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Abstract

CARD-containing MAGUK protein 1 (CARMA1) plays a crucial role in regulating adaptive immune responses upon T-cell
receptor (TCR) activation in T cells. Its role in regulating host mucosal innate immune response such as upregulation of
mucin remains unknown. Here we show that CARMA1 acts as a key signaling mediator for synergistic upregulation of
MUC5AC mucin by bacterium nontypeable Haemophilus influenzae (NTHi) and phorbol ester PMA in respiratory epithelial
cells. NTHi-induced TLR-dependent TRAF6-MKK3-p38 MAPK signaling pathway synergizes with PKCh-MEK-ERK signaling
pathway. CARMA1 plays a crucial role in mediating this synergistic effect via TRAF6, thereby resulting in synergistic
upregulation of MUC5AC mucin. Thus our study unveils a novel role for CARMA1 in mediating host mucosal innate immune
response.
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Introduction

The epithelial cells are not merely a passive barrier but can

detect foreign pathogens and generate a range of mediators that

play important roles in activation of innate and adaptive immunity

by recognizing microbial pathogens through surface receptors

such as Toll-like receptors (TLRs) [1,2,3,4]. TLRs are type I

transmembrane receptors with leucine-rich repeats in the

extracellular domain and cytoplasmic domain that resemble the

mammalian IL-1 receptor (IL-1R) [3]. To date, 11 members of the

human TLR family have been cloned [2,3,4]. TLRs have been

suggested to play important roles in recognizing microbial

components and activating complex signaling networks, which in

turn leads to the activation of innate immunity and acquired

immunity [3]. There is a growing body of evidence showing that

TLR signaling is not only regulated by microbial pathogens, but

also modulated by other signaling pathways activated by multiple

stimuli, such as growth factors and cytokines [5,6,7,8,9,10]. In

chronic inflammatory and infectious diseases, multiple inducers,

including exogenous and endogenous mediators, are present

simultaneously. The molecular mechanisms underlying the

regulation of TLR-dependent host mucosal defense response by

multiple stimuli, however, remain largely unknown.

Polymeric mucins, the major component of mucus secretions,

are high-molecular weight and heavily glycosylated proteins

synthesized and secreted by the mucosal epithelial cells lining

the middle ear, trachea, and digestive and reproductive tracts [11].

Currently, there are at least 21 unique mucin genes that have been

identified and shown to be expressed in tissues, such as ear, lung,

nose, salivary glands, and gastrointestinal tracts [11,12,13,14,

15,16,17,18,19,20,21,22,23,24,25,26,27,28]. Of these, MUC5AC

mucin is represents one of the major respiratory mucins

[5,29,30,31,32] and has been shown to be inducible by a wide

variety of stimuli, including pro-inflammatory cytokines such as

IL-1b, IL-9 and TNF-a, neutrophil elastase, epidermal growth

factor receptor (EGFR) ligand, and bacterial pathogens

[33,34,35]. Mucus production and secretion represents an

important host innate defense mechanism in airways by protecting

mucus epithelium from microbes, particulates, and other delete-

rious inhaled substances [12,36]. However, in chronic disease such

as otitis media (OM) and chronic obstructive pulmonary disease

(COPD), excess mucus production and hypersecretion is becoming

an important pathological factor contributing to morbidity and

mortality by causing conductive hearing loss and airway

obstruction in OM and COPD, respectively [13,32,37,38,39].

We previously reported that nontypeable Haemophilus influenzae

(NTHi), an important gram-negative respiratory pathogen,

upregulates MUC5AC expression via TLR2-dependent p38

MAPK signaling pathway [6,40]. Recently, we have also

demonstrated that NTHi and human growth factor EGF synergize

with each other to up-regulate MUC5AC mucin transcription

[41]. However, how MUC5AC expression is synergistically

regulated by multiple stimuli has yet to be fully understood.

