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Abstract

Intensive care units (ICUs) are increasingly interested in assessing and improving their performance. ICU Length of Stay (LoS)
could be seen as an indicator for efficiency of care. However, little consensus exists on which prognostic method should be
used to adjust ICU LoS for case-mix factors. This study compared the performance of different regression models when
predicting ICU LoS. We included data from 32,667 unplanned ICU admissions to ICUs participating in the Dutch National
Intensive Care Evaluation (NICE) in the year 2011. We predicted ICU LoS using eight regression models: ordinary least
squares regression on untransformed ICU LoS,LoS truncated at 30 days and log-transformed LoS; a generalized linear model
with a Gaussian distribution and a logarithmic link function; Poisson regression; negative binomial regression; Gamma
regression with a logarithmic link function; and the original and recalibrated APACHE IV model, for all patients together and
for survivors and non-survivors separately. We assessed the predictive performance of the models using bootstrapping and
the squared Pearson correlation coefficient (R2), root mean squared prediction error (RMSPE), mean absolute prediction
error (MAPE) and bias. The distribution of ICU LoS was skewed to the right with a median of 1.7 days (interquartile range 0.8
to 4.0) and a mean of 4.2 days (standard deviation 7.9). The predictive performance of the models was between 0.09 and
0.20 for R2, between 7.28 and 8.74 days for RMSPE, between 3.00 and 4.42 days for MAPE and between 22.99 and 1.64 days
for bias. The predictive performance was slightly better for survivors than for non-survivors. We were disappointed in the
predictive performance of the regression models and conclude that it is difficult to predict LoS of unplanned ICU admissions
using patient characteristics at admission time only.
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Introduction

Hospitals face continuous pressure to improve quality and

reduce costs. The care provided by intensive care units (ICUs) is

complex and the associated costs are high, so ICUs are particularly

interested in assessing, comparing and improving their perfor-

mance. To do this they often use case-mix adjusted outcome

measures, such as in-hospital mortality and length of stay (LoS) on

the ICU. ICU LoS can serve as an indicator for efficiency of care

as it is strongly related to ICU costs. Prognostic models, such as

APACHE II [1,2], SAPS II [3] and APACHE IV [2,4] have been

proposed and widely implemented to adjust hospital mortality for

ICU case-mix. However, the predictive performance for LoS of

existing models is poor [5–8] and little consensus exists on the best

method for predicting this outcome.

Existing models for predicting ICU LoS, such as the commonly

used APACHE IV [6] model, make use of ordinary least squares

(OLS) regression on untransformed ICU LoS [9,10] or log-

transformed ICU LoS [11–13]. These models make no distinction

between ICU survivors and non-survivors, although the associa-

tion between patient characteristics and ICU LoS is often

strikingly different for these two groups. For instance, comorbid-

ities tend to prolong the LoS of survivors, while accelerating death

in non-survivors. The fact that ICU LoS is often positively skewed

also causes problems for OLS regression, which assume symmet-

rical error distributions. Although, regression methods for

modeling positively skewed data have been proposed [14], these

models have not been used to predict ICU LoS. Previously,

researchers have examined the performance of a range of

regression models to analyze hospital LoS in a cohort of patients

undergoing coronary artery bypass graft (CABG) surgery [15].

Patient who experienced an unplanned admission to the ICU, are

more heterogeneous in terms of case-mix than those admitted

following CABG surgery. Patients undergoing elective surgery
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(planned admissions) require a different ICU indication, often

monitoring for a fixed ICU LoS, than patients, who experience an

unplanned ICU admission. Furthermore, ICU mortality is higher

for patients with an unplanned ICU admission than for CABG

patients.

In this study, we investigated the feasibility of predicting

individual patient LoS following an unplanned admission to the

ICU for medical reasons or following emergency surgery. These

patients form an heterogeneous population with a substantial

mortality rate. We developed the prognostic models for all patients

together and for survivors and non-survivors separately. Patients,

who leave the ICU alive are often discharged at set times of day,

leading to a multimodal distribution of observed ICU LoS. Hence,

we investigated whether cyclical terms (cosine and sine functions of

discharge time) [16] increased the predictive power of our models.

We compared OLS regression, generalized linear models (GLMs),

and Cox proportional hazards (CPH) regression on data from the

NICE ICU registry [17]. We included patient characteristics, but

no structural or organizational characteristics of the ICUs, so that

our models could potentially be used to correct for case-mix when

comparing institutions.

Materials and Methods

Data
Since 1996, the Dutch National Intensive Care Evaluation

(NICE) registry has collected data on intensive care patients in the

Netherlands [17]. The registry collects data on the severity of

illness from the first 24 hours of a patient’s ICU admission,

including the diagnosis, Glasgow Coma Scale (GCS), physiological

and laboratory values needed to calculate severity of illness score

such as the APACHE II [1,2], SAPS II [3] and APACHE IV [2,4]

scores. In addition, NICE registers ICU and hospital LoS and

mortality. To ensure that the data are of a high quality, the data

are subjected to quality checks, onsite data quality audits take

place and data collectors participate in training sessions.

We obtained permission from the secretary of the NICE board,

Dr. D.W. de Lange, email: info@stichting-nice.nl, to use data

from the NICE registry at the time of the study. The NICE board

assesses each application to use the data on the feasibility of the

analysis and whether or not the confidentiality of patients and

ICUs will be protected. To protect confidentiality, raw data from

ICUs is never provided to third parties. For the analyses described

in this paper, we used an anonymized dataset. The use of

anonymized data does not require informed consent in the

Netherlands. The data are officially registered in accordance with

the Dutch Personal Data Protection Act.

