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Circular RNAs (circRNAs) are a type of long non-coding RNA with covalently closed loops
that are naturally resistant to exoribonuclease. With the rapid development of high-
throughput sequencing technologies and bioinformatics, increasing data suggest that
circRNAs are abnormally expressed in renal cell carcinoma (RCC) and act as important
regulators of RCC carcinogenesis and progression. CircRNAs play important biological
roles in modulating cell proliferation, migration, invasion, apoptosis, and gemcitabine
chemoresistance in RCC. Most of the circRNAs studied in RCC have been reported to be
significantly associated with many clinicopathologic characteristics and survival
parameters of RCC. The stability and specificity of circRNAs enable them potential
molecular markers for RCC diagnosis and prognosis. Moreover, circRNAs have
emerged as targets for developing new therapies, because they can regulate various
signaling pathways associated with RCC initiation and progression. In this review, we
briefly summarize the biogenesis, degradation, and biological functions of circRNAs as well
as the potential clinical applications of these molecules for RCC diagnosis, prognosis, and
targeted therapy.

Keywords: CircRNAs, renal cell carcinoma, biomarker, targeted therapy, ceRNA

INTRODUCTION

Renal cell carcinoma (RCC), the most common kidney neoplasm, originates in renal tubular epithelial
cells and affects over 430,000 individuals all over the world per year (Sung et al., 2021). The incidence of
RCC is increasing at a rate of about 2% year by year, growing the third most common urogenital
malignancy (Znaor et al., 2015). Clear cell renal cell carcinoma (ccRCC), the most common and the
most aggressive form of kidney cancer, accounts for up to 80% of the RCC new cases with high
mortality. The other subtypes include papillary, chromophobe RCC, and collecting-duct carcinoma.
Because of its high rates of metastasis and difficult diagnosis, poor prognosis is a typical feature of RCC.
Up to 60% of RCC are detected by chance, due to the lack of obvious symptoms in the early stage
(Petejova and Martinek, 2016). Nowadays, surgical resection is the first-line treatment and important
intervention for local RCC. Unfortunately, about 30% of patients will develop local recurrence or
relapse in distant sites even after radical nephrectomy (Ahrens et al., 2019). Moreover, most RCC
patients are resistant to both chemotherapy and radiotherapy once the recurrence and metastasis
occurred (Lara and Evans, 2019). The overall prognosis of patients with metastatic RCC is very poor
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and the 5-year survival rate at diagnosis is less than 10%, especially
those high-stage patients. Over the past decade, the rise of kinase
and immune checkpoint inhibitors has expanded therapeutic
options available and brought great prospects for the treatment
of RCC. Targeted therapies targeting vascular endothelial growth
factor (VEGF) and mammalian target of rapamycin (mTOR)
pathways have been developed, but these treatments are still
palliative with limited effectiveness and most patients eventually
suffer a relapse (Motzer et al., 2013;Motzer et al., 2014). Hence, it is
necessary to explore themolecularmechanism of RCC and develop
new targeted drugs.

Gene mutation and epigenetic disorder play an important role
in the occurrence and development of RCC. It is well known that
the von Hippel-Lindau (VHL) gene, one of the most common
tumor suppressor mutated genes in RCC, is frequently
inactivated in over 80% of ccRCC patients (Zhai et al., 2017).
This leads to a blockage in the degradation of the α subunit of
hypoxia-inducible transcription factors (HIF1 and HIF2)
(Gossage et al., 2015), which results in increased expression of
angiogenic factors including VEGF that plays a significant role in
the growth and progression of RCC (Gudas et al., 2014). The
phosphoinositide 3-kinase (PI3K)/AKT/mTOR pathway, which
plays a crucial role in regulating cell growth, has also been shown
to be constitutively activated in RCC (Elfiky et al., 2011). In recent
years, the epigenetic changes of RCC, including non-coding RNA
(ncRNAs), have become one of the research hotspots. The
discovery of ncRNAs contributes to further understanding of
the pathogenesis and treatment of RCC.

CircRNAs, a novel subclass of non-coding RNAs, are
characterized with the covalently closed structure without 5′caps
and 3′poly(A) tails. Due to the absence of free ends, circRNAs are
naturally resistant to exoribonuclease and more stable than linear
RNA both inside cells and in extracellular plasma, including blood,
saliva, urine, and exosomes (Li et al., 2015a; Bahn et al., 2015;
Zhang et al., 2017; Necula et al., 2019). Moreover, circRNAs have
organ and tissue specific expression patterns, which have inspired
numerous studies on their application as promising biomarkers of
cancer (Kristensen et al., 2021). Unfortunately, circRNAs were
initially regarded as splicing errors, and their important roles in
gene regulation seem to be overlooked. In 1976, The existence of
circRNAs was first reported in RNA viruses, like plant viruses
(Sanger et al., 1976). A few years later, circRNAs were observed in
the cytoplasm of eukaryotic cells (Arnberg et al., 1980). Until
circular transcripts were detected in the testes of adult mice with
sex-determining region Y genes, circRNAs were recognized to
possess potent function (Dolci et al., 1997). In 2012, the abundance
and ubiquity of circRNAs in eukaryotes were identified with the
development of RNA high-throughput sequencing and novel
computational approaches for non-polyadenylated RNA
transcripts. Moreover, a report that ciRS-7 (also known as
CDR1as) could regulate the gene expression serving as the
microRNA (miRNA) sponge, initiated a burst in the research
field of circRNAs (Hansen et al., 2013). In recent years, it has
been demonstrated that numerous circRNAs are dysregulated and
have been identified as important regulators of multiple diseases,
such as cancers and cardiovascular diseases (Okholm et al., 2017;
Zhou and Yu, 2017; Song and Li, 2018). It has been demonstrated

that aberrant circRNA expression is common in cancer and they
involved in the regulation of tumorigenic behaviors such as
apoptosis, invasion, migration, and proliferation (Rajappa et al.,
2020). In this review, we briefly summarize the biogenesis,
degradation, and functions of circRNAs and elucidate circRNAs
as novel biomarkers and therapeutic targets in RCC.

BIOLOGICAL CHARACTERIZATION OF
CIRCRNAS

Biogenesis of CircRNAs
Precursor messenger RNA (pre-mRNA) is canonically spliced into
functional linear RNA transcript with 5′ to 3′ polarity via removing
introns. However, circRNAs are generally generated by back-splicing
of precursormRNAs(pre-mRNAs), a process of binding between the
downstream 5′ splice donor site and upstream 3′ splice acceptor
(Zhang et al., 2016a). According to their composition, circRNAs can
be classified into four categories: exonic circRNAs (ecircRNAs);
circular intronic RNAs (ciRNAs); exon–intron circRNAs
(EIciRNAs); and transfer RNA (tRNA) intronic circRNAs
(tricRNAs). Note that tricRNAs are formed by precursor tRNA.
Three hypothetical models for circRNAs biogenesis mechanisms
have been widely accepted (Figure 1): lariat-driven circularization;
pairing-driven circularization; RBP-mediated circularization. The
first model is that the nonadjacent exons are pulled closer due to
the partial folding of RNA, then a downstream 5 splice site of an
exon joins an upstream 3 splice site resulting in exon skipping. After
that, the introns are removed to form ecircRNAs or EIcirRNAs (Jeck
et al., 2013). The generation of ciRNAs is a special situation in the
lariat-driven model, where intronic lariats escape from debranching
(Zhang et al., 2013). Pairing-driven circularization can be mediated
by base pairing in the exons between inverted repeat elements (such
as Alu elements) (Ivanov et al., 2015; Kelly et al., 2015), but
sometimes from non-repetitive complementary sequences (Zhang
et al., 2014). The third model is that RNA binding proteins (RBPs)
bind both sides of flanking intron sequences, and bring splice donors
and splice acceptors sufficiently close with the RBPs (Such as
Quaking (QKI) (Conn et al., 2015), and FUS (Errichelli et al.,
2017)) attracting to each other, resulting in a bridge formed
between the introns.