Protein kinase C (PKC) is a key modulator in cellular responses

mediated by the second messenger diacylglycerol (DAG) and

phorbol ester tumor promoters. Activation of PKC leads to a

variety of cellular responses such as gene expression, proliferation,

and inflammatory and immune response [42,43]. PKC represents

a major family of at least 12 serine/threonine kinases that

participate in signal transduction events. PKC isoforms have been
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classified into three groups: conventional PKCs (cPKC) (a, bI, bII

and c); novel PKCs (nPKC) (d, e, g, and h); and atypical PKCs

(aPKC) (f and i/l). PKC isoforms are widely distributed in

mammalian tissues, and certain isoforms are localized to specific

tissues to regulate various cellular responses [42]. Recent studies

have shown that PKCh plays a critical role in adaptive immune

response by regulating CARMA1 activity, also known as a

caspase-recruiting domain 11 (CARD11) [44,45,46,47,48].

CARMA1 contains a CARD and a membrane-associated

guanylate kinase-like (MAGUK) domain and plays a crucial role

in regulating adaptive immunity [49,50,51,52,53,54,55]. Activa-

tion of PKCh induces phosphorylation of CARMA1, which in

turn leads to activation of NF-kB in T cells [45,47,51,56]. Despite

recent studies demonstrating the role of CARMA1 in regulating

adaptive immune responses in T cells, its role in regulating innate

immune response still remains largely unknown. Moreover, PKC

isoforms have been shown to play an important role not only in

mucin secretion but also in mucin gene expression

[35,57,58,59,60,61,62,63,64,65,66,67]. The role of CARMA1 in

regulating PKC-mediated mucin gene expression is. However, still

unknown.

In the present study we report that phorbol 12-myristate 13-

acetate (PMA)-induced activation of PKC synergizes with NTHi-

induced TLR2-dependent activation of TRAF6-MKK3/6-p38

MAPK signaling pathway to induce synergistic upregulation of

MUC5AC mucin in human respiratory epithelial cells. PKCh
appeasrs to play a critical role in mediating synergistic upregula-

tion of MUC5AC. Moreover, CARMA1 acts as a key signaling

mediator downstream of PKCh to synergistically activate TRAF6.

Our studies thus unveil a novel role of PKCh-CARMA1 pathway

in regulating bacterial pathogen-induced TLR-dependent induc-

tion of host innate immune response.

Results

PMA synergizes with NTHi to induce MUC5AC expression
in human epithelial cells

Phorbol esters, such as PMA, have been reported to modulate

diverse cellular responses. It has also been reported that PMA not

only induces mucin secretion [57,58,59,60,61,62,63,64,65,66], but

also induces mucin gene expression [35,63,67]. Previously, we

showed that NTHi, an important human respiratory pathogen,

induces upregulation of MUC5AC mucin, a primary innate

defense response in mammalian airways [6,40,68]. To determine

whether PMA modulates NTHi-induced MUC5AC expression,

we first evaluated the effect of PMA on NTHi-induced MUC5AC

expression at mRNA level in human epithelial cells, as assessed by

performing real-time quantitative PCR (Q-PCR) analysis. As

shown in Fig. 1A, PMA synergistically enhanced NTHi-induced

MUC5AC expression at mRNA level in human epithelial HM3

cells. To investigate whether transcriptional regulation is involved

in the synergistic MUC5AC induction, we next transfected HM3

cells with an expression vector containing the human MUC5AC

59-flanking region fused to a luciferase reporter gene. As shown in

Fig. 1B, PMA synergized with NTHi to induce MUC5AC

expression at the transcriptional level in human epithelial cells.

The synergistic enhancement of NTHi-induced MUC5AC

transcription by PMA was also observed in HM3 cells stably

transfected with pMUC5AC 3.7kb-luc (Fig. 1C). Furthermore,

PMA synergistically enhanced NTHi-induced luciferase activity

driven by the MUC5AC promoter in a dose-dependent manner,

and vice versa (Fig. 1D), suggesting the involvement of

transcriptional regulation. Because we were interested in the

potential generality of MUC5AC up-regulation, we assayed a

variety of human MUC5AC-expressing epithelial cell lines as well

as primary human airway epithelila cells. Consistent with our

finding in HM3 cells, PMA synergistically enhanced NTHi-

induced MUC5AC expression at the transcriptional level in

human airway A549, middle ear HMEEC-1 and primary

bronchial epithelial NHBE cells, as assessed by MUC5AC-

dependent promoter assays (Fig. 1E). Thus, it is evident that

PMA synergizes with NTHi to induce MUC5AC expression in

multiple human epithelial cells.

