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Abstract

Understanding how gene expression systems influence biological outcomes is an important goal for diverse areas of
research. Gene expression profiling allows for the simultaneous measurement of expression levels for thousands of genes
and the opportunity to use this information to increase biological understanding. Yet, the best way to relate this immense
amount of information to biological outcomes is far from clear. Here, a novel approach to gene expression systems research
is presented that focuses on understanding gene expression systems at the level of gene expression program regulation. It
is suggested that such an approach has important advantages over current techniques and may provide novel insights into
how gene expression systems are regulated to shape biological outcomes such as the development of disease or response
to treatment.
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Background

Gene expression programs represent stereotyped (occurring the

same way every time) changes in gene expression levels that occur

as cells transition from one phenotype to another (figure 1).

Expression programs are specific to cell types and support

functional changes in cells. Predictable programs arise in the

context of complex biological networks of interactions such as

positive and negative feedback loops that help systems to self-

organize [1]. Stereotyped gene expression programs represent a

measurable aspect of self-organizing cellular systems that more

broadly encompass dynamic interactions of gene expression levels,

protein levels, protein modifications, second messenger systems,

and many other biological processes [2,3,4,5,6].

Within this context, expression programs are classically viewed

as windows onto biological processes. For instance, by measuring

gene expression changes that occur during differentiation of a

neuronal subtype, one might gain insight into factors important for

that subtype’s unique functional characteristics [7]. More gener-

ally, however, gene expression programs may also be viewed as

measures of biological time indicating a transcriptome’s relative

position along a stereotyped gene expression program (program

status)(figure 1). Thinking about transcriptomes from a program

status perspective may facilitate efforts to understand how gene

expression systems are regulated and compliments extensive work

by the gene expression research community on the biological

details of gene expression programs and how biological networks

that support expression programs are constructed [1].

As gene expression systems are orchestrated by expression

programs, measuring a transcriptome’s position along a gene

expression program (program status) may be important to

understanding how the state of gene expression systems relate to

cell function. A program status-based approach differs from

commonly used gene expression research strategies because it

treats transcriptomes as single dynamic units constrained by gene

expression programs that support functional changes in cells

(figure 1). Such an approach is based on the idea that most if not

all biologically relevant changes in gene expression levels occur in

the context of transcriptome-wide gene expression programs.

Under this conceptualization, questions in gene expression systems

research can be broadly divided into 2 categories: 1) those that

assess details of gene expression programs and the complex

networks of interactions that constrain their behavior; and 2) those

that seek to understand how gene expression programs are

regulated as units.

Each approach has advantages and drawbacks. A detail-

oriented approach provides information about what a gene

expression program does. For example, the developmental

program of fast-spiking interneurons supports changes in ion

channels and energy metabolism that underlie changes in firing

properties occurring as these cells mature [7]. A program-based

approach provides information about how the status of programs

relates to higher-level phenomena. For instance, the gene

expression program of fast-spiking interneurons was immature in

the brains of individuals with autism, bipolar, and schizophrenia

[8]. Thus, a detailed approach is important for understanding the

cellular consequences of gene expression program regulation, and

program status approaches are useful for understanding how

regulation of gene expression programs relates to higher-level

biological outcomes.

Previously, it was found that gene expression program status

could be measured at the transcriptome level by creating a very

simple index measure that was the average expression level of all

genes in a transcriptome that were up-regulated over the course of

a program divided by the average expression level of genes that

were down-regulated. This simple index when applied to time
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course transcriptome profiling data reduced transcriptome data to

single measures that tracked closely with developmental time [8].

The index worked well because gene expression changes are

primarily monotonic across developmental programs and most

stimulus-induced gene expression programs. Thus, a simple

averaging approach that divides genes broadly into categories by

direction of change will capture the average behavior of thousands

of monotonically changing genes in a single measure that tracks

with program status. Gene expression levels that do not change

expression during a program and those that do not have

monotonic temporal profiles will either cancel each other out or

will be relatively small in number so as to not affect the overall

measure of program status. This approach, however, has the

problem that one must know which transcriptomes are at the

beginning and end of a program in order to know which genes are

up- or down-regulated across a program.