The data in this study was obtained from all medical and

unplanned surgical admissions between January 1st 2011 and

December 31st 2011 to 83 ICUs, representing more than 90% of

all ICUs in the Netherlands. Of the ICUs, 52 (63%) were general,

25 (30%) teaching and 6 (7%) university-affiliated hospitals. We

applied the APACHE IV exclusion criteria [2] and excluded

patients younger than 16 on admission to the ICU; with ICU LoS

shorter than four hours; with hospital LoS longer than 365 days;

with unknown hospital discharge date; who died before ICU

admission; readmissions; coming from another ICU; with

unknown ICU admission type; or with unknown diagnosis, burns

or following a transplant. In addition, we excluded patients, who

were discharged to another ICU, as their observed ICU LoS was

truncated, and patients with missing values for model covariates.

Definition of length of stay
We defined ICU LoS as the period between ICU admission

date and time and ICU discharge date and time. We rounded ICU

LoS to the nearest number of whole hours to enable us to perform

Poisson and negative binomial regression. We present the results of

the validation of our models in days, with decimals representing

fractional days.

Regression methods
We used eight regression methods to predict ICU LoS: 1) OLS

regression on untransformed ICU LoS, 2) OLS regression on ICU

LoS truncated at 30 days; 3) OLS regression on log-transformed

ICU LoS; 4) a GLM with a Gaussian distribution and a

logarithmic link function; 5) Poisson regression; 6) negative

binomial regression; and 7) Gamma regression with a logarithmic

link function; 8) CPH regression. In addition, we predicted LoS

using the APACHE IV model in its original form and recalibrated

on our data [18]. When predicting ICU LoS using an OLS

regression model, we replaced negative values with zeros, since

ICU LoS is always positive. We present the details of the statistical

background of these methods in text S1.

Survival status
We developed the prognostic models once using data from all

patients and once using data from ICU survivors and ICU non-

survivors separately. We defined survivors and non-survivors by

their survival status at discharge from the ICU.

Variable selection
We initially included a set of patient characteristics, presented in

Table S1, previously shown to be associated with ICU LoS

[1,2,5,19] in each of the models. The models were subsequently

simplified using stepwise backward selection with the Akaike

Information Criterion. We compared univariate regression mod-

els, in which we included age and APACHE IV physiology score

(APS) as continuous covariates and as natural regression splines

[20] with two to ten degrees of freedom. As a result of these

analyses, we included age and APS in further models using natural

regression splines with three degrees of freedom.

Cyclical terms
For survivors of ICU treatment, patient discharge often takes

place at set times during the day, which leads to a multimodal

distribution of observed ICU LoS, with a period of one day.

However, predictions could be biased when predicting ICU LoS

using regression methods, which typically assume a unimodal

distribution. Hence, we also developed models with cyclical terms

for discharge time as covariates [16]. These cyclical terms are

presented in more detail in text S2.

Overall, we applied eight (three OLS models, four GLMs, one

CPH model) different regression methods, with and without

cyclical terms to the entire dataset and to separate datasets for

survivors and non-survivors. Hence, in total we developed 32

regression models and calculated predictive performance for all

patients using these 32 models and the original and recalibrated

APACHE IV models.

Performance assessment
To evaluate each model’s ability to predict ICU LoS, we

examined four measures of predictive performance based on

differences between predicted and observed ICU LoS. These

were: 1) squared Pearson correlation coefficient (R2) [21]; 2) root

mean squared prediction error (RMSPE); 3) mean absolute
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prediction error (MAPE); 4) prediction bias [9,15]. We describe

these measures in more depth in text S3.

The R2 is the fraction of variance in observed ICU LoS that is

explained by a model. It ranges from 0 to 1, where higher values

correspond to better predictions. The RMSPE represents the

mean residual, or unexplained, standard error of predictions

obtained using a model. Because of the extreme skewedness of the

distribution of ICU LoS, the RMSPE increases quickly if a long

LoS are erroneously predicted to be short or vice versa. In other

words, a single mistake by the model may dominate the RMSPE.

Therefore, we also present the MAPE, which does not have this

limitation. Finally we assess whether a model’s predictions

systematically deviate from observed LoS values, using the

prediction bias. For RMSPE, MAPE and prediction bias, lower

values correspond to better.

We assessed the performance of the models on the original

sample, using resampling [22] with 100 bootstrap samples to

correct for optimistic bias. The optimistic bias of a model was

estimated by calculating the mean and standard deviation of

differences in model performance measures between the model

developed on the original sample and developed on each bootstrap

sample. The optimistic bias, for each performance measure, was

added to the performances of the model developed on the original

sample. The standard error of the optimistic bias was used to

calculate the 95%-confidence interval of the performances. The

proportional hazards assumption was not verified for CPH models

that were developed on bootstrap samples. We considered a

difference in performance between two models to be statistically

significant if the bootstrap 95%-confidence interval of the

difference in their performance did not contain zero. The 95%-

confidence interval was calculated, taking the mean and standard

deviation of the differences in performance between to models

calculated for each bootstrap iteration.

Since the models we developed may perform differently for

patients with a ICU LoS shorter or longer than four days and for

patients with different main APACHE IV admission diagnosis

categories, we estimated the performance for all patients and for

these subgroups of patients separately.