PMA synergistically enhances NTHi-induced MUC5AC
expression via MKK3/6-p38 MAPK pathway

We next sought to investigate the signaling mechanism by which

PMA synergistically enhances up-regulation of MUC5AC by

NTHi. Based on our recent reports that p38 MAPK, a major

MAP kinase superfamily member, has been shown to be involved

in NTHi-induced MUC5AC up-regulation [6,40,68], it is

plausible that activation of p38 MAPK may also play an important

role in the synergistic induction of MUC5AC transcription by

NTHi and PMA. To determine the involvement of p38 MAPK in

PMA-induced synergistic enhancement of MUC5AC expression,

we first confirmed the effect of PMA on NTHi-induced

phosphorylation of p38 MAPK. As shown in Fig. 2A, PMA

synergistically enhanced NTHi-induced phosphorylation of p38

MAPK and MKK3/6, its known immediate upstream activators

(left panel), but not MEK1-ERK, another major MAPK pathway

known to be activated by PMA (right panel). We then determined

whether activation of p38 is required for synergistic induction of

MUC5AC by assessing the effects of perturbing p38 signaling by

co-expressing dominant-negative (DN) mutant forms of p38a and

p38b. As shown in Fig. 2B, perturbing p38 signaling greatly

inhibited the synergistic induction of MUC5AC at the transcrip-

tional level. Consistent with this result, inhibition of p38 signaling

using SB203580, a specific inhibitor for p38 MAPK signaling, also

attenuated the synergistic induction of MUC5AC expression at the

endogenous mRNA level (Fig. 2C). Together, these data indicate

that MKK3/6-p38 MAPK signaling pathway mediates the

synergistic induction of MUC5AC by NTHi and PMA.

TLR2 is involved in the synergistic enhancement of NTHi-
induced MUC5AC expression by PMA

Having identified that NTHi and PMA synergistically induce

MUC5AC up-regulation via MKK3/6-p38 MAPK pathway, still

unknown is which cell surface receptor(s) is involved in

transmitting signals from the cell surface to the cytoplasm to

induce the synergistic upregulation of MUC5AC. Because of the

important roles of TLR2 in mediating host response to NTHi

[5,6,68], we investigated whether TLR2 is involved in the

synergistic induction of MUC5AC by NTHi and PMA. As shown

in Fig. 3A, overexpression of a DN mutant form of TLR2

inhibited the synergistic induction of MUC5AC transcription by

NTHi and PMA, suggesting the critical role of TLR2 in mediating

synergistic induction of MUC5AC. We next assessed the

synergistic enhancing effect of PMA on NTHi-induced MUC5AC

expression in HEK293-pcDNA and HEK293-TLR2 cells, which

were stably transfected with pcDNA or TLR2, respectively. As

expected, the synergistic enhancement of NTHi-induced MU-

C5AC transcription by PMA was observed in HEK293-TLR2

cells, but not in HEK293-pcDNA cells (Fig. 3B). To further

confirm the requirement of TLR2 in mediating the synergistic

induction of MUC5AC, we next evaluated the effect of PMA on

NTHi-induced MUC5AC transcription in WT and TLR22/2

mouse embryonic fibroblasts (MEFs). As shown in Fig. 3C, PMA

CARMA1 Mediates TLR-Dependent Pathway
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synergized with NTHi to induce MUC5AC expression in WT but

not in TLR22/2 MEF cells. Collectively, these data demonstrate

that TLR2-dependent signaling is required for the synergistic

induction of MUC5AC by NTHi and PMA.