Here we report that principal components analysis (PCA) can

similarly reduce transcriptome data to single measures of program

status without the need for temporal information. This is

important when the order of transcriptomes with respect to a

program is unknown. PCA works well for the same reason that an

averaging approach works, namely that program related changes

in gene expression levels are primarily monotonic. A high level of

monotonic gene expression change means inevitably when an

expression program generates variability in gene expression levels

in a data set, the first principal component will capture the major

monotonic data dimension as the first principal component.

Therefore, the first principal component will track with the status

of the predominant gene expression program accounting for

variability in gene expression levels.

Even though the first principal component will capture a

dominant monotonic component of gene expression programs,

Figure 1. Varied approaches to gene expression profiling data. Schematic compares several approaches to gene expression profiling data.
Gene expression levels follow stereotyped patterns as gene expression programs progress. Stimuli (lightening bolts) push programs in one direction
or the other. Plasticity factors (arrows) influence how far a program will move in the direction it’s pushed. In the example, a gene expression program
does not fully progress in disease. Incomplete progression could be related to problems with stimuli or plasticity factors. Under this scenario, gene
expression profiling is compared between diseased and healthy individuals. Traditional analysis compares individual genes. Students’ t-tests generate
lists of genes that are significantly up or downregulated in disease. Lists of genes may be probed with pathway analysis to identify biological
pathways that are overrepresented in up- or down-regulated gene lists. A network approach looks at covariance of gene expression levels between
diseased and healthy samples. Networks are constructed based on covariance measures with significant covariance representing a connection
between genes. The most connected genes are considered to be network hub genes at the top of a hierarchal network. Network analysis identifies
gene expression networks differentially regulated in disease. Program-based analysis characterizes transcriptomes in terms of their position along a
gene expression program (program status). The first principal component of a principal components analysis measures gene expression program
status. Program status measures are compared between diseased and healthy individuals. Program-based approaches identify differences in gene
expression program status in disease.
doi:10.1371/journal.pone.0061324.g001
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PCA has yet to be explicitly used to measure the status of gene

expression programs. This is surprising given that PCA and other

data reduction methods have been used extensively since the

beginning of the microarray era to analyze gene expression

profiling data. In fact, over 1,700 articles are retrieved in PubMed

with a search for principal components analysis and gene

expression. Despite widespread use, data reduction strategies have

primarily been used as classification tools to better understand

biological details of gene expression responses [9,10]. Principal

components analysis is often used as a similarity measure to

subdivide and classify genes into similarly behaving groups called

eigengenes [11,12]. For instance in a highly cited study of dynamic

gene expression patterns in yeast, authors used PCA, also known

as singular value decomposition, to show that one eigengene was

influenced by over/under expression of a cycle regulator but

another eigengene was not affected [12]. Grouping genes into

clusters helps to appreciate how genes are co-regulated in a gene

expression response and allows one to use other data mining

strategies like pathway analysis to probe clusters of genes for

enriched biological pathways. In this way, important insights can

be gained into what is biologically occurring as a program

progresses, but detailed approaches will be less informative when

thinking about transcriptomes as dynamic units that follow

stereotyped programs.

The goal of the current manuscript is to describe a straightfor-

ward PCA-based approach to measuring program status. It will be

demonstrated how ordering transcriptomes by the first principal

component (PCA1) corresponds to the natural temporal order of

known gene expression programs. Examples will be given to show

how measuring program status provides insights that may not be

readily apparent with traditional or network approaches to gene

expression data. Program status-based approaches to gene

expression data offer a new way to approach gene expression

systems research, which may be ideal for biomarker development

and provide ways to develop and screen therapeutic strategies

aimed at the targeted manipulation of gene expression program

status.

Methods

General study design
The current study represented a secondary analysis of

previously generated data; therefore, no IACUUC or IRB

approval was required.

Microarray data processing
Microarray data sets were obtained from the Gene Expression

Omnibus (GEO - http://www.ncbi.nlm.nih.gov/geo/). When

present calls were available (Affymetrix 39 expression arrays),

genes were filtered for those with present calls in .51% of

samples. When present calls were not available, genes with average

expression levels greater than the median were used. For

Affymetrix microarrays, .cel files were downloaded and Robust

Multiarray Analysis (RMA) was used for data processing. For

other array types, a processed data matrix was downloaded from

GEO.

