13,14. One physical realization
of these models can be envisioned as rocky surfaces potentially
undergoing wet–dry cycles13,15,23,24. Group selection research,
studied in abstract and also in the context of protocells, suggested
that compartments provide necessary functionalities like collo-
calization of members for reactions5,6,25,26, creation of gradients
across boundaries (e.g. in lipid membranes27), exclusion of
parasites through division11,19,20 and rise of diversity through
merging28, all provide benefits for cooperators.

Many populations of biological organisms exist in an aqueous
environment. As such, additional physical mechanisms governing
population structure which are compatible with aqueous envir-
onments, such as active droplets5, slicks of fatty oils29, bubbles
containing aerosols particles30, or surfactant micelles31 have been
considered as early mechanisms for group selection. Interestingly,
while the chemical role and necessity of water itself for emergence
and maintenance of life is well-appreciated, the potential role of
its transport properties (in the absence of additional structures
such as those described above) is relatively unexplored. Recent
years have seen the beginning of interest in how flows affect
population genetics32–38, but few works address cooperation,
which depends much more fundamentally on population struc-
ture than does the spread of (dis)advantageous alleles39,40. As has
been described recently34,35, the well-mixed assumption in ecol-
ogy (an assumption that a population may be represented by a
single nonspatial compartment, i.e., all individuals interact with
all other individuals at all times) may never be realized in fluid
flows, even those which are strongly mixing or ergodic. It is
therefore sensible to ask whether the types of population structure
which appear naturally in fluids are conducive to the types of
cooperation necessary for early evolutionary milestones.

To address this question, we consider the functionalities that
motivated classical group selection and ask if moving fluids can
reproduce them. We explore in particular if (I) collocalization,
(II) division, and (III) merging, which are physical properties of
groups, can be replicated. Because many of the aqueous envir-
onments pertinent to life are not quiescent, such as the surface of

the ocean, ponds, or montane streams, we test the hypothesis that
turbulent flows can support these fundamental aspects of early
group selection.

Our interest in these questions is therefore closely related to the
recent surge of interest in the stirring and mixing of passive
tracers in turbulence, and especially related to the dynamics of
coherent Lagrangian structures41–44 (Lagrangian coherent struc-
tures (LCSs)), long-lasting material surfaces within a flow which
roughly divide up the spatial domain into regions with very dif-
ferent transport properties.

The Lyapunov exponent (which measures the convergence or
divergence of nearby fluid particle trajectories), measures the
“skeleton” of the flow, identifying surfaces that are highly repel-
ling, attracting, or elliptical (meaning particle trajectories remain
parallel for long times)45,46.

LCSs can be thought as isolated regions which trap fluid and
thus acts like compartments necessary for group selection. Fur-
thermore, to the naked eye they seem to replicate the qualitative
features (I–III) above which are necessary for evolution via
cooperation—in real flows, one can observe the creation and
destruction, merging, and division of LCSs. They tend to arise
spontaneously whenever the fluid is put in motion by some large-
scale forcing, like surface winds, and they are eventually destroyed
by viscous dissipation47,48.

In the rest of this paper, we substantiate the idea that LCSs in
fluids can provide the features (I–III) above (collocalization,
division, and merging) that would have been impactful in early
cooperative stages of evolution. We study these structures by
performing simulations of replicating cooperators embedded
within turbulent flows. Furthermore, once these are established,
we demonstrate that the role of these group-like properties also
contribute to the spread of genetic diversity.

Results
Modeling emerging populations in turbulent flows. We con-
sider a population of biological organisms in a moving fluid
(Fig. 1). We are particularly interested in the problem of coop-
eration at very small scales, from tens of nanometers (e.g., small
replicating RNA strands) to microns (e.g., single-celled organ-
isms). Even at these small distances, the fluid can be described as
a continuum, because the mean free path of water molecules (the
average distance traveled without a collision with another mole-
cule) is roughly an angstrom. Thus the Knudsen number (the
ratio of the mean free path to the size of the particle) for the
smallest object of interest would be no larger than 10−2. This
means that even the smallest biological particles under con-
sideration undergo many collisions with the surrounding fluid
molecules before they can travel an appreciable distance.

We furthermore suppose that the fluid under consideration
undergoes some turbulent motion, as this can be expected to
occur at least intermittently in most aqueous environments.
While turbulent flows are perhaps best known for their ability to
enhance mixing via erratic motion49, their habit of doing the
opposite, creating coherent spatial structures, is sometimes
overlooked. However, at nearly all spatial scales, regions of both
enhanced and inhibited mixing can be found in a turbulent flow.

This duality of turbulent behavior is perhaps best measured by
the finite-time Lyapunov exponent (FTLE). The FTLE, λ,
estimates the rate at which two particles starting a distance δr
(0) drift apart

λ ¼ log
δrðtÞ
δrð0Þ

� �
; ð1Þ

where δr(t) is the particle pair separation at some time t after t=
0. Regions of positive FTLE characterize the chaotic behavior of
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turbulence which leads to enhanced dispersion. Regions of zero
and negative FTLE, on the other hand, are regions where passive
tracers (inert, massless particles that simply follow the flow) are
approaching or staying near one another for a time interval t.
When such regions persist in time they form the LCSs discussed
in the “Introduction” section. LCSs with scales of hundreds of
kilometers can be seen in satellite pictures of ocean color, because
they trap colonies of chlorophyll-rich plankton50. But they also
exist at smaller and smaller scales, down to the Kolmogorov
lengthscale η, below which viscous forces eventually become so
strong that they dissipate any coherent structure. For reasonable
aqueous environments, the Kolmogorov scale is on the order of
tens or hundreds of microns up to millimeters, much larger than
our biological particles of interest. When biological particles are
in regions of positive FTLE, they mix chaotically; when they are in
regions of negative FTLE, they remain close to their neighbors for
long times due to advective forces.