Since the distribution of LoS is positively skewed and models for

ICU LoS have differing capacity to predict this type of data, we

not only estimated the performance of the models all patients, but

also for the subgroups of patients with ICU LoS smaller than four

days and greater than or equal to four days. This is roughly the

75% percentile of the ICU LoS distribution. Further, univariate

analyses were performed to calculate R2 for the different patient

characteristics to evaluate the contribution to the model. Finally,

performance was calculated for the different main categories of the

APACHE IV admission diagnosis, to investigate the performance

for different diagnostic groups.

All statistical analyses were performed using R statistical

software version 2.15.1 [23].

Results

Data
In 2011, data from 33,732 patients with medical or unplanned

surgical ICU admissions satisfying APACHE IV inclusion criteria

were recorded in the NICE database. Of these, 627 (3.2%) were

subsequently discharged to an ICU in another hospital, eight

(0.0%) had missing values for gender and 430 (2.4%) had missing

values for GCS and were excluded. Hence, we included 32,667

Figure 1. Distribution of ICU LoS for survivors and non-survivors.
doi:10.1371/journal.pone.0109684.g001
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patients in this study, of whom 28,280 (86.7%) were ICU survivors

and 4,387 (13.3%) were ICU non-survivors.

Figure 1 shows the distribution of observed ICU LoS for the

first five days of ICU admission for survivors and non-survivors.

The distribution of ICU LoS was right skewed with a median of

1.7 (interquartile range (IQR) 0.8 to 4.0) days and a mean of 4.0

(standard deviation 7.6) days for survivors and a median and of 2.3

(IQR 0.9 to 6.0) days and a mean of 5.6 (standard deviation 9.8)

days for non-survivors. For survivors the distribution of ICU LoS

was multimodal.

Table 1 presents the demographics of the ICU survivors and

non-survivors included in this study. Differences between survivors

and non-survivors were tested using t-tests and x2-tests and found

to be statistically significant (gender p = 0.017, all other variables

p,0.001). In Table S1, we summarize the patient characteristics,

which remained in the models after stepwise backward selection of

variables.

For several patient characteristics, we found opposite associa-

tions with ICU LoS for survivors and non-survivors in all models.

For instance, chronic dialysis resulted in a larger expected ICU

LoS for non-survivors (OLS regression coefficient 1.91, (95%

confidence interval 20.06 to 3.89) and a smaller expected ICU

LoS for survivors (OLS regression coefficient 21.20, 95%

confidence interval 21.97 to 20.44. The proportional hazards

Table 1. Demographics of ICU admissions included in the analysis, for ICU survivors and ICU non-survivors separately (n = 32,667).

ICU survivors ICU non-survivors

Number of ICU admissions 28,280 4,387

ICU LoS in days, median (25%–75%) 1.7 (0.8–4.0) 2.3 (0.9–6.0)

ICU LoS in days, mean (sd) 4.0 (7.6) 5.6 (9.8)

Age in year, mean (sd) 60.7 (18.0) 68.6 (14.1)

Male (count %) 15,651 (55.1) 2,502 (57.0)

Admission type (count (%))

Medical 20,903 (75.2) 3,537 (81.4)

Urgent surgery 7,377 (24.8) 850 (18.6)

APACHE IV APS, median (25%–75%) 44 (28–63) 95 (70–119)

Ventilation first 24 hours of ICU admission (count (%)) 12,199 (42.2) 3,712 (84.5)

One or more chronic diagnoses (count (%)) 19,463 (62.9) 4,137 (94.3)

One or more diagnoses at admission (,24 h) (count (%)) 7,557 (26.9) 2,788 (63.8)

Confirmed infection (count (%)) 5,922 (21.2) 1,302 (29.9)

Use of vasoactive drugs (count (%)) 8,435 (29.5) 3,128 (71.5)

Lowest GCS first 24 hours, median (25%–75%) 15 (13–15) 6 (3–15)

Non-operative APACHE IV diagnosis category (count (%))

Cardiovascular 5,932 (20.98) 1,740 (39.66)

Gastro-intestinal 1,630 (5.76) 244 (5.56)

Genito-uritary 705 (2.49) 52 (1.19)

Hematological 233 (0.81) 48 (1.09)

Metabolic 866 (3.06) 26 (0.59)

Musculoskeletal/skin 99 (0.35) 8 (0.18)

Neurological 4,214 (14.90) 408 (9.30

Respiratory 6,005 (21.23) 914 (20.83

Transplantation 7(0.02) 0 (0.00)

Trauma 1,209 (4.28) 97 (2.21)

Post-operative APACHE IV diagnosis category (count (%))

Cardiovascular 2,248 (7.95) 378(8.62)

Gastro-intestinal 2,684 (9.49) 268 (6.11)

Genito-uritary 427 (1.51) 4 (0.09)

Hematological 4 (0.01) 0 (0.00)

Metabolic 12 (0.04) 0 (0.00)

Musculoskeletal/skin 324 (1.15) 9 (0.21)

Neurological 581 (2.05) 108 (2.46)

Respiratory 217 (0.77) 13 (0.30)

Transplantation 92 (0.33) 0 (0.00)

Trauma 795 (2.81) 70 (1.60)

LoS = Length of Stay, sd = standard deviation, GCS = Glasgow Coma scale.
doi:10.1371/journal.pone.0109684.t001
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assumption was met for each of the CPH models that were

developed on the entire dataset.