Principal components analysis (PCA)
Five non-overlapping groups of expression levels from 2000

probe sets/group were used for principal components analysis.

Subsets of genes were used to allow PCA to be performed rapidly

on a standard desktop computer and to demonstrate that PCA

performed on any subset of genes gave nearly identical results for

PCA1. This illustrates that PCA1 is detecting a unifying systemic

property of datasets. Because information about this property is

distributed across the entire transcriptome, it can be measured

with non-overlapping groups of genes. Probe set groups were

selected based on the order of their probe set ID numbers, i.e.

Group 1 was probe sets #1-2000, Group was probe sets #2001-

4000, etc. PCA was performed in MATLAB on Z-scored data.

The first principal component (PCA1) was used as an index of

program status. PCA1 from principal components analysis of each

of the 5 groups of probe sets were nearly identical.

Relationship to program status
The relationship of gene expression levels to program status was

calculated as the Pearson r correlation coefficient of PCA1 with

expression levels of individual genes in MATLAB with the ‘‘corr’’

function.

Connectivity analysis
To construct an adjacency matrix cross-correlation of gene

expression levels was performed. Cross-correlation scores were

assessed for significance based on p,0.001. Genes were consid-

ered to be connected if they had a significant (p,0.001) cross-

correlation. Connectivity was calculated as the number of

connections/total number of genes.

Statistics
Linear and non-linear regression was performed using Prism

(Graphpad, LaJolla, CA). ANOVA with Bonferoni correction was

also done in Prism. Cross correlation for replicates of PCA1 was

performed in MATLAB with the ‘‘corr’’ function.

Results

Arranging transcriptomes by program status with
principal components analysis

Many stereotyped gene expression programs involve primarily

monotonic changes in gene expression levels. When monotonic

program-related changes in gene expression levels are the major

type of expression change during program progression, this

pattern will be recognized as the first principal component

(PCA1) in a principal components analysis. To demonstrate this,

principal components analysis was performed on transcriptomes

from a developmental time course experiment in parvalbumin-

positive fast-spiking interneurons (GSE17806) and from a biolog-

ical time course following interleukin 2 (IL2)-stimulation of T

lymphocytes (GSE6085). The PCA1-based order was then

compared to the known biological temporal order of microarray

experiments. The biological order based on developmental age or

time post IL2 stimulation was significantly related to the order

based on the first principal component score (PCA1) for each array

(figure 2a & c). A close relationship between PCA1-based and

time-based orders suggested that PCA1 would make an excellent

measure of gene expression program status. Indeed, in both

experiments PCA1 increased over time with an initially steep

increase as the program rapidly progressed followed by a slowing

of program progression (figure 2b & d). Thus, plotting PCA1

against time provided a useful visual representation and quanti-

fication of gene expression program progression.

Program status correlates with gene connectivity
A well-established feature of gene expression systems is a

hierarchal data structure. In this type of system a limited number

of genes at the top of a hierarchy control genes below them that in

turn influence other genes and so on. Such a structure can be

Gene Expression Regulation at the Program Level
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appreciated with network analysis where gene expression networks

are reverse engineered using connectivity matrices

[1,13,14,15,16]. In this sense, genes are defined as connected if

their gene expression levels move together. Connectivity is

quantified as the number of genes with significant covariance

divided by the total number of genes. Thus, genes at the top of a

hierarchy influence many genes below them and will have high

connectivity, whereas, genes lower in the hierarchy will be related

to fewer genes and have lower connectivity.

This well-established property of gene expression networks was

used to demonstrate in another way that PCA1 was a measure of

gene expression program status. Genes at the top of the hierarchy,

termed systemic hub genes, influence the largest number of genes

and, therefore, their expression levels were predicted to be most

closely associated with program status. To assess how well a gene’s

expression level followed with a program, gene expression levels

were correlated with program status (PCA1). A Pearson r

correlation coefficient was calculated for each gene based on the

linear relationship of its expression level to PCA1. This was used as

a measure of how well a gene followed a program and was

compared to a gene’s connectivity. As would be expected in a

hierarchal biological system, a gene’s connectivity was related to

how closely the gene followed a gene expression program

(figure 3a–b). This was true regardless of whether a gene increased

or decreased its expression level during the course of the program.