We will also neglect the role of thermal diffusion inside
the LCSs. We ground this in a comparison between the roles of
advection and thermal diffusion at the lengthscales of interest.
The relevant lengthscale for diffusion is the Batchelor scale, λB,
which gives the approximate distance a particle with diffusion
constant D will drift due to Brownian motion as it is advected a
distance on the order of the Kolmogorov scale51. The ratio of the
Batchelor (diffusive) lengthscale to the Kolmogorov (advective)
lengthscale is given by the Schmidt number, λB=η ¼
Sc�1=2 ¼ ffiffiffiffiffiffiffiffiffi

D=ν
p

, where ν is the kinematic viscosity of the fluid.
In water, ν= 106 μm2 s−1. An upper bound for D for the
biological objects of interest can be given by the diffusion rate of a
single nucleotide in water, since these early lifeforms would be at
least as large as many linked nucleotides and would therefore
have smaller diffusion rates. For a single nucleotide, a measure-
ment of D ≈ 400 μm2 s−1 has been given52. Therefore, the upper
bound on the Batchelor scale is roughly 2% the size of the
Kolmogorov scale, meaning diffusion represents only a very small

correction to the advective displacement. As a first approxima-
tion, then, we neglect the role of Brownian motion, and we revisit
the possible errors incurred in Supplementary Note 2 and
Supplementary Fig. 3. Note that at smaller scales, when chemical
compounds were forming nucleotides, diffusion constants would
be higher and therefore diffusion more important—both thermal
diffusion and advective mixing in a model similar to ours have
shown greatly enhanced reaction rates in chemical systems53.

For the global fluid flow, we use a minimal two-dimensional
point-vortex model54, that has been previously employed as a toy
model for homogeneous turbulence54–56. We consider a set of N
vortices of strength (circulation) Γj and position zj= (xj(t), yj(t)).
The fluid flow u(x,y)= (u1(x,y), u2(x,y)) at a point x= (x,y) is
given by

u1ðxÞ ¼ � 1
2π

XN
j¼1

Γjðy � yjÞ
x � xj

��� ���2
; ð2Þ

u2ðxÞ ¼
1
2π

XN
j¼1

Γjðx � xjÞ
x � xj

��� ���2
: ð3Þ

Because the point vortices are massless, conserved features of
the flow, their positions are also advected by the flow (and
therefore their positions zi(t) are given by Eqs. (2) and (3), with
the left-hand side terms replaced by d

dt xiðtÞ and d
dt yiðtÞ,

respectively). For simplicity, we assume uniform strength among
vortices Γ, but consider clockwise (Γ < 0) and counter-clockwise
(Γ > 0) vortices. The vortices are confined to meander within a
square box of size L. To avoid the issues of edge effects, we
assume that our domain is doubly periodic (see “Methods”
section). The simplicity of our model aids in capturing the
essential qualitative and statistical features of turbulence, and
does not depend on the particular mechanisms that result in
conserved vortices.

One major advantage of this point-vortex model is that, in
addition to being computationally efficient to solve (see
“Methods” section), it reproduces the coherent structures
discussed in the “Introduction“ section (trapping regions with
finite lifespans, arising between the point vortices—the vortices
are not themselves coherent structures). We could just as well
have considered a fully three-dimensional flow, as the coherent
structures we are interested in also appear in three spatial
dimensions57,58. However, this would require not only a more
complicated fluid model, but would also reduce the generality of
our results. For instance, considering a three-dimensional flow
forces us to decide to what extent the fluid should be stratified,
which would restrict us to a (an)haline environment. Considering
partial effects of a third spatial dimension (such as apparent
compressibility and the associated upwellings and downwellings,
which have been considered in other works36) also force us to
make additional assumptions about the biology, since we must
decide if a particle caught in a downwelling is destroyed or can re-
emerge in an upwelling, which may implicitly make assumptions
about the environmental and biochemical requirements of these
organisms. While these additional kinematics are no doubt
relevant, we have left these complications to future work which
may focus on different fluid environments (the ocean, warm little
ponds, fast streams, etc.) and their potential (dis)advantages in
the context of our results derived here on the potential
importance of coherent structures.

The point-vortex model is also appealing because it qualita-
tively captures features of turbulence, having spatiotemporal
regions of both fast and slow flows, with material surfaces that are
attracting, repelling, and neutral54,59. In actual applications, the

Fig. 1 Compartmentalization appears naturally in fluid flows. Segregation
of particles into different regions can occur in two-dimensional flows for a
variety of reasons. Here, we posit that coherent structures, which are a
common spatiotemporal motif in turbulence, could provide long-lived safe
havens for cooperators. Here we show an example of a two-dimensional
fluid flow on a periodic domain, where coherent vortices have formed from
random initial conditions (white arrows: velocity vectors, blue shade: local
vorticity). The size of the whole domain is L, and the size of the smallest
coherent spatial structures is the Kolmogorov lengthscale, η. White arrows
show the velocity field, and colored shading shows vorticity contours. The
inset indicates the local flow field near a large vortex, along with individuals
from three different species (X, Y, Z) in a cooperative metabolism. Here we
show a simple cooperative hypercycle, in which X catalyzes Y, Y catalyzes
Z, and Z catalyzes X. While all particles die at the same rate d, birth rates
increase under catalyzation, which occurs when a catalyzing particle is
within a distance less than the interaction radius Rint of another particle.
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strength Γ and the density of vortices (set by N, keeping the
domain size fixed) would be tuned to account for the specific
properties of the flow under consideration, but the qualitative
results described below are independent of these specific choices.

Note that the point vortices which generate the flow are
permanent; only the coherent structures which arise around and
between them are impermanent. The permanence of the point
vortices allows the flow to propagate forever without a change in
its statistical properties, which is desirable since the time-
independence of the model statistics is necessary to compare
the impact of flow versus biology timescales in different
simulations using different biological parameters.

The biology of the particles is modeled by a stochastic
birth–death process. Besides advection by the flow, particles can
undergo one of two reactions: death or replication. Replication is
defined as the appearance of a new particle, of the same species as
the parent particle (described below), in the vicinity of the parent.
Both birth and death are modeled by Poisson processes: a given
particle dies between time t and time t+ dt with probability d, so
that in a very large population, the total size is decreasing with a
rate of roughly d (we set the death rate as a constant). The
replication rate, however, is implicitly time-dependent and space-
dependent, because of the possibility of cooperation.