PMA synergistically enhances up-regulation of MUC5AC
induced by activation of TLR signaling

Because MUC5AC gene expression is up-regulated not only by

bacterial pathogens through TLR-dependent pathway, but also by

a variety of other stimuli such as pro-inflammatory cytokines

[41,69,70,71], we next determined whether PMA can also

synergize with the other mucin inducers to up-regulate MUC5AC

expression. Interestingly, the synergistic enhancement of MU-

C5AC expression was observed only in the cell treated with

various bacterial stimuli such as NTHi, Streptococcus pneumoniae (S.p.)

and peptidoglycan (PGN), but not in the cell treated with non-

TLR stimuli such as cytokines (Fig. 4A). In addition, PMA

synergistically enhanced MUC5AC expression induced by either

NTHi or S.p. in a dose-dependent manner, but not by pro-

inflammatory cytokine TNF-a, suggesting that the synergistic

effect of PMA may be specific only for TLR-dependent MUC5AC

up-regulation (Fig. 4B). To further determine whether PMA

specifically synergizes with TLR-dependent pathway, we next

assessed the synergistic effect of PMA on MUC5AC induction by

the TLR2 ligand PGN in HEK293-pcDNA and HEK293-TLR2

cells. As shown in Fig. 4C, the synergistic enhancement of PGN-

induced MUC5AC transcription by PMA was observed in

HEK293-TLR2 cells, but not in HEK293-pcDNA cells. Similarly

to PGN, the other TLR2 ligand, Zymosan-induced MUC5AC

expression was also synergistically enhanced by PMA (Fig. 4D).

Furthermore, PMA can also synergistically enhance MUC5AC

induction by the other TLR ligands, such as TLR3 ligand

Poly(I:C) and TLR4 ligand LPS (Fig. 4D), indicating that the

synergistic effect of PMA may be specific not only for TLR2, but

also for the other TLRs-dependent signaling pathway. Thus, these

Figure 1. PMA synergizes with NTHi to induce MUC5AC expression in human epithelial cell. (A) PMA synergistically enhanced NTHi-
induced MUC5AC expression at the mRNA level in human epithelial HM3 cell, as assessed by performing RT-PCR (left panel) and real-time quantitative
PCR (Q-PCR) analysis (right panel). Cyclophilin was used as a control for amount of RNA used in each reaction. (B) PMA synergized with NTHi to
induce MUC5AC expression at the transcriptional level in human epithelial cells, as assessed by MUC5AC-dependent promoter Luciferase assay. (C)
Synergistic induction of MUC5AC expression by NTHi and PMA was also observed in HM3 cells stably transfected with pMUC5AC 3.7 kb-luc. (D) PMA
synergizes with NTHi to induce MUC5AC transcription in a dose-dependent manner and vice versa. (E) PMA synergistically enhanced NTHi-induced
MUC5AC expression at the transcriptional level in human airway A549, middle ear HMEEC-1 and primary bronchial epithelial NHBE cells, as assessed
by MUC5AC-dependent promoter assays. Values are the means 6 S.D. (n = 3). *p,0.05 vs. control; **p,0.05 vs. NTHi alone. The data shown are
representative of three independent experiments. 2, absence of; +, presence of; NTHi, nontypeable Haemophilus influenzae.
doi:10.1371/journal.pone.0031049.g001
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data suggest that PMA synergistically enhances up-regulation of

MUC5AC induced by activation of TLR signaling.

PMA synergistically enhances TLR-dependent MUC5AC
induction by NTHi via activation of TRAF6

One key question that has yet to be addressed is which signaling

adaptor molecules transduce signal to mediate the synergistic

induction of MUC5AC by NTHi and PMA. In review of all

known shared signaling transducers downstream of TLRs, the

TRAFs, a family of adaptor proteins, have been shown to be

critically involved in the activation of p38 MAPK triggered by

TNF receptor and TLR family members [72]. Among all six

TRAFs identified previously, TRAF2 has been shown as a signal

transducer associated with TNF receptors, whereas TRAF6 has

been known to be associated with TLRs [72,73,74,75,76,77,78].