A hierarchal data structure in the context of a stereotyped and

primarily monotonic gene expression program also meant that

PCA1 obtained with one subset of a transcriptome should agree

with results from another subset even when subsets did not share

any of the same genes. This is true because each group of genes

should contain redundant information about the status of a shared

gene expression program. To demonstrate this, PCA was

performed on 5 independent subsets, each consisting of 2000

probe sets. PCA1 scores from these independent analyses were

then compared and demonstrated near perfect correlation

between replicates (figure 3c–d).

Euclidean distance between transcriptomes further
validates PCA1 as a measure of program status

As transcriptomes progress along gene expression programs,

genes expression levels do not change randomly, rather changes in

gene expression levels are constrained to stereotyped and primarily

monotonic changes in expression levels. Therefore, dissimilarity

between transcriptomes should increase linearly with program

progression. This predicted system level property was used to

further validate PCA1 as a measure of program status. Euclidean

distance was used as a dissimilarity measure between individual

transcriptomes and a reference transcriptome at the beginning of a

program, which was identified as the transcriptome with the lowest

first principal component score. As would be expected in the case

of a stereotyped gene expression program, dissimilarity between

transcriptomes was highly correlated with program status mea-

sures (figure 4a–b).

Program status measures reveal gene expression system
modulation at the program level

An ability to explicitly measure and quantify gene expression

program status made it possible to examine modulation of gene

expression systems at the program level. To demonstrate the

advantages of a program status-based approach, a gene expression

study comparing T cell stimulation with T cell receptor alone or in

combination with a co-stimulatory molecule, CD28, was exam-

ined [17] (GSE3630). In this study it was reported that CD28

primarily increased gene expression changes in the same direction

as those that occurred with T cell receptor alone [17]. Monotonic

changes in gene expression levels were consistent with the

possibility that CD28 increased progression of a T cell receptor

Figure 2. The first principal component (PCA1) measures gene expression program status. Principal components analysis was performed
on time course gene expression profiling data. The first principal component score (PCA1) for each transcriptome was used as a measure of program
status. Transcriptomes were sorted by PCA1 and their PCA1-based order (y-axis) was compared to their biological time-based order. Panels (2a & 2c)
show that PCA1-based and time-based orders are closely related (Spearman r..94, p,0.0001 for both examples). In panels (2b & 2d), PCA1 is plotted
against time to show how program status measures help to visualize gene expression program progression in developing fast-spiking interneurons
and in T cells stimulated with interleukin 2 (IL-2).
doi:10.1371/journal.pone.0061324.g002
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induced gene expression program. Indeed, examination of data

from the same transcriptome profiling experiment revealed that a

T cell receptor-induced gene expression program progressed

further with CD28 co-stimulation (figure 5a). Similarly, dexa-

methasone, a glucocorticoid that inhibits multiple cellular

responses, attenuated the progression of a smoke-induced gene

expression program in tracheal explant cells (figure 5b)

(GSE15563). Together, these studies provided proof-of-principle

examples of the ability to examine gene expression profiling data

from a program status perspective. Such examples indicate that

gene expression program status is a biological target of gene

expression system modulation.

To confirm gene expression program modulation in the above

experiments, studies were examined from a traditional gene

expression analysis perspective. If programs were truly modulated,

then a traditional analysis would reveal predictable patterns.

Specifically, when significant gene expression changes occurred in

the context of a modulated gene expression program, gene

expression changes would occur in the same direction in both

groups and consistently less in one group relative to the other. In

both studies, a large proportion of gene expression levels

significantly changed by at least 1.1-fold in one treatment group

(48% in the T cell study and 39% in the smoke study). Of these,

90% (chi-squared = 4,638; p,0.0001) and 98% (chi-

Figure 3. Connectivity of genes relates to how well genes follow gene expression programs. Gene connectivity was calculated as the
number of genes that had significant covariance with a gene over the total number of genes. Connectivity (x-axis) was compared to a gene’s Pearson
r value for its correlation with program status (PCA1). Panels (3a & 3b) demonstrate that the most connected genes have the highest absolute
Pearson r values indicating that highly connected genes follow more closely with programs than less connected genes. Panels (3c & 3d) are cross-
correlation tables for PCA1 calculated using independent groups of 2000 probesets from the same transcriptomes. Tables show that PCA1 values are
nearly identical even when completely different genes from the same transcriptomes are used for principal components analysis.
doi:10.1371/journal.pone.0061324.g003