We consider different models of early cooperative metabolisms
from previous studies10,60. These models are summarized in
Table 1. To incorporate spatialization, we consider an effective
radius of interaction, Rint, within which a individual can provide
metabolic benefits to another. Our metabolisms under considera-
tion capture most of the critical dynamics in early cooperation
that might arise, no matter the exact chemical or physical
pathway. We follow the naming convention for different
metabolism situations10: in “Replicase R1”, the replicase species
A cooperates with any other particle, but also itself, so its
replication rate is effectively space-independent (we assume the
benefits of cooperation are not additive, so that a particle at any
time is either in a state of being cooperated—with or not). All
other species (B, C, etc.) are effectively parasites. “Replicase R2”
differs from “Replicase R1” only insofar as a replicase particle A
cannot cooperate with (replicate) itself (though distinct particles
of the replicase type can still cooperate with one another). Finally,
we study a hypercycle, representing a system in which an
individual of type A can only cooperate with B, B with C, C with
D, and so on, with the last type able to cooperate with A, which is
a well-studied mechanism for an early metabolism60,61.

We use a finite-population, agent-based approach where an
emerging population would have faced very basic challenges to its
survival; should these challenges be surmounted and the
population grow to a much larger size, then issues we omit from
our modeling (such as resource limitation, or the possibility of
modeling the population as a continuous field) would become
relevant. Some of these situations have already received attention
in the literature32,33,36–38. Our work therefore bridges the gap

between these works, which focus on constant-fitness populations
at high numbers in turbulent fluids and the case where there are
no organisms, by considering both small-population effects and
frequency-dependent fitness. Both the hydrodynamic and biolo-
gical aspects of our model are summarized in Fig. 2.

Natural fluid timescales may impose selective pressures on
early replicators. To summarize the interplay between turbulent
transport and biology we introduce the Damköhler number Da,
which is the ratio between the timescale over which the velocity
experienced by a particle changes and the characteristic timescale
of the biological process under consideration. The Damköhler
number has proven useful in other studies of biological processes
in turbulence62, where global extinction can be guaranteed
beyond a certain threshold value.

The typical free path of a particle in a flow field generated by
point vortices is given by the mean inter-vortex distance, because
particles will change direction every time they collide with a new
vortex. The inter-vortex distance in our setup is given by
ξ / L=

ffiffiffiffi
N

p
. The characteristic velocity experienced by particles in

this flow is given by Γ/2πξ. A characteristic timescale for the
trajectories is therefore given by distance over velocity τF∝ L2/N|
Γ|. This is essentially the time for which a particle travels in the
fluid before colliding with a new vortex. A natural timescale for
biology is the expected lifetime of a particle, which is simply τB=
1/d. The Damköhler number is therefore Da= τF/τB= dL2/N|Γ|.
In our simulations we scale time on 1/d and length on L, so that
effectively Da= (N|Γ|)−1.

Examining the interplay of physics and biology at extreme
Damköhler numbers reveals how biological and physical time-
scales must be in relative harmony for cooperation to flourish in
the absence of additional mechanisms, such as a lipid membrane.
At very high Damköhler numbers, particles undergo millions of
generations before being dispersed by the fluid. Particles
initialized in a coherent structure will remain there, along with
any parasites initialized nearby; should they survive, their lineage
will struggle to spread even by migratory events, since the transit
time between coherent structures becomes so long that a large
number of comigrating cooperators is necessary to ensure
survival. As seen in Supplementary Movie 1, an initially randomly
distributed population (here, a two-species hypercycle) simply
coarsens into a few dense clusters, with others dying out before
they can be brought within distance of other cooperators. High
Damköhler number environments therefore satisfy the require-
ment of “staying together”—however, without the ability to divide
and merge over biologically significant timescales, avoiding
parasites (which we may imagine emerge via mutations and
therefore arrive at a fairly regular rate in any population) would
be quite challenging.

Extremely low Damköhler numbers (Supplementary Movie 2)
are also detrimental to survival. In this limit, particles disperse
quickly throughout the flow on biological timescales, undermining

Table 1 Reactions for the various metabolisms used in this work.

Metabolism Birth reactions

Replicase R1 A!sþβ
2A, ðAþ AÞ!sþβ

3A, B!s 2B, ðAþ BÞ!sþβ
Aþ 2B

Replicase R2 A!s 2A, ðAþ AÞ!sþβ
3A, B!s 2B, ðAþ BÞ!sþβ

Aþ 2B
Hypercycle A!s 2A, ðAþ BÞ!sþβ

2Aþ B, B!s 2B, ðAþ BÞ!sþβ
Aþ 2B

While all particles die at the same rate d, birth rates (s in absence of catalyzation) increase under catalyzation (s→ s+ β), which occurs when a catalyzing particle is within a distance (‘) less than the
interaction radius Rint of another particle it has the ability to catalyze. In the replicase models, particle A can catalyze both A and B, but B cannot catalyze A—the difference between R1 and R2 is whether a
single A particle can (R1) or cannot (R2) catalyze itself. In the two-member hypercycle shown here, A can catalyze B and B can catalyze A, but A particles cannot catalyze other A particles, nor can B
particles catalyze other B particles. In the n-member hypercycle, A particles can only catalyze B particles, B particles can only catalyze C particles, and so on, with the nth member only being able to
catalyze A particles.
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cooperation. We present relevant statistics for this limit in
Supplementary Fig. 2. Most particles spend the majority of their
expected lifetime (in the absence of catalytic aid) alone, and do not
benefit from cooperation. Indeed, in simulations with small inocula
and low Damköhler numbers we always observe extinction.

To interpret results on a whole range of Damköhler numbers, it
is useful to introduce the two-particle covariance G(x1, x2),
defined as the probability that a pair of particles is found at
positions x1 and x2. Averaged over many realizations, our process
is isotropic and homogeneous, and the pair covariance is only a
function of the interparticle distance rather than the exact
positions, so that the probability of a pair separated by a distance
x1 � x2k k is G x1 � x2k kð Þ. We plot a relevant example of this
quantity in Fig. 3 for three cases where: the transport and
biological timescales are comparable (Da ¼ Oð1Þ); where there is
no fluid motion and Γ= 0 (Da≫ 1); and where there is no
biological effect and d= 0 (Da= 0). The relative contributions
from biology and flow have competing effects, each with clear
advantages and disadvantages for cooperation. In the absence of
motion, reproducing populations will always have the largest
values of G x1 � x2k kð Þ at the smallest values of x1 � x2k k, since
birth places offspring nearby, whereas death can occur anywhere,
leading to cluster formation63,64. This means that a large number
of pairs are within the interaction radius Rint—a great benefit in
the absence of parasites, but a serious liability in the presence of
even a few parasites. On the other hand, with increasing motion,

pairs are found at increasing distances, which means that with a
small value of Rint, very few particles are interacting and the
population is expected to go extinct.