Comparison of different regression methods
We present the estimates of predictive performance obtained

from the bootstrap procedure in Table 2. We obtained values of

R2 between 0.088 and 0.208, of RMSPE between 5.150 and 8.739

days, of MAPE between 3.004 and 3.927 days and of prediction

bias between 22.993 and 0.030 days.

The model predicting ICU LoS truncated at 30 days had the

best performance. When considering R2, RMSPE and MAPE, the

performance of the APACHE IV model is better than the models

we developed. However, the prediction bias is more than one day

for this model. Of the models which did not truncate LoS, the

predictions made by the Poisson model and the Gaussian GLM

had the largest values of R2 and smallest values of the RMSPE,

and predictions made by the Poisson model had the smallest

prediction bias, although the differences were not statistically

significant. The values of R2 were significantly smaller and values

for RMSPE, MAPE and prediction bias were significantly larger

for CPH regression, compared to the values for the other models.

Predictions with OLS regression had a large prediction bias and

RMSPE, but small MAPE. The prediction bias for CPH

regression and OLS regression of log-transformed LoS was

negative, implying that these models systematically underestimate

ICU LoS. We found a relatively large bias when using OLS

regression on the log-transformed ICU LoS and comparing back-

transformed predictions with observed ICU LoS. This bias is

caused by the fact that we replaced negative predictions by zero

and inflated when predicted values are back-transformed to the

original scale.

We performed univariate GLM Poisson analyses to calculate R2

for each of the patient characteristics. The largest values for R2

were for mechanical ventilation in the first 24 hours of ICU stay

(0.078), APS (0.067) and vasoactive medication (0.058).

We present the mean and standard deviation of the observed

and predicted ICU LoS using the GLM Poisson model for a

selection of common ICU diagnoses for ICU survivors and non-

survivors in Table 3. Based on the R2 values, the models

performed well for the categories operative metabolic, operative

genito-uritary and non-operative trauma and poorly for post-

operative neurological, post-operative musculoskeletal/skin and

non-operative neurological.

Performance of separate models for survivors and non-
survivors

Table 4 presents the estimated performance of separate models

developed for survivors and non-survivors. In general, the

performance of these models was better than the models for all

patients. For survivors, the values for R2 were between 0.103 and

Table 2. Estimated performance of regression models, when using all patients for model construction and model validation, but
no cyclical terms.

No cyclical terms included

R2
Root mean squared
prediction error (RMSPE)

Mean absolute
prediction error (MAPE) BIAS

OLS regression LoS 0.143 7.324 3.571 0.030

(0.129 to 0.156) (6.966 to 7.683) (3.505 to 3.637) (20.051 to 0.112)

OLS regression LoS truncated
at 30 days

0.208 5.150 3.099 0.015

(0.2001 to 0.215) (5.061 to 5.239) (3.053 to 3.144) (20.044 to 0.074)

OLS regression log(LoS) 0.149 7.665 3.004 21.850

(0.132 to 0.166) (7.302 to 8.029) (2.928 to 3.080) (21.932 to 21.768)

GLM: Gaussian 0.154 7.279 3.431 20.015

(0.136 to 0.171) (6.919 to7.640) (3.366 to 3.496) (20.095 to 0.065)

GLM:Poisson 0.154 7.276 3.433 0.007

(0.137 to 0.171) (6.916 to 7.635) (3.368 to 3.498) (20.073 to 0.086)

GLM: negative binomial 0.148 7.304 3.445 0.019

(0.132 to 0.163) (6.947 to 7.662) (3.379 to 3.511) (20.061 to 0.100)

GLM: Gamma 0.147 7.306 3.446 0.020

(0.132 to 0.163) (6.948 to 7.663) (3.380 to 3.512) (20.060 to 0.100)

Cox PH regression 0.088 8.739 3.927 22.993

(0.080 to 0.095) (8.395 to 9.084) (3.841 to 4.013) (23.083 to 22.903)

APACHE IV (original) LoS
truncated at 30 days

0.163 5.546 4.103 1.640

(0.156 to 0.169) (5.470 to 5.621) (4.063 to 4.144) (1.579 to 1.700)

APACHE IV (recalibrated) LoS
truncated at 30 days

0.169 5.291 3.375 0.366

(0.162 to 0.175) (5.204 to 5.379) (3.331 to 3.420) (0.305 to 0.427)

Confidence intervals were obtained with bootstrap sampling.
LoS = Length of Stay, OLS = Ordinary Least Square, GLM = General Linear Model.
doi:10.1371/journal.pone.0109684.t002
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0.266, for RMSPE between 4.786 and 8.401 days, for MAPE

between 2.701 and 3.754 and for the bias between 22.742 and

0.025 days. For non-survivors, the values of R2 were between

0.069 and 0.129, of RMSPE between 6.405 and 11.060, of MAPE

between 4.325 and 5.165 and of the bias between 24.567 and

0.020 days.

Generally speaking, the models for ICU survivors performed

better than the models for ICU non-survivors. Furthermore, as

before, the best results for R2 and the RMSPE were obtained with

GLMs, in particular the Gaussian GLM and the Poisson model,

but the Gaussian model resulted in a relatively large prediction

bias. The predictions obtained from the CPH model and OLS

model of log transformed ICU LoS exhibited a large prediction

bias.

Cyclical terms
Table 5 shows the results we obtained when we included the

cyclical terms for discharge time in the models. In general, the

values of R2 and prediction bias were higher and the values of the

RMSPE, the MAPE and the bias were smaller when we included

the cyclical terms.