Emerging data have identified that circRNAs formation is
modulated by cis-regulatory elements and trans-acting factors.
Several recent studies have suggested that the processing of
circRNAs can be accelerated by either RNA pairing of
reversely complementary sequences across their flanking
introns (Jeck et al., 2013; Liang and Wilusz, 2014; Zhang
et al., 2014; Ivanov et al., 2015) or protein factors binding to
pre-mRNAs to bridge flanking introns together (Ashwal-Fluss
et al., 2014; Conn et al., 2015). For example, the immune factors
NF90 and NF110 can promote the production of circRNAs by
stabilizing intronic RNA pairs (Li et al., 2017a; Legnini et al.,
2017). However, some RBPs suppress the biogenesis of circRNAs,
such as adenosine deaminase acting on RNA 1 (ADAR1) (Ivanov
et al., 2015) and ATP- dependent RNA helicase A (also known as
DHX9) (Aktaş et al., 2017). In addition, the biogenesis of circular
RNA is also affected by epigenetic changes within histones and
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gene bodies (Shukla et al., 2011; Bentley, 2014), heteronuclear
ribonucleoprotein L (hnRNP), and SR protein (Kramer et al.,
2015; Fei et al., 2017). In conclusion, evidence indicates that the
regulation of circRNAs biogenesis is strictly regulated by different
cis-elements and trans factors in cells, but the detailed mechanism
needs to be further explored.

Degradation of CircRNAs
Up to now, the elimination and degradation of circRNAs in cells
remain poorly understood. Most of the exon-containing
circRNAs are transported from the nucleus to the cytoplasm
in a size-dependent manner through ATP-dependent RNA
helicase ddx39 (Huang et al., 2018). Because circRNAs lack 5′
and 3′ ends, they are inherently resistant to the major enzymes of
mRNA degradation (Ghosh and Jacobson, 2010). There is
evidence that circRNAs are enriched and stable in exosomes
and can be detected in blood and urine (Yan et al., 2017; Wang
et al., 2019). For example, ciRS-7 and circHIPK3 are enriched in
extracellular vesicles, which may be eliminated by extracellular
vesicles and further removed by the reticuloendothelial system or
secreted by the liver and the kidney (Li et al., 2015a; Lasda and
Parker, 2016). Recently, RNase L, a secreted circRNAs
endonuclease, has been identified to globally degrade
circRNAs upon poly (I:C) stimulation or viral infection (Liu
et al., 2019). Moreover, it has been demonstrated that a subset of
circRNAs containing m6A is preferentially downregulated by
RNase P/MRP (endoribonucleases) (Park et al., 2019). In
addition, the Argonaute2 (AGO2) protein may involve in the

cleavage of specific circRNAs by binding to miRNAs. For
example, the degradation of CDR1as dependent on Ago2-
mediated cleavage mediated by miR-671 (Hansen et al., 2011).
It needs to mention that, ciRS-7 and ciRS-122 in exosomes can
maintain their circular properties, and extracellular vesicles can
be absorbed by other cells, and eventually function upon release
in recipient cells, suggesting that excreted circRNAs may be
involved in signaling pathways (Wang et al., 2020a).

Functions of CircRNAs
The potential functions and biological activities of circRNAs have
been extensively studied. Themain functions of circRNAs include
modulating the parental genes expression, regulating gene
transcription, acting as miRNA sponges, translating into
proteins or peptides, serving as protein scaffolding and
reservoir, forming pseudogenes, and acting as biomarkers
(Figure 1).

CircRNAs Can Modulate Parental Gene Expression
CircRNAs play an important role in regulating parental genes by
interacting with proteins and RBPs. On the one hand, certain
circRNAs containing introns, both EIciRNAs and ciRNAs, can
interact with RBP and affect the mRNA expression of parental
genes. For example, EIciRNAs interact with U1 small nuclear
ribonucleoprotein (snRNP) to further combine with polymerase
II (Pol II) and regulate the promoter region of host gene
transcription (Li et al., 2015b). Additionally, ciRNAs and Pol
II complex can directly interact to regulate parental gene

FIGURE 1 | Biogenesis and functions of circular RNAs (circRNAs). According to their composition, circRNAs can be classified into four categories: ecircRNAs,
ciRNAs, EIciRNAs, and tricRNAs. CircRNA biogenesis competes with linear pre-mRNA splicing. CircRNAs enhance the transcription and splicing of their parental genes
by interacting with RNA pol II or U1 small nuclear snRNP. CircRNAs bind to RBPs to regulate their biological activity. CircRNAs function as miRNA sponges. CircRNAs
can be translated into proteins. CircRNAs function as protein scaffolds. CircRNAs-derived pseudogenes. CircRNAs are eliminated by extracellular vesicles into
extracellular space, and can be absorbed by other cells or could enter the circulation.
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transcription (Dolci et al., 1997; Li et al., 2015b). On the other
hand, in the process of circRNAs formation, competitive
complementary pairing between introns can reach a balance
with linear RNA, which can affect mRNA expression and even
protein translation. For example, circMBL impacts linear RNA
formation, and circPABPN1 can inhibit PABPN1 mRNA
translation through competing with PABPN1 mRNA for
binding to the HuR protein (Abdelmohsen et al., 2017).
Moreover, due to the lack of a translation start site,
EcircRNAs play important roles in the regulation of protein
expression by inducing translation failure as mRNA traps
(Jeck and Sharpless, 2014).

CircRNAs as miRNA Sponges
Among its biological functions, circRNAs mainly exert their
function as a miRNAs sponge. By binding to the 3′UTR of
mRNAs, miRNAs affect the stability of mRNAs and modulate
gene expression in the nucleus and cytoplasm (Salmena et al.,
2011; Salmanidis et al., 2014). There is increasing evidence that
quite a few of circRNAs could serve as competitive endogenous
RNA (ceRNAs) or miRNAs sponge via binging with miRNAs
through miRNA response elements (MREs) to downregulate
their functions. Thus, circRNAs may indirectly regulate the
translation of mRNAs, and exert a post-transcriptional
regulatory effect on the target mRNAs (Bahn et al., 2015).
CDR1as was the first miRNA sponge reported to negatively
regulate miR-7, which was found to be highly and stably
expressed in several cancers and the mammalian brain
(Hansen et al., 2013; Yu et al., 2016; Piwecka et al., 2017;
Tang et al., 2017). Research revealed that CDR1as contains
over 70 binding sites for miR-7 and acts as a miR-7 sponge,
where it increases the translation of the miR-7 targeted mRNA
(Hansen et al., 2013). Of note, circRNAs can regulate the activity
of multiple miRNAs. For example, circHIPK3 can suppress the
activity of miR-558 (Li et al., 2017b), miR-124-3p (Chen et al.,
2020a), and miR-7 (Zeng et al., 2018) under certain conditions.
Although circRNAs functioning as molecular sponges has been
widely reported, a recent study proved that most circular RNAs
could not function as “bona fide”miRNA sponges (Militello et al.,
2017).

CircRNAs Can Be Translated Into Proteins or Peptides
Though circRNAs do not contain a 5′ methylguanosine (m7G)
cap structure and a poly (A) tail, several studies have shown that
engineered circRNAs can encode proteins when they contain
internal ribosome entry sites (IRESs) that can promote direct
binding of initiation factors or the ribosome to the translatable
circRNAs (Chen and Sarnow, 1995; Wang and Wang, 2015; Li
et al., 2017a). Moreover, it has been demonstrated that circMBL,
circZNF609, and circPINTexon2, containing an internal
ribosome entry site, were able to encode a protein in a cap-
independent manner (Legnini et al., 2017; Pamudurti et al., 2017;
Zhang et al., 2018). Another mechanism of circRNAs translation
involves the modification of N6-methyladenosine (m6A).
Modification of m6A RNA in the 5′ untranslated region
(UTR) promotes the efficient initiation of translation from
circRNAs in human cells (Zhou et al., 2015; Yang et al., 2017).