Intermediate Damköhler number offer a favorable trade-off,
because motions prevent particles from aggregating completely at
small separations (which protects against parasites, as we show
below) without completely eliminating the possibility for interac-
tions. Interestingly, the importance of intermediate Damköhler
number for population fitness has already been observed in
experiments involving bacterial mutualism where the bacteria are
also motile65.

Coherent structures collocalize replicating particles. So far we
have focused on a rough estimate of the rate at which two par-
ticles drift apart from each other, τF∝ L2/N|Γ|. However, in a
turbulent flow, like the one generated by the ensemble of point
vortices, particles pairs are occasionally trapped into LCSs and
remain close to each other for much longer than τF until the LCS
breaks apart and dispersion resumes.

As a quick illustration that collocalization naturally occurs in
LCSs, we zoom in on one and model the flow within as a purely
circular flow, subject to an oscillatory perturbation of strength ε, a
flow which is often studied in work on coherent structures66–69.
In the absence of this perturbation, the FTLE will be zero, as we
expect from an LCS. However, as the perturbation strength

b

a

c

d

Fig. 2 A summary of the model. a We consider the situation of cooperative catalyzation in a turbulent fluid. For computational tractability we restrict our
attention to two dimensions, since the trapping regions (Lagrangian coherent structures, LCS) which are of qualitative interest arise here from simple
models. We consider the full domain of interest to be of size L, with L≫ η, where η is the Kolmogorov scale, the scale of the smallest advective spatial
structures in turbulence. b Our modeling of the flow. Many qualitative as well as quantitative features of turbulence are well-captured by a toy model
consisting of multiple point vortices (here, 7 vortices: blue= clockwise, red= counterclockwise). To avoid edge effects, the domain is doubly periodic. In
this snapshot, there is a quiescent region circled in green, whose size represents the Kolmogorov scale. If this spatial region remains quiescent for long
times, effectively trapping particles (exhibiting a negative finite-time-Lyapunov-exponent), it will represent an LCS. c Within an LCS, particles separate
much more slowly from one another than outside (black arrows). Over the lifetime of this LCS, the particles will, in addition to advection, diffuse a distance
given by the Batchelor scale λB, and so we could consider them “blurred” over this distance. For a nucleotide in water, λB≈ 0.02 × η. Biological particles
(colored X,Y,Z) can catalyze each other if they are within a distance Rint, and therefore a single snapshot induces a dynamic graph structure of cooperators
and defectors. d ×5 magnification of η as in b as well as the other relevant lengthscales drawn to scale; here we show the value Rint= 0.03*L typically used
in our simulations (see “Methods“ section), and λB= 0.02η (thickened to a box to aid the eye).
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increases, the flow becomes more chaotic, eventually dissolving
the coherent structure.

To illustrate collocalization, we considered our representative
metabolisms (Table 1) in this flow, as shown in Fig. 4. We asked
how often a small inoculum of a metabolism, consisting of only a
10 particles, could successfully multiply to one thousand particles
(establish), as the interaction distance Rint and the chaotic
perturbation strength ε were varied. Increasing the value of Rint
effectively decreases the importance of spatial structure, as Rint=
1 represents a well-mixed population, in which a population
made only of cooperators will always thrive. For lower values of
Rint, the effect of the collocalization is important, with a purer
coherent structure having clear advantage over a chaotic region.
For instance, with Rint= 0.01, an inoculum of Replicase 2 would
likely perish in a chaotic flow with no coherent structure (ε= 1),
but inside a coherent structure (ε= 0.01) it multiplied from ten
particles to a thousand in roughly 40% of simulations.

Segregation of coherent structures can insulate cooperators
from parasites. While collocalization is necessary for cooperation

to take place, it is prone to parasitism. If some elements become
defective over time and cease providing cooperative support
(effectively becoming parasites), the entire population of coop-
erators becomes vulnerable to collapse9. In compartment models,
group selection has been offered as a solution to this problem, as
selection works against groups that contain a large number of
parasites.

Since turbulent flows naturally generate multiple LCSs, it
would seem that group selection can also preserve cooperators by
the same mechanism. However, the analogy is not perfect. LCSs
are impermanent, even if they can be long-lived. Further, since
they are not physical membranes, and merge and divide with
some regularity, they allow a degree of mixing which is sometimes
forbidden in theoretical compartment models. It therefore
remains to be shown that LCSs provide the kind of population
segregation necessary for cooperators to escape parasites.

To demonstrate the role of turbulent flow in isolating and
removing defective elements, we consider the population
dynamics of an R2-replicase in a system of N= 7 point vortices.
All particles within range of a cooperator are catalyzed, even if

Fig. 3 The relative value of the fluid velocity and metabolic timescales is critical for cooperation. The importance of the Damköhler number, and of flows
in general, can be understood via the pair covariance G(|x1− x2|), which gives the probability of finding a pair with interparticle separation |x1− x2|. Starting
from an initial condition of many particles in close proximity (so G(|x1− x2|) can be approximated by a delta function at G(0)), the evolution of pair
covariance is governed by competition between flow and biology. Histograms show an average over 1000 simulations. Times are measured in the expected
lifetime of a single biological particle. When particles reproduce, we use the interaction radius Rint= 0.03, and the fraction of interacting particles (left of
black bar) is given at the top-left. In the absence of flow (green histograms), the initial condition will slowly spread into a large colony, with most particles
within the interaction radius, leaving the susceptible to parasites. On the other hand, passive tracers in a turbulent flow (gray histograms) obey a known
power law84, in which the interparticle distance increases on average, here quickly reaching a limiting distribution due to the doubly periodic nature of our
spatial domain. In this situation, so few pairs are within the interaction radius that most lineages should be expected to die out and the population on
average goes extinct. A replicating population in a flow at Da ¼ Oð1Þ (blue histogram), however, can combine the advantages of both situations, creating
rich structure (G(x1, x2) having broad support) while also having a higher number of interacting pairs than in the case of no biology.
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there is a single cooperator. Furthermore, we do not enforce a
resource limitation or maximum population size.