Performance for patients with short and long ICU LoS
Table 6 presents the predictive performance of each of the

regression models, separately for patients with an ICU LoS less or

more than four days. The models are the same as those presented

in Table 1 in that they were developed using data from all patients

and without cyclical terms for discharge time.

For patients ICU LoS of less than four days, we obtained the

best predictions using CPH regression; OLS regression on LoS

truncated at 30 days and OLS regression of log-transformed ICU

LoS. These models had better results for R2, RMSPE, MAPE and

prediction bias, than the other models. For patients with an ICU

LoS of longer than four days, we obtained the best values for R2

the Poisson model. For these patients, we obtained the worst

values of R2, RMSPE, MAPE and prediction bias from CPH

regression and OLS regression on log-transformed LoS. When

separate models were developed for survivors and non-survivors

separately, see respectively Table S2 and S3 and when cyclical

terms were included for discharge time, this gave similar findings,

see Table S4.

Discussion

In this study, we compared regression methods for predicting

LoS for unplanned ICU admissions on a large registry dataset. As

expected, the distribution of ICU LoS in our dataset was

extremely skewed to the right. In addition, the ICU mortality

among the patients in our dataset was substantial (12%), and ICU

LoS was generally longer for survivors than non-survivors.

Furthermore, there were considerable differences in observed

ICU LoS for different APACHE IV diagnoses.

Table 3. Observed and predicted ICU LoS (median (IQR)), for ICU survivors and ICU non-survivors.

APACHE IV diagnosis ICU survivors ICU non-survivors

Observed Predicted Observed Predicted

Non-operative

Cardiovascular 1.98 (0.95 to 4.31) 2.13 (1.09 to 4.04) 2.23 (0.93 to 4.72) 2.10 (1.48 to 3.04)

Gastro-intestinal 1.21 (0.74 to 2.77) 1.25 (0.92 to 2.08) 1.54 (0.72 to 4.38) 1.97 (1.25 to 2.74)

Genito-uritary 1.85 (0.88 to 3.53) 1.69 (1.19 to 2.71) 2.13 (1.04 to 5.46) 2.83 (1.85 to 3.81)

Metabolic 1.15 (0.75 to 2.04) 1.15 (0.90 to 1.54) 2.07 (0.85 to 5.89) 2.41 (1.63 to 3.43)

Musculoskeletal/skin 1.57 (0.71 to 3.27) 1.51 (0.99 to 2.48) 4.58 (1.51 to 8.23) 4.04 (2.66 to 5.47)

Neurological 0.91 (0.57 to 1.94) 0.97 (0.73 to 1.63) 1.28 (0.70 to 3.35) 1.42 (1.07 to 2.09)

Respiratory 2.59 (1.05 to 5.83) 2.54 (1.61 to 4.16) 3.73 (1.14 to 9.39) 3.69 (2.42 to 4.93)

Trauma 1.31 (0.70 to 2.91) 1.30 (1.05 to 2.22) 1.53 (0.44 to 8.02) 1.93 (1.42 to 2.79)

Post-operative

Cardiovascular 2.31 (0.89 to 6.21) 2.69 (1.70 to 4.03) 2.53 (1.17 to 8.70) 3.49 (2.06 to 4.83)

Gastro-intestinal 1.62 (0.74 to 3.85) 1.75 (1.05 to 3.04) 2.23 (0.89 to 8.39) 3.08 (1.88 to 4.14)

Genito-uritary 0.79 (0.52 to 1.39) 0.78 (0.56 to 1.25) 4.07 (0.29 to 7.91) 1.38 (1.23 to 1.73)

Metabolic1 1.29 (0.84 to 2.26) 1.42 (0.94 to 1.54)

Musculoskeletal/skin 0.90 (0.67 to 2.03) 1.05 (0.77 to 1.92) 4.16 (1.60 to 8.43) 3.08 (2.17 to 4.77)

Neurological 1.77 (0.89 to 5.57) 2.50 (1.35 to 3.70) 3.23 (1.20 to 5.56) 2.51 (1.99 to 3.81)

Respiratory 0.99 (0.72 to 3.51) 1.44 (0.97 to 1.99) 3.35 (3.15 to 5.78) 3.80 (3.02 to 4.67)

Trauma 1.26 (0.71 to 3.88) 1.57 (1.02 to 2.69) 2.45 (0.90 to 10.04) 2.49 (2.13 to 4.09)

Post- and non-operative

Hematological2 1.19 (0.69 to 3.05) 1.42 (0.95 to 2.34) 4.83 (1.49 to 9.89) 4.37 (2.46 to 5.69)

Transplantation3 1.76 (1.10 to 2.85) 1.95 (1.34 to 2.43)

Predictions were obtained using the Poisson model, constructed using all patients, but no cyclical terms.
1There were no non-survivors in the APACHE IV diagnose categories metabolic and transplantation.
2Post- and non-operative hematological patients were combined because of the low number of post-operative hematological patients.
3Post- and non-operative patients were combined because of the low number of non-operative patients with complications after transplantation.
doi:10.1371/journal.pone.0109684.t003

Comparison of Methods for Modeling Intensive Care Length of Stay

PLOS ONE | www.plosone.org 6 October 2014 | Volume 9 | Issue 10 | e109684



T
a

b
le

4
.