Figure 4. Program progression is linearly correlated with dissimilarity measures. Euclidean distance (x-axis) for each transcriptome was
calculated from an index transcriptome with the lowest value for PCA1. Euclidean distance was used as a measure of absolute dissimilarity. Distance
was plotted against program status (y-axis) to demonstrate a linear relationship between program status (increasing PCA1) and dissimilarity
(Euclidean distance) for gene expression programs in developing fast-spiking interneurons (4a) and IL-2 stimulated T cells (4b).
doi:10.1371/journal.pone.0061324.g004
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squared = 8,488; p,0.0001) respectively had significant changes in

the same direction across modulated and non-modulated respons-

es. Of genes that were significantly changed in at least one

treatment group and in the same direction in both groups, 26%

and 17% respectively were significantly different between the

modulated and non-modulated groups. In the case of the T cell

study, 90% (chi-squared = 1,093; p,0.0001) of modulated genes

changed more in the presence of CD28, whereas, in the smoke

study 99% (chi-squared = 1,483; p,0.0001) of modulated genes

changed less in the presence of dexamethasone. Thus, in both

studies, results demonstrated a consistent direction of gene

expression modulation supporting regulation at the gene expres-

sion program level.

Program status measures are not affected by the identity
of genes used for PCA

If the first principal component is truly measuring the status of

unifying stereotyped gene expression programs, then information

about the status of gene expression programs should be widely

distributed across transcriptomes. To test this hypothesis, PCA was

performed on completely independent groups of genes and PCA1

scores were compared across independent analysis. Indeed, the

measurement of PCA1 was not sensitive to the group of genes

used. Five independent groups of 2000 probe sets gave nearly

identical values for PCA1 in all experiments (table 1). Thus, PCA1

was an extremely robust measure that captured a systemic

property of the dataset that was not dependent on gene expression

levels used in the analysis.

Discussion

Transcriptome profiling data from multiple publically available

datasets were analyzed with principal components analysis (PCA)

to demonstrate that the first principal component (PCA1)

represents a useful measure of gene expression program status.

This was demonstrated in a number of ways. It was shown using

time course time course data that the temporal order of

transcriptomes was highly correlated with the order based on

the program status measure, PCA1. It was also demonstrated that

PCA1 captured the behavior of a hierarchal gene expression

system. Highly connected genes followed most closely with

program status. Importantly, measuring program status could

also be used to understand modulation of gene expression systems.

For instance, modulation of T cell activation with CD28 was

shown to increase progression of the same program induced by the

T cell receptor alone. Conversely, dexamethasone decreased the

progression of a stereotyped program induced by smoke.

Though PCA has been widely used to analyze gene expression

data since the beginning of the microarray era, a relationship

between PCA1 and gene expression program status has not been

previously reported. A recognition and understanding that the first

principal component measures the status of most gene expression

programs is not trivial. An ability to explicitly measure program

status is of critical importance to asking questions about how gene

expression systems are regulated. For instance, in the above

examples, program status measures demonstrated that functional

T cell modulation [17] was closely related to modulation of gene

expression program status. Similarly, the induction of cellular

plasticity in response to smoke was attenuated by the steroid,

dexamethasone [18], and this was related to a similar attenuation

of a smoke-induced gene expression program. Thus, program

status measures provided a straightforward interpretation of

variability in cellular plasticity as closely related to variability in

the progression of stereotyped gene expression programs.

Importantly program status measures were highly robust for all

datasets examined. Program status measures obtained using five

totally independent groups of 2,000 probe sets gave nearly

identical results. This is important, because robust and biologically

meaningful measures of gene expression system regulation have

been elusive. Robust measures are crucial to the potential

usefulness of gene expression data in generating reliable and

predictive biomarkers.