In the well-mixed (i.e., no spatial structure; all individuals
interact with all other individuals) limit of this system,
cooperators and parasites are equally fit, and if the population
size were to be fixed, with approximately equal fractions of both
species, one species would go extinct with 50% probability simply
due to stochastic effects. We first show the benefit of segregation
then by considering a constant-population-size Wright–Fisher
process70, and simply count the number of realizations in which
parasites go extinct before cooperators. If this number of
realizations is higher in our spatial process than in the well-
mixed process, then segregation due to flow is helpful to keep
cooperators safe from parasites. Note that in our actual system
(where population size is unrestricted), since we do not allow for
mutations between species, parasites going extinct means the
system flourishes; cooperators going extinct means the system
collapses.

The results of these Wright–Fisher simulations are shown in
Fig. 5. We found that cooperators can do slightly better than
parasites for certain values of Rint and Da, indicating a positive
effect from the flow. As seen in previous work34, the well-mixed
results are seen at much lower values of Rint than those which
span the system, with the results already visually indistinguishable
from the well-mixed prediction for Rint ≈ 0.1.

We then lifted the restriction of fixed population size, simply
tracking the relative sizes of the parasite and cooperator
populations in our normal branching Replicase-R2 system. Over
1000 simulations conducted until the population had grown from
size 50 to size 5000 (or extinction), we never once saw extinction.
Rather, the fraction of cooperators seems to be roughly normal or
possibly log-normal, suggesting that perhaps some fraction of
realizations would eventually lead to extinction. This shows that
the results from the fixed population size simulations only
provide partial intuition for how cooperators and parasites
become segregated. The reason why this intuition is only partial is
because when parasites fix, the population goes extinct, rather
than continuing on as a monomorphic parasite population.
Additionally, in a population with dynamic size, one of the two
absorbing states of the fixed-population model (either all-
cooperators or all-defectors) need not be reached. The system
can sustain a fraction of both cooperators and parasites, similar to
what has been seen in other models of cooperation with
fluctuating population size71.

We also tracked the pair correlations between cooperator–
cooperator and cooperator–parasite in these simulations. In
aggregate (e.g., all possible pairs in all realizations, binned
together), the cooperator–cooperator and cooperator–parasite
pair correlation functions exactly match that which was shown
in Fig. 4 (the maximum difference between any bin and the

a b

c

Fig. 4 Coherent structures collocalize replicating particles. a A sample velocity field consisting of a circular flow perturbed by an unsteady oscillation of
amplitude ε= 0.1 atop a plot of the finite-time Lyapunov exponent, a common measure of the local “chaoticity” in a flow. As ε increases, particles (colored
dots, schematizing different species) become more likely to cross onto the unstable manifold and separate from nearby neighbors. We define
“establishment” as a hundredfold increase in the population size starting from a very small initial condition, where continuum limits previously
described32,33,36 begin to be applicable. b The average particle separation (per flow period) of an initially adjacent pair of particles, versus the strength ε of
the perturbation, in logarithmic scale. c Results of numerical simulations of various metabolisms (colors) for varying distances Rint at which particles can
cooperate with one another. Square markers indicate the likelihood that the population increases 1000-fold starting from an inoculum of five particles of
each species injected into a chaotic field (no coherent structure, ε= 1), whereas circular markers indicate the same likelihood for an identical inoculum
injected into a nearly pure coherent structure (ε= 0.01). Note that for Replicase R1 (blue), the establishment probability is equal for both ε= 1 and ε=
0.01, so that only the solid line is shown.
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corresponding bin in Fig. 4 was <104). However, on a realization-
by-realization basis, there seemed to be some correlation between
the emerging of structures which segregated cooperators from
parasites and their eventual fractions.

Flows create rich population structure via division and mer-
ging of coherent structures. In the previous section, the existence
of multiple LCSs facilitated compartmentalization of the popu-
lation such that the deleterious effect of parasites was avoided.
However, in order for LCSs to have been truly useful in early life,

they must have further properties—namely, they must be able to
permute their biological contents by division and merging.

As discussed in the “Introduction” section, LCSs continuously
appear, merge and disappear in a turbulent flow as a result of
nonlinear dynamics. Thus LCSs seem to replicate the qualitative
features of division and merging even in the absence of life.

To investigate whether this might have induced useful division
and merging on life, we compared the behavior of our processes
and the behavior of passive tracers in the same flow. Comparing
passive tracers and reproducing particles allows us to understand
what properties of the demographics seen in the simulations are

t = 0.008t = 0.008

t = 1.344t = 1.344

a

b c

Fig. 5 Trapping and segregation by coherent structures gives cooperators a boost. In a two-species Replicase R2, one species (the replicase) plays the
role of a cooperator (at no cost, provides a catalytic benefit of size β to all non-self organisms within a radius Rint), while the other species plays the role of a
parasite. a Chaotic flows generate LCSs with finite lifetimes, which act as traps for particles. Here a six-vortex (teal dots) example is shown with the finite-
time Lyapunov exponent (FTLE) at left and trapping regions (negative FTLE) at right. b In a well-mixed population obeying a Wright–Fisher update rule on
constant population size, each species would be equally likely to fix (reflected by Pcoop, the fixation probability of cooperators shown on the y-axis, equaling
1/2) if they began at equal fractions. To test whether flow-segregation helped replicases, we performed Wright–Fisher simulations on a population of size
N= 200 at different Rint and Da. Intermediate values of Da show a boost for cooperation at specific values of Rint. c Returning to a birth–death process,
where the population either goes extinct or grows to infinite size, we tracked the average replicase fraction of the population over 1000 simulations from
t= 0 to t= 10, with roughly 50 members of each species at t= 0. We never saw either population go extinct when starting from even such a small size;
rather, the population tends to sustain both parasites and replicases, with on average slightly more replicases than parasites.
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due purely to the flow and what properties are due to the biology,
and also allows us to compare the relative importance of the two.

Analyzing passive tracer behavior also suggests when the
landscape of LCSs is changing without necessitating the costly
calculations to actually map the finite-time-Lyapunov exponent
(indeed, many algorithms for detecting LCSs rely on analyzing
the dynamic-graph properties of passive tracers69,72,73). For
instance, Fig. 6 shows a relevant demographic measure, the size of
the largest particle cluster, as well as pictures of the LCS landscape
at times of great demographic flux. Here, the combination of

LCSs and a fast increase in the largest cluster size are related, as
are a fast decrease and the splitting of LCSs (Fig. 6a).