Es
ti

m
at

e
d

p
e

rf
o

rm
an

ce
o

f
re

g
re

ss
io

n
m

o
d

e
ls

,
w

h
e

n
co

n
st

ru
ct

in
g

m
o

d
e

ls
u

si
n

g
IC

U
su

rv
iv

o
rs

an
d

IC
U

n
o

n
-s

u
rv

iv
o

rs
se

p
ar

at
e

ly
,

b
u

t
n

o
cy

cl
ic

al
te

rm
s.

S
u

rv
iv

o
rs

n
o

n
-s

u
rv

iv
o

rs

R
2

R
o

o
t

m
e

a
n

sq
u

a
re

d
p

re
d

ic
ti

o
n

e
rr

o
r

(R
M

S
P

E
)

M
e

a
n

a
b

so
lu

te
p

re
d

ic
ti

o
n

e
rr

o
r

(M
A

P
E

)
B

IA
S

R
2

R
o

o
t

m
e

a
n

sq
u

a
re

d
p

re
d

ic
ti

o
n

e
rr

o
r

(R
M

S
P

E
)

M
e

a
n

a
b

so
lu

te
p

re
d

ic
ti

o
n

e
rr

o
r

(M
A

P
E

)
B

IA
S

O
LS

re
g

re
ss

io
n

Lo
S

0
.1

8
4

6
.8

6
8

3
.2

3
8

0
.0

2
5

0
.0

9
1

9
.4

4
6

5
.1

6
5

0
.0

2
0

(0
.1

6
6

to
0

.2
0

3
)

(6
.4

1
8

to
7

.3
1

8
)

(3
.1

5
9

to
3

.3
1

7
)

(2
0

.0
5

9
to

0
.1

0
9

)
(0

.0
7

4
to

0
.1

0
9

)
(8

.6
8

7
to

1
0

.2
0

5
)

(4
.9

4
1

to
5

.3
8

9
)

(2
0

.2
4

5
to

0
.2

8
5

)

O
LS

re
g

re
ss

io
n

Lo
S

tr
u

n
ca

te
d

at
3

0
d

ay
s

0
.2

6
6

4
.7

8
6

2
.8

1
6

0
.0

1
3

0
.1

2
9

6
.4

0
5

4
.3

2
5

0
.0

0
8

(0
.2

5
6

to
0

.2
7

6
)

(4
.6

8
4

to
4

.8
8

7
)

(2
.7

6
8

to
2

.8
6

4
)

(2
0

.0
4

2
to

0
.0

6
9

)
(0

.1
0

9
to

0
.1

4
9

)
(6

.1
7

8
to

6
.6

3
2

)
(4

.1
9

5
to

4
.4

5
5

)
(2

0
.1

6
9

to
0

.1
8

4
)

O
LS

re
g

re
ss

io
n

lo
g

(L
o

S)
0

.1
9

6
7

.1
3

5
2

.7
0

1
2

1
.5

8
4

0
.0

9
4

9
.9

6
9

4
.3

6
9

2
2

.8
9

2

(0
.1

7
4

to
0

.2
1

7
)

(6
.6

7
5

to
7

.5
9

6
)

(2
.6

1
9

to
2

.7
8

3
)

(2
1

.6
6

9
to

2

1
.4

9
9

)
(0

.0
7

4
to

0
.1

1
3

)
(9

.1
3

6
to

1
0

.8
0

1
)

(4
.1

1
2

to
4

.6
2

7
)

(2
3

.1
6

1
to

2
.6

2
3

)

G
LM

:
G

au
ss

ia
n

0
.2

0
2

6
.7

9
7

3
.0

6
3

2
0

.0
3

3
0

.0
9

4
9

.4
7

0
5

.0
2

7
2

0
.1

3
0

(0
.1

7
9

to
0

.2
2

4
)

(6
.3

4
8

to
7

.2
4

6
)

(2
.9

8
5

to
3

.1
4

1
)

(2
0

.1
1

5
to

0
.0

5
0

)
(0

.0
5

9
to

0
.1

2
8

)
(8

.7
4

2
to

1
0

.1
9

9
)

(4
.8

0
0

to
5

.2
5

5
)

(2
0

.3
8

9
to

0
.1

2
9

)

G
LM

:
P

o
is

so
n

0
.2

0
2

6
.7

9
3

3
.0

6
1

2
0

.0
0

7
0

.0
9

8
9

.4
1

2
5

.0
6

2
2

0
.0

0
6

(0
.1

8
0

to
0

.2
2

4
)

(6
.3

4
1

to
7

.2
4

5
)

(2
.9

8
3

to
3

.1
3

9
)

(2
0

.0
9

0
to

0
.0

7
5

)
(0

.0
7

2
to

0
.1

2
4

)
(8

.6
6

6
to

1
0

.1
5

8
)

(4
.8

3
7

to
5

.2
8

7
)

(2
0

.2
6

1
to

0
.2

4
9

)

G
LM

:
n

e
g

at
iv

e
b

in
o

m
ia

l
0

.1
9

6
6

.8
2

1
3

.0
6

8
2

0
.0

1
0

0
.0

9
7

9
.4

1
8

5
.0

6
3

0
.0

0
3

(0
.1

7
5

to
0

.2
1

6
)

(6
.3

7
0

to
7

.2
7

2
)

(2
.9

8
9

to
3

.1
4

6
)

(2
0

.0
9

2
to

0
.0

7
3

)
(0

.0
7

7
to

0
.1

1
7

)
(8

.6
6

5
to

1
0

.1
7

2
)