Additionally, the circRNAs with infinite small open reading
frames (ORFs) can encode a functional peptide by rolling loop
amplification in an IRES -independent manner (Abe et al., 2013).
Nevertheless, it remains to be investigated whether these
proteins or peptides formed from circRNAs have important
functions.

Protein Scaffolding and Reservoir
CircRNAs maybe serve as protein scaffolding to provide
binding sites for the assembly of multiple proteins, such as
enzymes and their substrates, thus forming large protein
complexes (Jeck and Sharpless, 2014; Hansen et al., 2016).
For example, the interaction of circ-Foxo3 with MDM2 and
p53 could promote MDM2-induced p53 ubiquitination and
subsequent degradation (Du et al., 2017a). CircACC1 works
with AMPK β and γ regulatory subunits to form ternary
complexes to promote the activity of AMPK holoenzyme
(Li et al., 2019). In addition to promoting chemical
reactions, circRNAs can also block the protein function as
protein scaffolds. For example, circFOXO3 can interact with
both cell cycle proteins cyclin-dependent kinase 2 (CDK2)
and p21 and prevents CDK2 from interacting with cyclin A
and E, which arrest cell cycle progression (Du et al., 2016).
circFOXO3 has been found to promote cardiac-cell
senescence by interacting the senescence-related proteins
ID-1 and E2F1 with the stress-related proteins focal
adhesion kinase (FAK) and hypoxia-inducible factor 1α
(HIF1α) in the cytoplasm, thereby restraining their
function through preventing FAK localization to
mitochondria or HIF1α translocation to the nucleus in
stressed cells (Du et al., 2017b). An earlier study revealed
that circRNAs could be used as a molecular reservoir (Li et al.,
2017a). CircRNAs can form short and incomplete
intramolecular double-stranded RNAs (dsRNAs) to bind
NF90, NF110, and interferon-induced, dsRNA-activated
protein kinase (PKR). Once the virus is infected, the
abundance of circRNAs is significantly reduced, resulting
in the release of NF90, and NF110, which promotes
antiviral immune response (Li et al., 2017a; Liu et al., 2019).

CircRNAs-Derived Pseudogenes
A pseudogene is defined as any genomic sequence that
contains a defective copy of a gene, which is similar to
another gene and has no capacity for coding protein due to
the accumulation of mutations (Vanin, 1985). In 2016, The
pseudogenes that originated from circRNAs in the
mammalian genome were first demonstrated. Soon after,
researchers found the circSATB1-derived pseudogene
region can specifically bind to CCCTC-binding factor,
which could reshape chromosome configuration, suggesting
that this circRNAs-derived can regulate gene expression. In
addition, retrotransposed circRNAs can be inserted into the
genome to alter the genome structure, interrupt host genome
integrity and the potential for gene regulation (Dong et al.,
2016). This finding may indicate a novel function of
circRNAs, that is, circRNAs can change the composition of
genomic DNA by inserting its retrotranscription product.
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TABLE 1 | Dysregulated circRNAs in renal cell carcinoma (RCC).

Name Expression Sponge
target

Gene/Pathway Function Types of RCC tissues and RCC cell
lines

PMID

circSDHC up miR-127-3p CDKN3 Promoted cell proliferation and
invasion

4 tumors and matched adjacent normal
tissue; 498, 786-O, 769P, and Caki-1

33468140
E2F1 pathway

circNRIP1 up miR-505 AMPK and PI3K/AKT/
mTOR pathways

Promoted cell proliferation and
migration

25 pairs of RCC tissues and the
nontumor tissues; ACHN, and CAKI-1

31692056

circFNDC3B up miR-99a JAK1/STAT3 and
MEK/ERK signaling
pathways

Enhanced proliferation and
migration

25 pairs of RCC tissues and adjacent
tissues; ACHN and CAKI-1

31637704

circZNF652 up miR-205 the Ras/Raf/MEK/
ERK and JAK1/
STAT3 signaling
pathways

Increased cells proliferation and
EMT, and inhibit apoptosis

22 pairs of Clinical renal carcinoma
tissues and corresponding normal
tissues

32070139

circ-APBB1IP up / ERK1/2 signaling
pathway

Promoted cell proliferation,
migration, invasion and inhibited
apoptosis

14 pairs of tumor tissues and tumor-
distant tissues of ccRCC; 786-O and
Caki-1 cell lines

32547313

CircPUM1 up miR-340-5p FABP7 Promoted cell proliferation,
migration, invasion and inhibited
apoptosis

50 pairs of ccRCC tissues and adjacent
normal kidney tissues of patients
undergoing surgery; HK-2, Caki-2, and
786-O cell lines

33472512
MEK/ERK pathway

circTXNDC11 up / the MAPK/ERK
pathway

Promoted cell proliferation and
invasion

30 pairs of RCC tissues and adjacent
nonmalignant tissues; ACHN, 786-O,
A498, Caki1, and Caki2

34308775

hsa-circ-0072309 down miR-100 PI3K/AKT and mTOR
pathways

Inhibited cell proliferation,
migration, and invasion, but
enhance cell apoptosis

30 pairs of kidney cancer and the
normal tissues; CAKI-1 and ACHN

31456425

circ_001287 up miR-144 CEP55 Promoted cell proliferation,
migration, invasion and tumor
growth

77cases of RCC Tumor and adjacent
normal tissues; A-498, 786-O, CAKI-1
and CAKI-2

33256799

circPCNXL2 up miR-153 ZEB2 Promoted cell proliferation, and
invasion of RCC

63 pairs of ccRCC tissues and adjacent
non-tumor tissues; A498, 786-O,
ACHN, and Caki-1)

30488762

circ_0005875 up miR-145-5p ZEB2 Increased cell proliferation,
migration and invasion

64 pairs of ccRCC tissues and adjacent
normal controls; caki-1,769-p, ACHN,
A498

33193877

circAGAP1 Up miR-15a-5p E2F3 Enhanced the proliferation,
migration and invasion, and
inhibited apoptotic of RCC

34 pairs of ccRCC tissues and adjacent
nontumor tissues; A498, ACHN, CAKI-
1 and OS-RC-2

33618745

Circ_0005875 up miR-502-5p ETS1 Promoted cell proliferation,
migration and invasion, and
inhibited apoptosis and cell cycle
arrest

37 pairs of RCC tissue and adjacent
normal tissues; HK-2, A498, and Caki-1

34407050

circNUP98 up miR-567 PRDX3 Promoted cell proliferation,
migration and invasion and
inhibited apoptosis

78 pairs of RCC tissues and adjacent
normal tissues; 786-o, Caki-1, Caki-2,
769-p and A498

32729669

circ-EGLN3 up miR-1299 IRF7 Promoted cell proliferation,
migration and invasion but inhibited
apoptosis

80 pairs of RCC specimens and
matched nontumor samples; 786-0,
ACHN, CAKI-1, and OSRC2

31904147

circ-EGLN3 up miR-1224-3p HMGXB3 Promoted cell proliferation,
migration and invasion, and
inhibited apoptosis

43 pairs of RCC tissue specimens and
matched non-carcinoma

34274607

Specimens; HK-2 and five RCC cell
lines, A498, 786-O, Caki-1, ACHN, and
789-P

circPRRC2A up miR-514a-5p
and miR-
6776-5p

TRPM3 Increased cell proliferation,
migration and invasion, and
induced EMT

118 pairs of RCC tumor tissues with
matched normal-adjacent renal tissues;
A-498, 786-O, 769-p, ACHN, CAKI-1
and CAKI-2

32292503

circPTCH1 up miR-485-5p MMP14 Increased cell migration and
invasion and induced EMT

39 RCC tissues and matched adjacent
normal samples; ACHN, OS-RC-2,
A498, 786-O

32929380

circ_001504 up miR-149 NUCB2 Promoted cell proliferation,
migration and invasion

43 paired RCC tissues and adjacent
normal tissues; A-498, 786-O, Caki-2,
and Caki-1

34274607

hsa_circ_0054537 up miR-130a-3p c-Met Enhanced cell proliferation and
inhibited apoptosis

A-498, Caki-1, SW839 and OSRC-2 32464246

(Continued on following page)
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TABLE 1 | (Continued) Dysregulated circRNAs in renal cell carcinoma (RCC).