Program status-based approaches have important differences

from current approaches, even systems-based approaches, which

treat transcriptomes as thousands of interacting parts and place

emphasis on understanding what these parts do and how they

interact (figure 1). Such detail-oriented approaches are important

and informative and increase understanding of how cells do what

they do, but detail-oriented approaches also have drawbacks that

might lead researchers to miss the bigger picture of how

Figure 5. Measuring gene expression system modulation at the program level. Panel (5a) shows a time course of program status measures
after stimulation of the T cell receptor (TCR) alone or in combination with the co-stimulatory molecule (CD28). Results are compared to time-matched
non-stimulated controls. Plot shows that co-stimulation with CD28 increases gene expression program progression resulting in a higher plateau in
terms of program status. There was a significant difference in plateau program status measures (6–48 hour post-stimulation). Significance was
calculated using repeated measures one-way ANOVA with Bonferoni correction for multiple testing. Panel (5b) shows a comparison of gene
expression program status in tracheal explant cultures 24 hours after stimulation with smoke or smoke with dexamethasone pretreatment [18].
Results were compared to time matched untreated explants. Plot shows that pretreatment with dexamethasone decreases gene expression program
progression. There was a significant difference between program status measures in smoke and smoke plus dexamethasone conditions. Significance
was calculated using one-way ANOVA with Bonferoni correction for multiple testing.
doi:10.1371/journal.pone.0061324.g005
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transcriptomes are regulated to influence cell function. For

instance, a tremendous amount of effort has been spent on

studying the immense complexity of chromatin level changes that

occur around individual genes when their gene expression levels

change. Results of this research have been fascinating and provide

a glimpse into just how complex is the conceptually simple task of

turning a gene on or off [19]. Yet, delving into this complexity can

limit research questions to this detailed level. For instance, based

on detailed findings one might be tempted to ask questions such as

how do chromatin modifications at gene X differ in disease Y?

Inevitably, differences can be found that then generate attempts to

find ways to exploit these differences to benefit treatment and so

on.

The inherent problem with this approach is that cells and

disease states may not operate on this detail-oriented level. For

instance, global non-specific changes in chromatin modifications

are found in response to a great number of stimuli including

treatments [20], disease [21], and environment [22]. These global

changes are generally treated as non-specific noise. Yet, from a

program status perspective non-specific global changes in epige-

netic factors may be key to understanding how gene expression

systems are modulated. If one thinks about transcriptomes as

dynamic units that follow stereotyped cell-type specific programs,

then a logical question becomes: What makes a transcriptome

move along its program? And, might global non-specific changes

in chromatin state facilitate transcriptome movement and by

extension cellular plasticity?

Understanding that gene expression systems are modulated at

the level of program status could have substantial impact on how

gene expression systems are studied and on attempts to develop

gene expression system-based therapeutics. A research approach

guided by program status-based principles would look very

different than current gene expression research strategies. A

program status-based approach would aim to determine what cell-

type specific gene expression programs have status differences in

disease and where these differences are found. Using such an

approach, it was found the gene expression program of fast-spiking

interneurons was immature in the cortex of patients with autism,

schizophrenia, and bipolar disorder [23].

Next, a program status-based approach could examine the

pattern of transcriptome changes with successful treatments for

disease to see whether program status changes were associated

with individual differences in treatment response or resistance.

Mechanisms for treatment associated program status changes

could be evaluated from the perspective of potential plasticity

factors such as global levels of histone acetylation, and when

possible such plasticity factors might be modulated via alternative

mechanisms to test for a causal relationship to program status

modulation.

In addition to plasticity-based approaches, modulation of

program status could be explored from a stimulus-based perspec-

tive with research aimed at finding stimuli that push gene

expression programs in hypothesized therapeutically beneficial

directions. Such studies could be informed by studying endoge-

nous regulation of the same programs during development or in

response to environmental variables. Studies of program status

regulation could be done in animal models of disease or even in

cell culture systems in order to inform general principals of

regulation. Importantly, these research approaches would avoid

time-consuming efforts to delve deeper into the specifics of

individual gene expression changes that occur during the

progression of cell type specific gene expression programs. By

focusing research on easily measurable and potentially targetable

aspects of gene expression systems, program-based approaches

could accelerate progress and direct research toward actionable

findings.
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