(4
.8

3
7

to
5

.2
8

8
)

(2
0

.2
5

3
to

0
.2

6
0

)

G
LM

:
G

am
m

a
0

.1
9

6
6

.8
2

1
3

.0
6

8
2

0
.0

1
0

0
.0

9
7

9
.4

2
2

5
.0

6
6

0
.0

0
4

(0
.1

7
5

to
0

.2
1

6
)

(6
.3

7
1

to
7

.2
7

2
)

(2
.9

9
0

to
3

.1
4

6
)

(2
0

.0
9

2
to

0
.0

7
3

)
(0

.0
7

7
to

0
.1

1
7

)
(8

.6
6

8
to

1
0

.1
7

6
)

(4
.8

4
0

to
5

.2
9

2
)

(2
0

.2
5

2
to

0
.2

6
1

)

C
o

x
P

H
re

g
re

ss
io

n
0

.1
0

3
8

.4
0

1
3

.7
5

4
2

2
.7

4
2

0
.0

6
9

1
1

.0
6

0
5

.1
3

7
2

4
.5

6
7

(0
.0

9
3

to
0

.1
1

3
)

(7
.9

7
5

to
8

.8
2

7
)

(3
.6

6
2

to
3

.8
4

7
)

(2
2

.8
3

8
to

2

2
.6

4
7

)
(0

.0
5

9
to

0
.0

8
0

)
(1

0
.2

2
7

to
1

1
.8

9
3

)
(4

.8
4

8
to

5
.4

2
6

)
(2

4
.8

6
1

to
2

4
.2

7
2

)

C
o

n
fi

d
e

n
ce

in
te

rv
al

s
w

e
re

o
b

ta
in

e
d

u
si

n
g

b
o

o
ts

tr
ap

sa
m

p
lin

g
.

Lo
S

=
Le

n
g

th
o

f
St

ay
,

O
LS

=
O

rd
in

ar
y

Le
as

t
Sq

u
ar

e
,

G
LM

=
G

e
n

e
ra

l
Li

n
e

ar
M

o
d

e
l.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

9
6

8
4

.t
0

0
4

Comparison of Methods for Modeling Intensive Care Length of Stay

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e109684



The predictive performance of all of our models was

disappointing, with an R2 at most around 20% and a RMSPE

of more than seven days. Even in absolute terms, our predictions

were, on average, three days different from the observed ICU LoS.

Given that more than half of the patients had an ICU LoS of less

than two days, it is fair to say that these predictions are not

particularly useful. The differences in predictive performance

between the models were generally small. Overall, the Poisson

model and Gaussian GLM performed somewhat better than the

other models, while CPH regression and OLS regression of log-

transformed ICU LoS were superior for patients with an ICU LoS

of less than four days. The models generally performed better for

ICU survivors than for non-survivors. Because patients are often

discharged at set times during the day, we hypothesized that the

inclusion of cyclical terms for discharge times would improve the

performance of the models. However, the performance only

improved marginally after we included these terms.

ICU discharge decisions often do not only depend on a patient’s

recovery, but on organizational circumstances such as availability

of beds on the general ward and the need to free up ICU beds for

other patients. These organizational circumstances depend on

structural factors related to the ICU and the hospital. We have

deliberately chosen not to include ICU and hospital level

covariates in our models, because we wished to investigate the

feasibility of predicting ICU LoS for future use in tools to compare

ICUs [24].

Previously researchers have used regression models to predict

ICU LoS, but they have generally not critically appraised and

compared the performance of different models [6,9,11–13,25].

The APACHE IV model for predicting ICU LoS uses OLS

regression on ICU LoS truncated at 30 days. We have shown

(Table 4) that this model leads to biased results for patients

admitted to the ICU for less than four days, but performs better

for patients with ICU LoS longer than four days, perhaps due to

truncation. Other researchers have used CPH regression to predict

ICU LoS following cardiac surgery and have found that their

models were able to discriminate between shorter and longer

treatment durations, but were unsuitable for predictions in

individual patients [25]. Researchers examining hospital LoS

following CABG surgery found that the model assumptions for

linear regression were not satisfied for LoS or log transformed LoS

and conclude that the use of GLMs with a logarithmic link

function should be considered for this type of data [15]. Another

study compared twelve methods to estimate ICU LoS using a

cohort of patients in Australian and New Zealand [27]. These

researchers compared OLS regression on log-transformed ICU

LoS; GLMs with a log-link function (distributions Poisson, gamma,

negative binomial and inverse-Gaussian); linear mixed models;

skew-normal; skew-t models; extended estimating equations and a

finite mixture model. They obtained values for R2 between 0.17

and 0.22 and found that linear mixed models and OLS regression

on log-transformed LoS performed best.

Because ICU LoS is right skewed, OLS regression is theoret-

ically not a good choice. Researchers have suggested truncating

observed ICU LoS, to improve the performance of OLS

regression [6,9,11–13]. In this study, we used OLS regression on

ICU LoS truncated at 30 days (Table 2). However, when

comparing ICU LoS among hospitals, truncation of ICU LoS

can be unfair because there may be substantial differences in the

values that were truncated and the largest improvements in

efficiency can probably be achieved in patients with the longest

ICU LoS.

The predictive performance of separate models for survivors

and non-survivors was higher than for combined models. This

may be caused by differences in the signs of regression coefficients

between survivors and non-survivors. Factors that aggravate illness

severity tend to increase the length of stay for survivors and

shorten it for non-survivors. Nevertheless, a fundamental draw-

Table 5. Estimated performance of regression models, when constructing models using all patients and cyclical terms.