We can also use this logic to identify demographic shifts in
reproducing populations that are almost certainly induced by the
flow and not by biology. The probability that large, monotone
demographic shifts arise due to biology can easily be calculated
from the negative binomial distribution, assuming the best and
worst possible scenario for replicators. Paying attention only to
large swings which are highly improbable (p < 0.005) given the
biology alone allows us to infer the effects of merging and division

t

a

b

c

d

e

Fig. 6 Merging and splitting of LCSs leads to rich, dynamic population structure. Based purely on the birth–death aspect of our process, large changes in
the size of the largest particle cluster are improbable; for instance, the probability of monotonic changes >10 or so particles is always <0.001%. In a this is
highlighted by removing birth and death, leaving only passive tracers; large changes in cluster demographics can therefore only arise from the flow. Such
changes are therefore likely due to dramatic events in the fluid Lyapunov exponent landscape, such as division and merging of LCSs. Restricting our
attention to only these large demographic swings over one thousand realizations yields histograms on the number of b splits, c merges, as well as d the
percentage decrease in size of the largest cluster after a split and the e percentage increase in size of the largest cluster after a merge. Dots show the
center of histogram bins, while the value on the y-axis shows the height of the bin; full bars have not been drawn to aid visualization. While all statistics for
different metabolisms can be roughly approximated by the behavior of passive tracers, the inherent patchiness arising from increasingly baroque
metabolisms leads to larger merge and split frequencies with smaller average effects on demographics.
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of structures without having to constantly calculate the Lyapunov
exponent landscape.

Examining these extreme, flow-driven population shifts over
many simulations generates the statistics shown in Fig. 6. While
passive tracers provide a reasonable first approximation,
especially for the frequency of division and merging events, the
impact of the demographic shifts (as measured by the percentage
change in the largest cluster) are decreased for more complicated
metabolisms. This is likely due to the natural behavior of these
systems to locally increase concentration gradients. It is clear
from previous work74,75 that analysis of the gradients in particle
concentrations alone is inadequate for understanding systems
undergoing a birth–death process, since true birth–death
processes with motion (or, “superprocesses”64,76–78) tend to be
much patchier and support larger, less smooth gradients in
particle number. Therefore, as an initially spread-out population
of cooperators coarsens into dense clusters, its ability to sense the
boundaries of a coherent structure decreases; as a consequence, it
is not always affected if a section of a coherent structure it is not
occupying is cleaved off.

Chaotic flows induce small-scale migration events that begin
new colonies. In addition to the division and merging of well-
defined LCSs explored above, particles which are trapped with
one LCS can be captured by another, a process which we call
“migration” in order to maintain the distinction with division.
Migration events occur due to the imperfect trapping by per-
manent vortices and the very slight stochasticity arising from a
particle’s offspring being placed very close to, but not completely
atop them; at times, regions of positive Lyapunov exponent can
move into an otherwise perfectly trapping LCS without splitting
it, but causing some particles to bleed out onto the unstable
manifold of the flow. These particles can then sometimes end up
in a different, perhaps unpopulated LCS. Put another way,
migration refers to the changes in population structure that occur
due to the chaotic, rather than structured, part of the flow.
Examples of migratory events can be seen in Supplementary
Movie 3, which show examples of the successful replication and
spread of small inocula of Replicase R2.

The distinction between migration and division is important,
because whereas in the previous section, where division of one
non-permanent coherent structure into two or more leads to a
division of roughly equal fractions of particles, migration events
do not involve the creation or annihilation of LCSs and involve
only small changes in the demographics of the parent LCS.
However, these small fractions were often seen to successfully
seed an empty LCS, growing to much larger fractions and thereby

promoting their lineage disproportionately, somewhat akin to
“gene surfing” seen in other studies79.

For instance, Supplementary Fig. 1 shows a realization in
which a seven-vortex system initially seeded with a large
inoculum of a three-species hypercycle dyed by lineage spreads
via splitting, merging, and migration. By focusing only on the
population very close to the seven point vortices (the neighbor-
hood around point vortices almost always includes very small
LCSs), we ensure that diversity spreading via splitting is not
tracked. Migration events eventually lead to the satellite LCSs of
all seven vortices being populated, and also contribute to the
spread of different lineages, contributing to genetic diversity.
Figure 7 illustrates the average number of clusters (interacting
components, equivalent to components of the geometric graph80

induced on the population by Rint) in different metabolisms over
time, as well as the gradual mixing of different lineages, as
measured by the mean cluster heterozygosity (H ¼ 1�P3

l¼1 f 2l ,
where fl represents the frequency of lineage l in a cluster).

While the inherent patchiness of replicating metabolisms (as
discussed in previous sections) leads to a higher number of
particle clusters in a rather trivial way, the evolution of
heterzygosity in living populations when compared to passive
tracers is quite surprising. Passive tracers exhibited by far the
greatest heterozygosity, and in some simulations exhibited a
nearly perfect mixing of lineages after a short time. Living
populations, on the other hand, had much less diversity on
average. However, this can also be understood in terms of the
patchiness that arises from the “death-anywhere, birth-locally”
property of our process. This introduces number fluctuations at
two levels not present in passive tracers. Firstly, the number of
lineages is not guaranteed to be preserved, as stochastic effects
can even eliminate a whole lineage, drastically decreasing the
maximum possible heterzygosity. Additionally, the “gene surfing”
effect mentioned above guarantees that newly formed clusters
have zero heterozygosity, and demographic fluctuations even in a
large cluster would tend to diminish heterozygosity. The balance
between the role of the fluid and of the biology in determining
genetic variation is therefore a rich and interesting one.

Discussion
In this work, we have focused on qualitative features of turbulent
flows and their similarity to theoretical notions of compartments
in biological modeling. In such a generic setting, it is impossible
to try to achieve exact quantitative results, as the types of biolo-
gical metabolisms, cooperative mechanisms, and flow-kinetic
parameters could vary widely. Furthermore, the role of additional

Fig. 7 Dynamic population structure and small-scale chaotic migration effects increase cluster diversity. Results of many simulations beginning with
three dense clusters of particles near three distinct vortices of a seven-vortex flow, of which one realization is shown in Supplementary Fig. 1. The three
clusters are considered to be “dyed” so that their lineages can be tracked over time. (Left-hand panel) The diversity of each cluster having at least 10
particles, as measured by the mean cluster heterozygosity (which here has the value 0 for a cluster of all one lineage and value 2/3 for a cluster with all
three lineages represented equally). Different colors mark different metabolisms. The solid line represents the average over many simulations (see
“Methods” section) and the opaque background represents one standard deviation. (Right-hand panel) The number of clusters consisting of 10 or more
particles, averaged over all simulations, starting from the initial three vortices.
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physical effects in fluid environments, such as stratification,
would depend dramatically on the particular environment of
interest.