Name Expression Sponge
target

Gene/Pathway Function Types of RCC tissues and RCC cell
lines

PMID

CircPDK1 up miR-377-3P NOTCH1 Promoted RCC invasion and
metastasis

30 pairs of RCC tissues and para tumor
tissues; 786–0, 769-P, and ACHN

33173313

circ_000926 up miR-411 CDH2 Promoted growth, migration, and
invasion abilities of cells, as well as
EMT and tumor growth

85 pairs of RCC tissues and adjacent
normal tissues; 786-O, A498, Caki-1,
and ACHN

31476285

circ_101341 up miR-411 EGLN3 Promoted proliferation, migration
and invasion

60 pairs of ccRCC tissues and matched
normal tissues; A498, Caki-1 and
786-O

33408523

Circ_0035483 up miR-31-5p HMGA1 Promoted proliferation, migration
and invasion and glycolysis of RCC
cells

60 pairs of RCC tissues and
coterminous normal tissues; 786-O and
CaKi-1

33531839

circ_0035483 up miR-335 CCNB1 Promoted autophagy and tumor
growth and enhanced gemcitabine
resistance in RCC

5 pairs of kidney cancer tissues and
adjacent

31492499

Tissues; TK10 and UO31 cells
circTLK1 up miR-136-5p CBX4 Promoted cell proliferation,

migration, and invasion
60 RCC tissues and matched adjacent
normal tissues; ACHN, 786-O and
769-P

32503552

circ-ZNF609 up miR-138-5p FOXP4 Promoted cell proliferation,
migration, and invasion ability

A-498, ACHN, OS-RC-2, 769-P,
G-401

30478938

circ-SAR1A up miR-382 YBX1 Promoted RCC cells’ growth and
invasion

41 pairs of RCC tissues and matched
adjacent normal tissues; 786-O, Caki-
1, 769-P, ACHN, and A498

32884349

circ_0039569 up miR-34a-5p CCL22 Promoted RCC cell proliferation
and metastasis

52 pairs of RCC tissues and their
adjacent tissues; ACHN, A498, 786-O,
769-P and RCC4

31497210

circMYLK up miR-513a-5p VEGFC Promoted cell proliferation,
migration and invasion

71 pairs of RCC tissues and matched
adjacent normal renal tissues ACHN,
786-O, and Caki-1

32342645

circ_400068 up miR-210-5p SOCS1 Promoted cell proliferation and
inhibited apoptosis

28 Human kidney tissue and plasma
specimens; Caki-1 and Caki-2

33173957

circAKT1 up miR-338–3p CAV1 Promoted cell proliferation, colony
formation, migration, invasion
and EMT

70 pairs of ccRCC tumor tissues and
adjacent normal tissues; 786-O, A498,
ACHN, Caki-1, and OS-RC-2

32900491

circDHX33 up miR-489-3p MEK1 Promoted the proliferation and
invasion

RCC cell lines 786-O, Caki1, A498,
Caki2, and ACHN

32717723

circTLK1 up miR-495-3p CBL Promoted cell proliferation,
migration and invasion

60 RCC tissues and matched adjacent
normal tissues; ACHN, 786-O and
769-P

32503552

Hsa_circ_0085576 up miR-498 YAP1 Promoted cell proliferation,
migration and invasion but inhibited
apoptosis

76ccRCC tissues and adjacent normal
tissues; 786-O, Caki1, A498 and ACHN

32541093

hsa_circ_001895 up miR-296-5p SOX12 Promoted cell proliferation,
migration and invasion and
inhibited cell apoptosis

60 pairs of ccRCC and adjacent
noncancer tissues; 786-O, A498, OS-
RC-2, 769-P and ACHN

31782868

circCSNK1G3 up miR-181b TIMP3 Promoted cell proliferation,
migration and invasion and
induce EMT

786-O, Caki-1, A498 and ACHN 33560588

circ-ABCB10 Up / / Promoted cell proliferation,
migration and inhibited apoptosis

120 tumor tissue and paired adjacent
tissue; A498, Caki-2, ACHN, Hs891.T
and Cal-54

31106654

CircHIPK3 up MiR-485-3p Promoted proliferation and
metastasis and inhibited apoptosis

48 pairs of tissues and adjacent tissues;
HK-2, A498, 768-O, and 769-P

32550826

circHIPK3 up miR-508-3p CXCL13 Promoted Proliferation, Migration
and Invasion

50 paired ccRCC and adjacent
paratumor tissues; HK2, A498, 786-O
and 769-P

32821115

ciRS-7 up miR-139-3p TAGLN Inhibited cell proliferation, invasion,
tumor growth and metastasis

85 pairs of RCC tissues and adjacent
non-tumor tissues; 786-O and ACHN

34740354

circ_0001368 down miR-492 LATS2 Suppressed cell proliferation and
invasion

64 tumor tissues and normal renal
tissues; 786-O, ACHN, and A498

32428698

Circ_RPL23A down miR-1233 ACAT2 Inhibited cell cycle progression,
proliferation, migration and invasion
but promoted apoptosis in ccRCC
cells

60 pairs of ccRCC tissues and normal
tissues; HK2, 786-O,769-p, Caki-1,
and A498

34036483

(Continued on following page)
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CIRCRNAS IN RENAL CARCINOMA

More and more studies have shown that circRNAs play pivotal
roles in the occurrence and development of cancer and might
function as cancer biomarkers and novel therapeutic targets (Song
et al., 2018; Altesha et al., 2019; Arnaiz et al., 2019). A result from
The Cancer Genome Atlas and Gene Expression Omnibus
database showed that a total of 114 circRNAs were found to be
associated with tumor initiation, progression, and metastasis after
the intersection in ccRCC (Wei et al., 2020). The aberrant
circRNAs commonly exist in RCC, playing the oncogenic or
suppressive role and regulating cellular functions. In particular,
dysregulated circRNAs are correlated with clinicopathological
features, prognosis and survival in RCC patients, suggesting that
these stable circRNAs can be promising biomarkers for cancer
diagnosis and prognosis. What’s more, circRNAs play crucial
regulatory roles in upstream of various signaling pathways
related to RCC carcinogenesis and progression, which makes
them attractive therapeutic targets for RCC.

CircRNAs Profiles in RCC
Early detection of circRNAs was rare and limited because of the
stable circular structure. With the development of detecting
techniques and bioinformatics tools, investigations on
circRNAs have been significantly increased and substantial
progress has been made in the identification of differential
expression of circRNAs in RCC. Genome-wide detection plays
an essential role in circRNAs detection, and RNA sequencing
(RNA-seq) was the first technology used for the detection of
circRNAs genomes. A few years ago, a study using circRNAs
microarrays found that 542 circRNAs were abnormally expressed

in ccRCC, of which 324 circRNAs were significantly down-
regulated, while 218 circRNAs were up-regulated in ccRCC
tumors (Ma et al., 2020). In 2019, analysis of 7 matched
ccRCC samples using the ArrayStar microarray approach
showed that 78 up-regulated and 91 down-regulated circRNAs
had more than 2-fold differences compared with adjacent normal
tissue samples (Franz et al., 2019). Moreover, the transcriptome
data downloaded from the Gene Expression Omnibus dataset,
showed that 961 circRNAs were differentially expressed between
ccRCC and normal tissues, and 255 circRNAs were differentially
expressed between metastatic ccRCC and primary tumor tissues
in total (Wei et al., 2020). These high-throughput results strongly
suggest the important roles of these circRNAs in RCC
development and progression.