Cyclical terms included

R2
Root mean squared
prediction error (RMSPE)

Mean absolute
prediction error (MAPE) BIAS

OLS regression (LoS) 0.144 7.317 3.566 0.034

(0.131 to 0.157) (6.958 to 7.675) (3.500 to 3.631) (20.048 to 0.115)

OLS regression LoS truncated at 30 days 0.210 5.141 3.093 0.018

(0.203 to 0.218) (5.053 to 5.229) (3.049 to 3.138) (20.041 to 0.078)

OLS regression log(LoS) 0.150 7.647 2.991 21.827

(0.135 to 0.164) (7.283 to 8.012) (2.916 to 3.067) (21.909 to 21.745)

GLM: Gaussian 0.156 7.270 3.424 20.018

(0.138 to 0.174) (6.909 to 7.632) (3.360 to 3.489) (20.098 to 0.061)

GLM: Poisson 0.157 7.264 3.424 0.007

(0.141 to 0.173) (6.905 to 7.623) (3.359 to 3.489) (20.073 to 0.086)

GLM: negative binomial 0.151 7.288 3.435 0.017

(0.137 to 0.165) (6.925 to 7.651) (3.369 to 3.501) (20.063 to 0.098)

GLM: Gamma 0.151 7.286 3.436 0.017

(0.137 to 0.165) (6.908 to 7.664) (3.369 to 3.502) (20.063 to 0.097)

Cox PH regression 0.086 8.743 3.939 22.985

(0.079 to 0.094) (8.399 to 9.087) (3.853 to 4.024) (23.075 to 22.895)

Confidence intervals were obtained with bootstrap sampling.
LoS = Length of Stay, OLS = Ordinary Least Square, GLM = General Linear Model.
doi:10.1371/journal.pone.0109684.t005
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back is that some hospitals may achieve shorter average ICU LoS

because their mortality rates are higher, which again would make

the comparison unfair. Furthermore, this could explain partly the

poor performance of the models.

Compared to previously published studies, our work stands out

because we applied resampling methods to compare eight types of

models constructed using advanced modelling methods, such as

regression splines and cyclical terms, and we based our study on a

large multi-center dataset. Furthermore, we used cyclic terms of

time of discharge as a way to model center effects in models with

patients variables only. This approach has not been used to predict

ICU LoS previously. Yet our work also has a number of

limitations. First, we did not evaluate modern prediction methods

from the field of statistical learning, such as ensemble [26] and

kernel methods [27]. As a result, we have not explored all methods

for predicting ICU LoS, which could be done in future research.

Second, we had no information on how the logistic policies vary

between the ICUs included in our study. For example, some ICUs

usually discharged patients in the morning, while others do this in

the afternoon. Thirdly, for this study we did not include any

interaction terms in our models. Developing a model to predict

ICU LoS may require more accurate analyses on the role of

interaction terms in the model. Fourth, we did not include

predictions of LoS for elective surgery patients in this study.

Patients undergoing unplanned ICU-admission differ considerably

from those undergoing elective surgery and often have a

protocolized ICU LoS. Hence, we choose not to develop a single

model for patients with planned and unplanned ICU admissions.

Fitfth, interestingly, many patients in our cohort of unplanned

ICU-admissions had a very short LoS on the ICU. Of our patients

25% had an ICU LoS shorter than 0.8 days. This group of

patients included both medical and unplanned surgical patients

and many different reasons for ICU admission were present, such

as monitoring during endoscopic procedures and monitoring after

overdose of sedatives. Some patients only required short ICU

treatment for respiratory failure, e.g. pulmonary edema well

responding to administration of diuretics. Also, LoS could be very

short in patients who died within the first hours after ICU

admission. We do not expect that the shorter LoS in our

population influences our conclusions regarding the preferred

regression model for length of stay as the shape of the LoS

distribution in other ICU populations is comparable. Sixth, the

performance of the CPH models may have been underestimated,

because we did not verify the proportional hazards assumption for

models developed within the bootstrap procedure. However, we

believe that violations of this assumption were unlikely, as it was

satisfied for all models that were developed on the entire dataset.

Our findings have implications for the use of patient level

predictions of ICU LoS. We believe that currently available

models for ICU LoS, are unsuitable for use in quality indicators

and that further research is needed to develop models of ICU LoS.

A relatively small group of patients determines the variation in

ICU LoS, but it is extremely difficult to identify these patients. We

are not sure whether observed differences in ICU LoS are due to

variations in the quality of care. Therefore we advise against using

currently available models for ICU LoS in unplanned ICU

admissions as input for policy development or evaluation [6,9].

Conclusions

It is difficult to predict ICU LoS for patients with unplanned

admissions using patient characteristics at ICU admission time

only, even with sophisticated statistical modelling methods.

Although the differences were small, GLMs with a logarithmic

link function predicted ICU LoS slightly better than other models

for untransformed ICU LoS. For patients with ICU LoS shorter

than four days, CPH regression and OLS regression of log-

transformed LoS were superior. All models performed only

marginally better when we included cyclical terms for discharge

time. Models developed using survivors and non-survivors

separately performed better than models developed on data for

all patients. We conclude that currently available models for ICU

LoS are not suitable for predicting individual patient data and

should not be used as an indicator for ICU quality or efficiency or

as tools to develop policies around unplanned ICU admissions.
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