Because our results in Fig. 4 indicate that the synergistic effect of

PMA is specific for only TLR-dependent pathway, we postulated

that PMA may mediate its synergistic effect on TLR-dependent

signaling via TRAF6. On the basis of evidence that TRAF6

polyubiquitination has been shown to play an important role in

Figure 2. PMA synergistically enhances NTHi-induced MUC5AC
expression via MKK3/6-p38 MAPK pathway. (A) PMA synergisti-
cally enhanced NTHi-induced phosphorylation of p38 MAPK and MKK3/
6, but not ERK and MEK1. (B) The synergistic induction of MUC5AC
transcription by NTHi and PMA was inhibited by overexpressing DN
mutant forms of p38a and p38b in human epithelial cells, as assessed
by MUC5AC-dependent promoter Luciferase assay. Cells were trans-
fected with 0.8 mg of DN p38a, DN p38b, or control vector, and treated
with NTHi with or without PMA. Relative luciferase activity of MUC5AC
was measured from the cell lysate. (C) SB203580, a specific inhibitor for
p38 MAPK signaling, attenuated the synergistic induction of MUC5AC
expression by NTHi and PMA at the mRNA level as assessed by Q-PCR.
Cells were pre-treated with 10 mM of SB203580 or vehicle control, and
treated with NTHi with or without PMA. mRNA expression level of
MUC5AC was measured by Q-PCR. Values are the means 6 S.D. (n = 3).
*p,0.05 vs. control; **p,0.05 vs. NTHi alone; ***p,0.05 vs NTHi with
PMA in control vector transfected (B) or vehicle treated (C) cells. The
data shown are representative of three independent experiments. 2,
absence of; +, presence of; DN, dominant negative; NTHi, nontypeable
Haemophilus influenzae.
doi:10.1371/journal.pone.0031049.g002

Figure 3. TLR2 is involved in the synergistic enhancement of
NTHi-induced MUC5AC expression by PMA. (A) Overexpression of
a DN mutant form of TLR2 inhibited the synergistic induction of
MUC5AC transcription by NTHi and PMA in human epithelial cells, as
assessed by MUC5AC-dependent promoter Luciferase assay. Cells were
transfected with 0.8 mg of DN TLR2 or control vector, and treated with
NTHi with or without PMA. Relative luciferase activity of MUC5AC was
measured from the cell lysate. (B) The synergistic enhancement of NTHi-
induced MUC5AC transcription by PMA was observed in HEK293-TLR2
cells, but not in HEK293-pcDNA cells. (C) PMA did not synergize with
NTHi to induce MUC5AC expression in TLR22/2 MEF cells. Values are the
means 6 S.D. (n = 3). *p,0.05 vs. control; **p,0.05 vs. NTHi alone;
***p,0.05 vs NTHi with PMA in control vector transfected cells (A) or
TLR2+/+ cells (C). The data shown are representative of three
independent experiments. 2, absence of; +, presence of; NTHi,
nontypeable Haemophilus influenzae; DN, dominant negative; +/+,
wild-type; 2/2, knock-out.
doi:10.1371/journal.pone.0031049.g003
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regulating TRAF6 activation [73], we first examined whether

PMA synergistically enhances NTHi-induced polyubiquitination

of TRAF6. Interestingly, NTHi markedly induced polyubiquitina-

tion of TRAF6 together with PMA treatment in a dose-dependent

manner, suggesting the synergistic effect of PMA on TLR-

dependent signaling may occur at the level of TRAF6 (Fig. 5A).

To further determine whether TRAF6 plays an important role in

the synergistic effect of PMA, we next evaluated the effect of

perturbing TRAF6 by overexpressing a DN mutant form of

TRAF6. As shown in Fig. 5B, overexpression of DN-TRAF6

potently inhibited the synergistic phosphorylation of p38 MAPK

and MKK3/6 induced by NTHi and PMA. Consistent with these

findings, the synergistic enhancement of NTHi-induced MU-

C5AC transcription by PMA was attenuated by overexpression of

DN-TRAF6 in human epithelial cells, as assessed by MUC5AC-

dependent promoter Luciferase assay (Fig. 5C). Taken together,

these data suggest that PMA synergistically enhances TLR-

dependent MUC5AC induction by NTHi via TRAF6.