While the parameter space for our model is indeed quite large,
we suspect that reasonable variations in many parameters (such
as the difference between the death rate and birth rate of parti-
cles) will not cause qualitative differences in our results. However,
there is one critical parameter, the Damköhler number Da, which
controls the evolution of populations. Our work suggests that,
similar to what has been seen in other works combining flow/
migration and biological reproduction62,65, an Oð1Þ Damköhler
number is optimal for catalytic cooperation. Outside this regime,
the effect of the flow seems to be highly pessimal for cooperative
metabolisms, suggesting that physical compartmentalization
would be required.

However, within this regime, the flow itself can mimic
important properties of compartments. These are not limited to
kinematically isolating cooperators from parasites. Coherent
structures in this regime can also provide many of the benefits
associated with membranes, including merging and splitting of
colonies, facilitating the spread and combination of genetic
material. We therefore believe (in)compatibility of fluid and
biological timescales in different aqueous environments could
have acted as a strong selective force not only on the chemistry of
the early metabolisms themselves, but also on the need for and
development of physical compartments.

We believe that this work will establish a fundamentally new
direction in the study of population structure in aqueous eniv-
ronments. Specific conditions relevant to origin of life problems,
e.g. surface vents (“warm little ponds”), fast streams, and oceanic
currents, can be studied in further detail (and with better esti-
mates of the Damköhler number) to investigate the suitability of
these environments for cooperative molecules and cells. In each
of these environments, the inclusion of a third spatial dimension
can complicate, but also enrich the models presented here.
Upwellings, which we did not consider here, could for instance
can benefit diversity by introducing new species and new genetic
material. We hope that our work can inspire more scrutiny into
the physical role of water in enabling cooperation, both by the-
orists and experimentalists and thereby enable more simplistic
models of origin of life.

Methods
Simulations. Simulations were performed in MATLAB by combining flow kine-
matics, incorporated via the function ode23, and a stochastic birth–death process
implemented via a time-dependent Gillespie simulation81. In more detail, the
simulations update the population according to the following steps:

● The system is initialized with a certain number of each particle species
localized in the unit torus at positions picked uniformly-at-random (in Fig. 4,
with distance from the vortex core not exceeding 1/50). Units of time are
measured in a frame for which the death rate d for particles is d= 1.

● The positions of all vortices and particles are updated via the function ode23
until either a stochastic event occurs (see below) or 0.01 units of time has
elapsed since the beginning of the fluid motion. Stopping every 0.01 units of
time in the absence of a stochastic reaction ensures that errors in the
propensity vector (see below) do not accumulate by mis-apprehending which
particles should be considered catalyzed.

● Between fluid motions, the distance between particles is assessed via the
MATLAB function knnsearch. Depending on the metabolism used, particles
which receive a catalytic boost from a neighbor are assigned one accordingly.

● Stochastic birth–death events operate according to a Gillespie process,
adjusted for the fact that the rates (namely, the birth rate, due to time-
dependent catalyzation) are time-dependent. Between fluid motions, when the
state of catalysis for particles is assessed, a local propensity vector p ¼
½Pn

i si þ βιi; nd� is generated, where n is the number of existing particles, si is
the self-replication rate, and ιi is the indicator function on whether particle i
has received cooperative support. For all simulations, the values d= 1, β= 0.7,
si= 1.5 (for replicase particles in the R1 replicase), si= 0.8 (all other particles)
were used. The propensity, which consists of the sum rates for birth and death
(the only stochastic reactions) is updated whenever an event occurs or the

motion stops. According to standard techniques81, the sum of propensities is
normalized and integrated in time until the appropriate hitting time τ ~ Exp
(1) for an event is reached. An event is chosen according to the probability
distribution of births and deaths at the hitting time—therefore, each event
consists of only one death or one reproduction, with the death of a particular
individual occurring with probability d= nd þPn

i si
� �

and reproduction of a
particular individual occurring with probability si= nd þPn

i si
� �

. If an
individual is chosen to reproduce, their offspring takes their species type
and is placed uniformly-at-random no further than 1/200 away from their
parent.

Collocalization. For this initial section, exploring only the role of a single LCS in
facilitating the important properties of “coming together” and “staying together”,
we used an unsteady double-gyre, a flow commonly used as a benchmark for vortex
recognition and FTLE calculation algorithms:

ψðx; y; tÞ ¼ A sinðπf ðx; tÞÞ sin ðπyÞ ð4Þ

f ðx; tÞ ¼ ε sin ðωtÞx2 þ ð1� 2ε sin ðωtÞÞx ð5Þ
where A= 0.5 and ω= 2π were used and ε ranged from 10−2 to 100. Although this
system consists of two vortices (so that the total circulation in the system is zero),
we are mainly interested in the confining force of one LCS as the amount of noise is
increased, and so we simply measured the residence time as the time in which a
passive tracers stayed in one half of the system if initialized in the center of
one LCS.

For all metabolisms, 10,000 simulations were performed for differing values of ε
and Rint, the radius of possible cooperative interaction. For each metabolism, we
initialized an inoculum of five particles per species type at positions chosen
uniformly-at-random near (within a radial distance of 1/20) the vortex core (r= 0).
If the population increased by a factor of 1000, the simulation was considered a
success; if the population died out completely, the simulation was considered a
failure. The sum total of successes, divided by 10,000, yields the numbers plotted in
Fig. 4.