CircRNAs in RCC and Molecular
Mechanisms
The aberrant circRNAs commonly exist in RCC (Table1),
regulating cell proliferation, apoptosis, migration, invasion and
gemcitabine chemoresistance via cancer-associated signaling
pathways (Figure2) and circRNA-miRNA-mRNA interaction
networks (Papatsirou et al., 2021) (Figure3).

Cancer-Associated Signaling Pathways
Several signaling pathways, such as PI3K/AKT andmTOR,MAP-
ERK and AMPK, that play a key role in the development of RCC,
have been reported to be associated with dysregulated circRNAs
in RCC. For example, the hsa-circ-0072309 exerted anti-tumor
effects through inactivating PI3K/AKT and mTOR pathways in
the RCC cell lines. Over-production of hsa-circ-0072309 inhibits

TABLE 1 | (Continued) Dysregulated circRNAs in renal cell carcinoma (RCC).

Name Expression Sponge
target

Gene/Pathway Function Types of RCC tissues and RCC cell
lines

PMID

CircRAPGEF5 down miR-27a TXNIP Inhibited proliferation, migration
and invasion

42 pairs of RCC tissues and matched
adjacent normal tissues; 769-P, Caki-1,
OSRC-2, and 786-O

31629934

circAKT3 down miR-296-3p E-cadherin Inhibited cell migration and invasion 60 pairs of ccRCC tissues and paired
adjacent normal kidney tissues; OSRC-
2, Caki-1, SN12-PM6, A498, and
SW839

31672157

circ-ITCH down miR-106b-5p PDCD4 Inhibited migration and invasion of
ccRCC cells

54 pairs of ccRCC tissues and paired
adjacent normal kidney tissues; OSRC-
2, A498, SW839, 786-O, Caki-1, and
GRC-1

33969128

circHIAT1 down miR-195-5p/
29a-3p/
29c-3p

CDC42 Inhibited AR-dependent migration
and invasion of ccRCC cell

40 pairs of primary ccRCC and adjacent
normal tissues

28089832

circATP2B1 down miR-204-3p FN1 Inhibited ERβ-dependent migration
and invasion of ccRCC cell

786-O, A498, Caki-1 29490945

circ-0001451 down / / Inhibited proliferation and promote
apoptosis

52 pairs of ccRCC tissues and
paraneoplastic tissues; OS-RC-2,786-
O, OS-RC-1, ACHN, Caki-1

30271486

CircESRP1 down miR-3942 CTCF Inhibited RCC cell migration,
invasion, EMT, tumor growth, and
metastasis

79 paired RCC tissues and adjacent
non-tumor tissues; HK2, 786-0, and
ACHN

34775467
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cell proliferation, migration, and invasion, as well as the PI3K/
AKT andmTOR cascade, but enhances cell apoptosis (Chen et al.,
2019). However, circNRIP1 plays an oncogenic role in RCC,
which activates adenylate-activated protein kinase (AMPK) and
PI3K/AKT/mTOR pathways by targeting miR-505 (Dong et al.,
2020). In recent years, the Janus kinase 1/signal transducer and
activator of transcription 3 (JAK1/STAT3) and extracellular
signal-regulated kinase (ERK) kinase (MEK)/ERK signaling
pathways have been widely reported to involve in cancer
development (Kang et al., 2011; Deng et al., 2018; Gao et al.,
2019; Cui et al., 2020). It has also been proved that some
circRNAs play vital roles in the development of RCC by
affecting these pathways. For example, circFNDC3B plays an
oncogenic role in RCC through activation of JAK1/STAT3 and
MEK/ERK signaling pathways to enhance cell viability, colony,
and migration (Chen et al., 2020b). Similarly, circZNF652
increased proliferation and EMT of RCC cells by stimulating
the Ras/Raf/MEK/ERK and JAK1/STAT3 signaling pathways
(Zhang and Guo, 2020). In the past year, several more articles
have reported that circRNAs regulate similar signaling pathways.
Circ-APBB1IP was found to be significantly overexpressed in
ccRCC tissues and play a carcinogenic role in RCC by activating
ERK1/2 signaling pathway. Knockdown of circ-APBB1IP by
siRNA suppressed the proliferation, migration, and invasion
and increased the apoptosis of ccRCC cells (Mo et al., 2020).
A novel circular RNA circTXNDC11, which is upregulated in
RCC patients, was identified to promote ccRCC progression by
activating the MAPK/ERK pathway (Yang et al., 2021). Knocking
down circTXNDC11 suppressed cell proliferation and invasion

in vitro and reduced tumor growth in vivo, which offered a
potential therapeutic target for RCC treatment. Another study
revealed that CircPUM1 upregulated FABP7 expression by
competitively binding to miR-340-5p, and then activated the
MEK/ERK pathway, thus promoting ccRCC progression (Zeng
et al., 2021). A limited number of circRNAs have been reported to
play roles in RCC- associated signaling pathways, most of which
have been shown to exert oncogenic effects. The underlying
mechanisms by which circRNAs regulate these signaling
pathways remain unclear. Undoubtedly, substantial efforts will
be undertaken to reveal the function of circRNAs in the initiation
and development of RCC.

CircRNA-miRNA-mRNA Networks
In addition, circRNA-miRNA-mRNA interaction networks play
important roles in regulating the proliferation and progression of
RCC. Up-regulated circRNAs promote tumorigenic functions of
RCC cell lines while down-regulated transcripts repress them.

Oncogenic CircRNAs
The majority of up-regulated circRNAs in RCC so far have been
shown to play a carcinogenic role by acting as miRNA sponges.
For instance, hsa_circ_0054537 is functioned as a competitive
endogenous RNA to regulate c-Met expression via sponging miR-
130a-3p in RCC, thereby enhancing the cell proliferation and
inhibiting cell apoptosis (Li et al., 2020a). CircSDHC can also play
the same role in RCC through the miR-127-3p/CDKN3/E2F1
axis, thereby leading to RCC malignant progression (Cen et al.,
2021). E2F1, one of E2F transcription factors (E2Fs), participates

FIGURE 2 | Involvement of circRNAs in the cancer-associated signaling pathways in RCC.

Frontiers in Molecular Biosciences | www.frontiersin.org February 2022 | Volume 9 | Article 8330798

Zhou et al. CircRNAs in Renal Cell Carcinoma

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


in the development of many different types of cancer (Iwamoto
et al., 2004; Lee et al., 2010), including RCC (Ma et al., 2013). E2Fs
are a group of transcription factors that play a pivotal role in
cellular proliferation, differentiation, and apoptosis (Ertosun
et al., 2016). CircAGAP1 has been reported to increase the
expression of E2F3, one of the E2F family transcription
factors, by sponging miR-15a-5p, thus enhancing the viability,
invasion, and inhibiting the apoptosis of ccRCC cells (Lv et al.,
2021). ZEB2 is a DNA-binding transcriptional regulator and
plays a major role in the epithelial-to-mesenchymal transition
(EMT) (Fardi et al., 2019), which plays a key role in tumor
invasion and metastasis in multiple cancers (Wang et al., 2017a).
CircPCNXL2 was found to promote the expression of ZEB2 by
sponging miR-153 (Zhou et al., 2018). Moreover, circPCNXL2
inhibition suppressed the proliferation and invasion of RCC cells.
Like circPCNXL2, circ_0005875 was highly expressed in RCC
tumors and cell lines and increased ZEB2 expression via sponging
miR-145-5p (Lv et al., 2020). According to another study, the
circPRRC2A, generated from the PRRC2A gene, was significantly
upregulated in RCC. circPRRC2A upregulated TRPM3 by
sponging miR-514a-5p and miR-6776-5p, thereby inducing
EMT and invasiveness in patients with RCC (Li et al., 2020b).
Extracellular matrix degradation is an important mechanism for
tumor invasion and metastasis. Matrix metalloproteinases
(MMPs) are zinc-containing endopeptidases that are essential