TLR-TRAF6-dependent synergistic induction of MUC5AC
by NTHi and PMA is mediated by PKCh

Although we have demonstrated that NTHi-induced TLR2-

TRAF6-dependent MKK3/6-p38 MAPK pathway is synergisti-

cally enhanced by PMA to up-regulate MUC5AC expression, it is

still unclear how PMA transduces signal to TLR-dependent

pathway. It has been known that PMA modulates diverse cellular

responses such as gene transcription, cellular growth and

differentiation, programmed cell death, the immune response,

and receptor desensitization through PKC signaling pathway

[79,80]. Among various PKC isoforms, PKCh has recently been

shown to play an important role in PMA-induced MUC5AC up-

regulation [35,63]. To determine whether PKCh is involved in the

synergistic enhancement of MUC5AC induction by NTHi and

PMA, we first assessed the effect of perturbing PKC signaling on

MUC5AC expression. As shown in Fig. 6A and B, Rottlerin, a

specific PKCTM/h inhibitor, abolished PMA-induced synergistic

enhancement of MUC5AC expression by NTHi at both the

transcriptional and mRNA levels, as assessed by performing

Luciferase assay and Q-PCR, respectively. To define the

involvement of PKCh in synergistic MUC5AC induction, we

next evaluated the effect of co-expressing either wild-type (WT) or

DN mutant form of PKCh on MUC5AC-dependent promoter

activity. As shown in Fig. 6C, co-expression of WT-PKCh further

enhanced, whereas co-expression of DN-PKCh attenuated NTHi-

and PMA-induced MUC5AC-Luc promoter activity. In addition,

NTHi-induced MUC5AC transcription was synergistically en-

Figure 4. PMA synergistically enhances up-regulation of MUC5AC induced by activation of TLR signaling. (A) PMA synergistically
enhanced MUC5AC expression induced only by NTHi, S.p. and PGN, but not by TNF-a and IL-6, as assessed by MUC5AC-dependent promoter
Luciferase assay. Values are the means 6 S.D. (n = 3). *p,0.05 vs. NTHi, S.p., or PGN alone; #p.0.05 vs. TNF-a or IL-6 alone. (B) PMA synergized with
either NTHi or S.p., but not with TNF-a to enhance MUC5AC expression in a dose-dependent manner. Values are the means 6 S.D. (n = 3). *p,0.05 vs.
PMA alone; #p.0.05 vs. PMA alone. (C) PGN-induced MUC5AC transcription was synergistically enhanced by PMA in HEK293-TLR2 cells, but not in
HEK293-pcDNA cells. Values are the means 6 S.D. (n = 3). *p,0.05 vs. PGN alone. (D) Synergistic enhancement of MUC5AC expression by PMA was
also observed in the cells treated with TLR ligands, such as PGN, Zymosan, Poly(I:C) and LPS, respectively. Values are the means 6 S.D. (n = 3). *p,0.05
vs. PGN, Zymosan, Poly(I:C), or LPS alone. The data shown are representative of three independent experiments. 2, absence of; +, presence of; S.p.,
Streptococcus pneumoniae; NTHi, nontypeable Haemophilus influenzae.
doi:10.1371/journal.pone.0031049.g004
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hanced by co-expression of constitutively-active (C/A) form of

PKCh (C/A-PKCh), instead of PMA treatment (Fig. 6D).

Moreover, C/A-PKCh itself also synergistically enhanced WT-

TRAF6-induced MUC5AC transcription in a dose-dependent

manner (Fig. 6E), providing supportive evidence that PMA-

induced PKCh signaling modulates TLR-dependent MUC5AC

induction via TRAF6. Collectively, we concluded from these data

that PMA synergises with NTHi to induce TLR-TRAF6-

dependent MUC5AC induction via PKCh.