Point-vortex flow. Because our simulations already involve some operations which
can be quite costly as the population grows (for instance, knnsearch takes OðnlognÞ
time for a population of size n), we wanted to employ a model of turbulence which
could generate an infinite number of distinct (yet statistically identical) flows in an
efficient manner. We did not concern ourselves with more complicated physics
(such as influx of energy by forcing or outflux by viscous dissipation), instead
opting for a perfectly conservative fluid with a perfectly conserved number of point
vortices, whose motion is given by Eqs. (2) and (3), where Γj is the circulation of the
jth entity, having value of either +1 or −1 for a point vortex and 0 for a particle,
and dij is the L2 distance between entity i and j. The ramifications of these
equations is that both particles and point vortices are simply advected by the linear
superposition of the vorticity arising from all vortices in the domain.

In all sections we fixed a number of point vortices (6 or 7) on a doubly periodic
domain, with half having positive handedness (Γ=+1) and half having negative
handedness (Γ=−1). In the case of an odd number of vortices, a coin was flipped
to determine the handedness of the final vortex. Because the domain is doubly
periodic, determining the flow involves summing an infinite number of image
vortices82, such that Eqs. (2) and (3) become

d
dt

xi ¼
XN
j¼1

Γj
Xm¼1

m¼�1

�sinðyi � yjÞ
coshðxi � xj � 2πmÞ � cosðyi � yjÞ

;

d
dt

yi ¼
XN
j¼1

Γj
Xm¼1

m¼�1

sinðxi � xjÞ
coshðyi � yj � 2πmÞ � cosðxi � xjÞ

:

Typically, one would have to employ a technique such as Ewald summation to
deal with the doubly infinite sum over m. However, the reader can easily check that
the size of the terms drops off incredibly fast, with the size of the |m|= 2 terms
already being Oð10�20Þ or smaller. We therefore truncated the sum at |m|= 2.

The number of vortices allows for rich dynamics, as a generic realization
produces elliptic structures at (at least) three different scales: near a vortex, between
two vortices (of any sign combination), and within short-term bound four-vortices.
As seen in the main text, we often observed long-term elliptic structures that fell
into none of these three categories as well.

Identifying coherent structures. The identification of LCSs in Figs. 4a, 5a, and 6a
was performed using MATLAB code provided by the http://dabirilab.com/
software/Dabiri Lab (LCS Matlab Kit v2.3)68,83. In calculating the FTLE, the
velocity field on a 50 × 50 mesh was calculated at intervals of Δt= 0.1 from the
positions of the vortices, and 15 such timesteps were integrated to calculate the
FTLE plotted in the figure. Contour plots delimiting basins of attraction (non-
positive FTLE) were then plotted in Mathematica.

We note that the code used was not designed to be employed on a doubly
periodic surface, and therefore we believe that the values of the FTLE reported at
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the gridpoints closest to the domain boundary are incorrect. However, the interior
LCSs indicated in Figs. 4a, 5a, and 6a were also identified by a different
algorithm69, also from the Dabiri group, which colors structures based on the
kinematic similarity of passive tracers trajectories (generated for the same flow
whose field was originally used to create Figs. 4a, 5a, and 6a).

Escaping parasites. To test whether LCSs would allow spatially dependent
metabolisms to escape from parasites in a manner similar to proto-membranes, we
simulated the Replicase R2 metabolism, which represents a cooperator and a
parasite. To check if their relative fitness was affected by the flow, we examined a
Wright–Fisher-type process instead of our usual branching process. The
Wright–Fisher process employed has a fixed population size of N= 200, with the
entire population updating at fixed discrete time intervals Tupd, at which time a
new generation is formed by picking, for each of the 200 members, a parent with
probability proportional to the parent’s relative fitness in their population. The
initial condition is distributed uniformly-at-random.

The Wright–Fisher simulations were continued until either all parasites were
extinct, or the whole population (including parasites, which cannot survive once all
healthy particles have been extinguished) were extinct. The former case was
considered a success, the latter case a failure. The number of instances of the latter,
divided by 10,000, gives the points plotted in Fig. 5.

We then reverted to our branching process, starting from a population of 50 per
species localized near the core of one out of seven vortices, of which a fraction f=
1/2 were chosen uniformly-at-random to be parasites. Once the population grew to
a size of 5000, we recorded the average fraction of cooperating replicases.
Performing this over 1000 simulations gives the histogram in Fig. 5.

Division and merging. Calculating the FTLE field is quite computationally costly,
and counting elliptic LCSs without fear of error would require an extremely high
spatial resolution, and therefore making full evaluation of the flow properties in a
simulation is a much more involved process than a full evaluation of the biological
properties. Furthermore, it is easy to predict when demographic changes are not
due to the biological process from this evaluation. For instance, we can assign a
minimum and maximum probability to the number of birth–death events occur-
ring within a certain timespan given the approximate population size, and can also
predict the extremal probabilities of the outcome in which all (or most) such
birth–death events were either birth or death. The latter is particularly easy; the
likelihood of M death events in a row before a birth must be bounded above by NB
(1,d/(si+ d), M), where NB(a,b,c) denotes the value of the negative binomial dis-
tribution giving the probability of c deaths before 1 birth, given that the probability
of a death in a population of size n where no individual is catalyzed (hence, the
situation in which the probability of death is always maximized, giving the maximal
probability of M deaths before a birth) is dn/(nsi+ nd). Using our standard kinetic
rates, a sequence of 10–15 deaths without a birth is already an extremely unlikely
event, so that a dip in the largest cluster size of 10–15 would indicate a flow-based
event (division of coherent structure) with high probability. In each of
1000 simulations, we paid attention only to monotonic changes in the size of the
largest cluster with absolute value bigger than 10. The statistics of these changes are
plotted in Fig. 6.

Migration and diversity. For Supplementary Fig. 1, seven vortices were used and
were assigned an integer label which was maintained throughout the simulations.
The curves shown were generated by simulating 1000 runs per metabolism, initi-
alizing 100 of each particle species in the vortices labeled 1–3 (therefore implicitly
assuming that the metabolism had experienced some reproductive success in one
vortex). Simply tracking the dynamics of particles from the three original lineages
over time generated the left-hand side of Fig. 7. The right-hand side was given by
counting the number of components (with 10 or more particles included) in a
geometric graph80 induced by drawing an edge between two particles iff they were
at a distance (in the Euclidean metric) < Rint.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
No additional data was used besides the results of numerical simulations using the
parameters described in the text. Additional summary statistics of the data plotted may
be available upon reasonable request.

Code availability
MATLAB scripts to reproduce the results in the manuscript can be found on GitHub:
https://github.com/ski-krieger/EarlyLife.
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