to the degradation of extracellular matrix proteins (Boziki and
Grigoriadis, 2018). MMPs permit cells to traverse the ECM to
reach distant position, and are therefore closely associated with
tumor metastasis (Zhao et al., 2018). CircPTCH1 was found to
promote RCC metastasis via sponging the miR-485-5p to
upregulate MMP14, a member of the matrix
metalloproteinases (MMPs) family (Liu et al., 2020a).
Circ_0005875 was identified to promote RCC cell
proliferation, migration, and invasion, and inhibit apoptosis
and cell cycle arrest by sponging miR-502-5p to upregulate
ETS1 (Luo et al., 2021), which might transactive matrix-
degrading protease genes (Bolon et al., 1995). These studies
suggest that circRNAs can promote RCC metastasis by
inducing EMT and the degradation of extracellular matrix.
Cell proliferation requires increased uptake of nutrients, and it
has been reported that aerobic glycolysis can meet the metabolic
requirements of cell proliferation (Lunt and Vander Heiden,
2011). Circ_0035483 has been reported to induce glycolysis of
RCC cells through miR-31-5p/HMGA1T axis. The glucose
consumption and lactate production in RCC cells were
inhibited after circ_0035483 was downregulated, suggesting
that circ_0035483 promoted glycolytic metabolism in RCC
(Liu et al., 2021). CircRNAs may play a role in angiogenesis,
which is essential for tumor cell survival and aggressiveness of
RCC. Vascular endothelial growth factor (VEGF), a marker gene

FIGURE 3 | CircRNAs involve in miRNA-associated gene regulatory pathway to regulate RCC cell proliferation, apoptosis, migration, invasion, chemoresistance
and metabolism. Selected samples of circRNAs and their genomic targets are exhibited for tumour progression. CircRNAs in red represent up-regulated in RCC, and
circRNAs in blue represent downregulated in RCC. Nanoparticles act as delivery vehicles for siRNAs and circRNA expression vectors provide a circRNA -based
therapeutic strategy for RCC. CRISPR/cas9 -mediated knockout may be applied to RCC treatment.
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of angiogenesis, plays a key role in inducing angiogenesis during
tumour growth and metastasis. CircPRRC2A has been reported
to induce angiogenesis to promote RCC metastasis by increasing
the level of VEGFA (Li et al., 2020b), which is one of the most
potent inducers of angiogenesis during tumour growth and
metastasis (Tischer et al., 1989). Additionally, Li et al. (2020c)
identified that circTLK1 plays an oncogenic role in RCC through
the miR-136-5p/CBX4 axis. Moreover, CBX4 expression was
positively correlated with VEGFA expression in RCC tissues.
Several other regulatory cascades with similar function are as
follows, circZNF609/miR-138-5p/FOXP4 (Xiong et al., 2019),
circ_001842/miR-502-5p/SLC39A14 (Zhang et al., 2016b),
circ-SAR1A/miR-382/YBX1 (Zhao et al., 2020), circ_0039569/
miR-34a-5p/CCL22 (Jin et al., 2019), circMYLK/miR-513a-5p/
VEGFC (Li et al., 2020d), circ_400068/miR-210-5p/SOCS1 (Xiao
and Shi, 2020), circAKT1/miR-338–3p/CAV1 (Zhu et al., 2020),
CircPDK1/miR-377-3P/NOTCH1 (Huang et al., 2020),
circDHX33/miR-489-3p/MEK1 (Wang et al., 2020b),
circ_000926/miR-411/CDH2 (Zhang et al., 2019), circTLK1/
miR-495-3p/CBL (Lei et al., 2021), circ_001287/miR-144/
CEP55 (Feng et al., 2020), circ_001504/miR-149/NUCB2 (Xin
et al., 2021). Hsa_circ_0085576/miR-498/YAP1 (Liu et al., 2020b)
and hsa_circ_001895/miR-296-5p/SOX12 (Chen et al., 2020c),
circNUP98/miR-567/PRDX3 (Yu et al., 2020), circ-EGLN3/miR-
1299/IRF7 (Lin and Cai, 2020), circ-EGNL3/miR-1224-3p/
HMGXB3 (Zhang et al., 2021), circ_101341/miR-411/EGNL3
(Yue et al., 2020), circHIPK3miR-508-3p/CXCL13 (Han et al.,
2020).

Yet it’s worth noting that some circRNAs can function as
miRNA “reservoirs” to regulate the progression of renal cell
carcinoma, which is different from the classical function of
circRNAs as a “miRNA sponge”. For example, circCSNK1G3
can promote cell proliferation, migration, and invasiveness of
RCC cells via miR-181b/TIMP3 axis. In this research,
circCSNK1G3 has a positive regulatory effect on miR-181b,
which inhibits the expression of tumor suppressor gene
TIMP3, resulting in tumor growth and metastasis in RCC (Li
et al., 2021a). Another study reported that circATP2B1 enhanced
ccRCC cell invasion by increasing miR-204-3p stability to inhibit
FN1 (Han et al., 2018). Previous studies have focused on
circRNAs’ function as miRNAs sponges. However, several
circRNAs can work as miRNA reservoirs to positively regulate
miRNAs, suggesting that circRNAs can regulate miRNAs’
availability and function in a different way.

Tumor Suppressor CircRNAs
In addition, circRNAs also have tumor suppressive effect in RCC. For
instance, circESRP1 is poor expressed in cancer cells and kidney
cancer tissues and acts as a suppressor of tumor through miR-3942/
CTCF axis (Gong et al., 2021). CTCF also specifically promote the
circESRP1 transcript expression and form a positive feedback loop.
Overexpression of circESRP1 inhibits clear cell renal cell carcinoma
progression by suppressing c-Myc-mediated EMT pathway. In
another study, circ_0001368 suppressed renal cells proliferation
and invasion through sponging miR-492 to upregulate tumor
suppressor geneLATS2 (Chen et al., 2020d). Moreover, a recent
study showed that circ_RPL23A exerted its anti-tumor effect by

up-regulating the suppressor gene ACAT2 through competitively
binding miR-1233 (Cheng et al., 2021). ACAT2 is an enzyme
involved in lipid metabolism, which has been reported to be
inversely correlated with the prognosis of ccRCC patients, whereas
the underlying mechanism of ACAT2 in ccRCC remains unclear
(Zhao et al., 2016). Whether ACAT2 mediates cellular metabolic
reprogramming to participate in the regulation of ccRCC progression
needs further investigation. Other regulatory cascades have been
reported to act as tumor suppressors in RCC included
CircRAPGEF5/miR-27a/TXNIP (Chen et al., 2020e), circAKT3/
miR-296-3p/E-cadherin (Xue et al., 2019), and circ-ITCH/miR-
106b-5p/PDCD4 (Gao et al., 2021). Like circCSNK1G3,
circHIAT1 was identified to inhibit AR-dependent migration and
invasion of ccRCC cells by serving as amiRNA “reservoir”. This study
revealed that circHIAT1 could increase miR-195-5p/29a-3p/29c-3p
activity to inhibit CDC42 expression, thereby suppressing ccRCC
progression (Wang et al., 2017b).

Overall, these studies illustrate that circRNAs could act as
tumor suppressors or oncogenes to regulate the occurrence and
development of RCC, which provide perspectives for the future
clinical significances of circRNAs as therapeutic targets and
treatment strategies.

Relationships Between CircRNAs Levels
and Clinicopathologic Characteristics
in RCC
It has been reported that circRNAs were significantly correlated with
many clinicopathological features of renal cell carcinoma, including
tumor size, grade, stage, lymph node metastasis (LNM), number of
tumors, distantmetastasis and recurrence. For instance, circPTCH1 is
upregulated in RCC cell lines and tumor samples, and higher levels of
circPTCH1 are significantly correlated with advanced Fuhrman
grade and greater risk of metastases (Liu et al., 2020a). According
to Li et al. (2020b), the circPRRC2A is upregulated in RCC tissues,
and its levels are positively correlated with the larger tumor size of
RCC. Clinically, high levels of circESRP1 are negatively associated
with the advanced tumor size, TNM stage and distant metastasis of
ccRCC (Gong et al., 2021). Feng et al. (2020) observed that
circ_001287 is highly expressed in RCC tissues and cells, and its
levels are strongly correlatedwith the pathological grade, lymph node,
tumor size, tumor node metastasis (TNM) stage, and distant
metastasis of RCC patients. Hsa_circ_0085576 has also been
reported to be upregulated in ccRCC tissues and cell lines, and its
levels are positively correlated with the clinical stage, tumor stage, and
distant metastasis (Liu et al., 2020b). Zhao et al. (2020) demonstrated
that circ-SAR1A is significantly overexpressed in RCC tissues and cell
lines and that its levels are correlated to advanced Fuhrman grade,
and lymph node metastasis in RCC patients. CircHIPK3 has been
shown to be upregulated in ccRCC tissues and cell lines, and its levels
are closely associatedwith a high TNMgrade, lymph nodemetastasis,
distant metastasis, bigger tumor size, and higher Fuhrman grade
(Han et al., 2020). Similarly, hsa_circ_0005875 expression levels are
significantly associated with tumor size, pathological TNM stage,
histological differentiation, and lymphatic metastasis (Lv et al., 2020).
Furthermore, the expression levels of circPDK1 expression are
significantly increased in RCC, and its levels are positively
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correlated with lymph nodemetastasis and distant metastasis of RCC
(Huang et al., 2020). The current data showed that the high
expression of circAKT1 (Zhu et al., 2020) and circTXNDC11
(Yang et al., 2021) are positively associated with TNM stage,
lymph node metastasis. In addition, other circRNAs, such as
circSDHC (Cen et al., 2021), circMYLK (Li et al., 2020d),
circNUP98 (Yu et al., 2020), circ_001842 (Zeng et al., 2020), circ-
ABCB10 (Huang et al., 2019), Hsa_circ_0001451 (Wang et al., 2018),
circDHX33 (Wang et al., 2020b), ciRS-7 (Mao et al., 2021),
Hsa_circ_001895 (Chen et al., 2020c), circAGAP1 (Lv et al.,
2021), circ-AKT3 (Xue et al., 2019), and circ_0001368 (Chen
et al., 2020d), have also been proved to be associated with various
clinicopathologic characteristics in RCC (Table 2).

CircRNAs as Diagnostic and Prognostic
Biomarkers for RCC
Since circRNAs are very stable and conserved molecules, along
with their cell-type-specific and tissue-specific expression
patterns, reflecting their potentials as novel biomarkers. Early

diagnosis and accurate evaluation of the prognosis of RCC are
vital for improving treatment efficacy and reducing the mortality
of patients with RCC. Therefore, specific biomarkers are urgently
needed for the early diagnosis of primary patients and early
identification of the local recurrence or distant metastasis after
surgical resection in RCC.

CircRNAs as Diagnostic Biomarkers for RCC
Increasing studies identified that the expression of circRNAs
shows disease specificity and clinical relevance. For instance,
the area under the receiver operating characteristic curve
(AUC-ROC) of hsa_circ_0001451 was 0.704 for ccRCC
diagnosis, with sensitivity and specificity of 0.755 and 0.608,
respectively (Wang et al., 2018). Additionally, according to
receiver operating characteristic curve analysis, circHIPK3 was
a valuable diagnosis biomarker with AUC of 0.95322 in ccRCC
(Han et al., 2020). What’s more, a study showed that the
diagnostic value of circRNAs combined with the linear
transcripts was higher than that of individual circRNAs. For
instance, three circRNAs (circEGLN3, circNOX4, and

TABLE 2 | Utility of circRNAs for the clinical management of RCC.

circRNA name Clinical
sample

Diagnostic Prognostic Clinicopathologic characteristics PMID

OS DFS PFS

hsa_circ_0001451 tissue √ 30271486
circHIPK3 tissue √ 32550826
circNOX4 tissue √ 31575051
cir-cRHOBTB3 tissue √ 31575051
circEGLN3 tissue √ 31575051
circEGLN3 tissue √ 33946584
circEHD2 tissue √ √ 33946584
circNETO2 tissue √ √ 33946584
circPRRC2A tissue √ √ tumor size 32292503
circTLK1 tissue √ √ metastasis 32503552
circNUP98 tissue √ √ TNM stage 32729669
hsa_circ_0085576 tissue √ √ clinical stage, tumor stage and distant metastasis 32541093
CircRAPGEF5 tissue √ tumor 31629934

size, advanced TNM stage and distant metastasis
circ-ABCB10 tissue √ pathological grade and TNM stage 31106654
circHIPK3 tissue √ TNM grade, lymph node metastasis, distant metastasis, tumor size and Fuhrman

grade
32821115

circ_101341 tissue √ 33408523
circ_001842 tissue √ lymph node metastasis 32729666
Hsa_circ_0001451 tissue √ clinical stage, tumor stage, lymph node, and metastasis 30271486
hsa_circ_001895 tissue √ TNM stage 31782868
circSDHC tissue √ TNM stage 33468140
circPTCH1 tissue √ advanced Fuhrman grade and greater risk of metastases 32929380
ciRS-7 tissue √ tumor size, high Fuhrman grade 34740354
circ_001287 tissue pathological grade, lymph node, tumor size, tumor node metastasis (TNM) stage

and distant metastasis
33256799

hsa_circ_0005875 tissue tumor size, pathological TNM stage, histological differentiation, and lymphatic
metastasis

33193877

circPDK1 tissue lymph node metastasis and distant metastasis 33173313
circMYLK tissue tumour size, distant metastasis 32342645
circakt1 tissue TNM stage, lymph node metastasis 32900491
circTXNDC11 tissue TNM stage, lymph node metastasis 34308775
circDHX33 tissue TNM stage and metastasis 32717723
circAGAP1 tissue tumor size, nuclear grade and clinical stage 33618745
circ-akt3 tissue Fuhrman grade 31672157
circ_0001368 tissue T stage and lymph node metastasis 32428698
CircESRP1 tissue the advanced tumor size, TNM stage and distant metastasis 34775467
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circRHOBTB3) were identified potential diagnostic biomarkers
(Franz et al., 2019). The AUC-ROC of circNOX4 and
circRHOBTB3 in RCC tissues were 0.81 and 0.82, respectively,
while circEGLN3 showed more reliable diagnostic value with
AUC-ROC of 0.98. Further, the combined detection of
circEGLN3 and linEGLN3 increased the AUC-ROC to 0.99,
with 95% sensitivity and 99% specificity.

CircRNAs as Prognostic Biomarkers for RCC
Additionally, some circRNAs play an important role as a
prognostic biomarker, such as overall survival (OS), disease-
free survival (DFS), and progression-free survival (PFS). A
study indicated that high circPRRC2A expression was an
independent risk factor of worse OS and poorer metastasis-
free survival (Li et al., 2020b). Studies have proved that RCC
patients with high expression of circTLK1 (Li et al., 2020c),
circNUP98 (Yu et al., 2020), and hsa_circ_0085576 (Liu et al.,
2020b) had a lower OS and DFS rate. In contrast, circRAPGEF5
expression was decreased in RCC and its downregulation was
significantly associated with poor OS and relapse-free survival
(RFS) in patients (Chen et al., 2020e). Studies have shown that
high circEHD2 and low circNETO2 levels were an independent
predictor of a shortened progression-free survival, cancer-specific
survival, and overall survival in patients with ccRCC undergoing
nephrectomy (Frey et al., 2021). Kaplan–Meier survival curve
revealed that the overall survival of ccRCC patients with high
circ_101341 expression was always lower than with low
circ_101341 expression (Yue et al., 2020). Furthermore, the OS
was worse in ccRCC patients with high tumor tissue circ-ABCB10
expression compared with ccRCC patients with low expression of
circ-ABCB10 in tumor tissue (Huang et al., 2019). Similarly, the
patient survival rate among the group with high circ_001842
expression was found to be lower than those with low
circ_001842 expression level, indicating a positive correlation
between circ_001842 and the degree of RCC (Zeng et al., 2020). In
addition, other circRNAs, such as Hsa_circ_0001451 (Wang
et al., 2018), hsa_circ_001895 (Chen et al., 2020c), circ-EGLN3
(Lin and Cai, 2020), circHIPK3 (Han et al., 2020), circSDHC (Cen
et al., 2021), ciRS-7 (Mao et al., 2021), and circPTCH1 (Liu et al.,
2020a) are also significantly correlated with worse OS of patients
with ccRCC (Table 2).

The above examples demonstrated that some circRNAs could
be promising biomarkers for the diagnosis and prognosis of RCC.
However, the differential expression of these circRNAs in tissues
cannot be shown in plasma or serum. Therefore, the clinical
application of circRNAs as biomarkers still needs further
research.

Therapeutic Role of CircRNAs in Renal
Cancer
As mentioned above, aberrant circRNAs are related to the
occurrence and development of tumors by modulating various
signaling pathways, which are potential targets for novel drugs in
RCC. Overexpression or knockdown of related circRNAs might
be an effective intervention strategy for RCC progression.
Considering that the PI3K/Akt/mTOR signaling pathway is an

important regulator of cell survival and proliferation, targeting
circRNAs to inhibit PI3K/Akt/mTOR pathway may be an
effective way to treat renal cell carcinoma. Studies have shown
that overexpression of hsa-circ-0072309 (Chen et al., 2019) and
circNRIP (Dong et al., 2020) could exert antitumor effects by
deactivating the PI3K/Akt/mTOR signaling pathway. So far,
several methods have been developed to change the expression
of circRNAs, including siRNA, CRISPR/cas9 -mediated
knockout, and extracellular vesicles and nanoparticles for the
delivery of circRNAs (Zhang and Xin, 2018). A recent study
suggested that PBAE/si-ciRS-7 nanocomplexes targeting CIRS-7
had a stronger inhibition effect on RCC tumor growth and
metastasis, and may be a promising gene therapy strategy for
RCC (Mao et al., 2021).

At present, drug resistance is a tremendous obstacle to cancer
treatment, which needs to be solved urgently. According to the
research, high expression of hsa-circ_0035483 was associated
with gemcitabine resistance in RCC (Yan et al., 2019).
Gemcitabine is a cytotoxic chemotherapeutic drug, which is a
deoxycytidine nucleoside analogue. It has an obvious curative
effect on renal cell carcinoma, but drug resistance often appears.
Overexpression of hsa-circ_0035483 can promote gemcitabine
resistance by upregulating cyclin B1 through sponging miR-335
in RCC (Yan et al., 2019). In addition, as described above,
downregulation of hsa-circ_0035483 can inhibit cell glycolytic
metabolism (Liu et al., 2021). Glycolytic activity is increased in
proliferating cells, which is also used as a target site in the therapy
of kidney cancer. Therefore, hsa_circ_0035483 could be a
promising target for preventing gemcitabine resistance and
affecting glycolytic activity in RCC therapy. The contribution
and mechanism of circRNAs in the development of antitumor
drug resistance in the context of tumors are still at a nascent stage
and have not been fully elucidated.

In addition, circRNAs have an impact on the efficacy of some
drugs, such as curcumin. Curcumin could suppress renal
carcinoma tumorigenesis in vitro and in vivo. A study
reported that overexpression of circ-FNDC3B may weaken the
effects of curcumin on inhibiting proliferation and promoting
apoptosis of RCC cell through regulating the miR-138-5p/IGF2
axis, which provides a new perspective for the treatment of renal
cell carcinoma (Xue et al., 2021).

As circRNAs’ regulatory roles in cancer are gradually being
unveiled, circRNAs might be developed as novel effective
therapeutic targets. The real clinical application of circRNAs
as drugs or targets needs more details. In general, the research
on circRNAs as potential therapeutic targets will be a hot spot in
the field of oncology.

CONCLUSION

In the past decade, the role of circRNAs in carcinogenesis has
been widely investigated by researchers. As outlined in this
review, a large amount of data indicates that circRNAs are
strongly associated with tumorigenesis and progression of
RCC. We summarized the differentially expressed circRNAs in
RCC and their regulatory pathways on cancer-related biological
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behaviours. The regulatory role of circRNAs in RCC
carcinogenesis and progression reflects their potential
therapeutic targets for RCC. CircRNAs are significantly
associated with many clinicopathologic characteristics and
survival parameters in RCC patients which along with their
acceptable diagnostic values render them potential diagnostic
and prognostic biomarkers for RCC.

It is worth noting that there are limitations of current research
and many challenges remain to be overcome in this field.
CircRNAs have a variety of important biological functions, but
almost all reported circRNAs in RCC focused on their function as
miRNAs sponges. However, it is unclear whether other functions
of circRNAs are involved in regulation at the same time, such as
regulating gene transcription, functioning as protein decoys, and
translating into proteins or peptides, which are worth further
research. In addition, circRNAs’ roles in serving as protein decoys
and translating into peptide may be promising, which may be
involved in the pathogenesis of RCC by regulating the expression
of disease-related proteins. CRISPR-Cas13 technique, which can
knock out circRNAs without affecting homologous mRNAs (Li
et al., 2021b), may become a useful tool for circRNA discovery
and functional studies in the future (Koch, 2021). Furthermore,
the vast majority of aberrantly expressed circRNAs have not been
studied functionally and the effects of circRNAs on the RCC
microenvironment and drug resistance have remained elusive
until recently. Evidence suggests tumor microenvironment can
impact tumor initiation and progression, and drug resistance
remains a principal limiting factor to achieve cures in patients
with cancer. Therefore, elucidating the role of circRNAs in tumor
microenvironment and drug resistance will contribute to the
identification of possible targets for therapeutic intervention,
which may bring better therapeutic effects. The stability,
specificity, and detectability of circRNAs make them
promising biomarkers in invasive liquid biopsy. However,
most of dysregulated circRNAs in RCC are not specific and
sensitive enough for clinical appliance. The selection of
optimal time and the cut-off value of circRNAs also requires
repeated testing. In the future, more clinical studies should be
carried out and more standardized techniques and

bioinformatics methods are desired to reliably detect these
circRNAs. Since exosomes and nanoparticle have been proved
to be good targeted drug delivery tools and could act as
delivery vehicles for small interfering RNAs (siRNAs) and
circRNA expression vectors (He et al., 2021), gene therapy
targeting circRNAs for RCC is promising. However, the
efficacy, safety and potential side effects of circRNA-based
therapeutic interventions remain unclear, which may be one
of the focuses for future research. Therapeutic potential of
circRNAs need to be verified in animal models and more
research is needed on how to efficiently deliver circRNAs to
recipient cells to function without immunologic rejection and
with sustained long-term effects. It is becoming clear that
increasing exploration into the potential roles of circRNAs
will extend our knowledge of pathogenesis mechanisms of
RCC and hopefully will be popular topics in the near future.
We propose that novel diagnostic and prognosis biomarkers
and therapeutic strategies based on circRNAs will serve
clinical practice effectively in the future.
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