CARMA1 acts downstream of PKCh in mediating
PMA-induced synergistic enhancement of
TLR-TRAF6-dependent MUC5AC expression

Having identified the requirement of PKCh for synergistic

MUC5AC induction, it is still unknown which intermediate

signaling molecule links PKCh signaling to TLR-dependent

pathway. Recently, interesting studies have demonstrated that

CARMA1, also known as CARD11, acts downstream of PKCh to

regulate the adaptive immune response in T cells [46,47,

48,51,54,78,81]. To determine the possible involvement of

CARMA1 in PMA-induced synergistic enhancement of MU-

C5AC induction, we first determined whether CARMA1 is

expressed in a variety of human epithelial cells by Western

blotting using antibody against CARMA1. As shown in Fig. 7A,

CARMA1 is expressed in human cervix epithelial HeLa, colon

epithelial HM3, airway epithelial A549, and middle ear epithelial

HMEEC-1 cell lines as well as primary bronchial epithelial NHBE

cells. As expected, C/A-PKCh-induced MUC5AC transcription

was abolished by co-expressing a DN form of CARMA1,

indicating that CARMA1 indeed acts downstream of PKCh
(Fig. 7B). We then assessed the effect of co-expressing DN-

CARMA1 on the synergistic enhancement of MUC5AC expres-

sion. As shown in Fig. 7C, co-expressing DN-CARMA1 markedly

inhibited the synergistic induction of MUC5AC expression by

NTHi and PMA. Concomitantly, overexpression of DN-

CARMA1 greatly inhibited not only the synergistic phosphoryla-

tion of p38 MAPK and MKK3/6 induced by NTHi and PMA,

but also the phosphorylation of ERK and MEK1 (Fig. 7D). Thus,

these data indicate that CARMA1 acts downstream of PKCh in

mediating PMA-induced synergistic enhancement of TLR-

TRAF6-dependent MUC5AC expression.

CARMA1 mediates TLR-dependent synergistic MUC5AC
induction by NTHi and PMA via TRAF6

To further define the mechanism by which CARMA1 enhances

TLR-TRAF6-dependent signaling, we determined the involve-

ment of CARMA1 by using siRNA approach. As expected, a

CARMA1-specific small interfering RNA (CARMA1-siRNA)

efficiently reduced endogenous CARMA1 expression at both the

mRNA and protein levels, as assessed by performing Q-PCR and

Western blotting (Fig. 8A). Consistent with the results shown in

Fig. 7, CARMA1 knockdown by siRNA greatly inhibited the

synergistic induction of MUC5AC transcription by NTHi and

PMA (Fig. 8B), providing supporting evidence for the critical

involvement of CARMA1 in mediating the synergistic MUC5AC

induction. We next sought to explore how CARMA1 mediates

TLR-TRAF6-dependent pathway. Recent study has shown that

CARMA1 mediates PKCh-induced polyubiquitination of TRAF6

to activate NF-kB in T cells [82]. Moreover, our data (Fig. 5)

showed that NTHi and PMA synergistically induced polyubiqui-

tination of TRAF6. Thus we evaluated the effect of CARMA1-

siRNA on TRAF6 polyubiquitination induced by NTHi and

PMA. The synergistic enhancement of NTHi-induced TRAF6

polyubiquitination by PMA was markedly attenuated by

CARMA1 knockdown (Fig. 8C). Taken together, our data

demonstrated that CARMA1 mediates TLR-dependent synergis-

tic MUC5AC induction by NTHi and PMA via TRAF6. The

Figure 5. PMA synergistically enhances TLR-dependent MU-
C5AC induction by NTHi via TRAF6. (A) PMA synergistically
enhanced NTHi-induced polyubiquitination of TRAF6 in human
epithelial cells. Cells were transfected with TRAF6, and were treated
with NTHi and PMA as indicated. Whole cell extracts were subjected to
co-immunoprecipitation (IP) with either control IgG or anti-TRAF6
antibodies and immunoblotting with anti-ubiquitin antibody. The same
blots were re-probed with anti-TRAF6. (B) Overexpression of a DN
mutant form of TRAF6 blocked the synergistic phosphorylation of p38
MAPK and MKK3/6 induced by NTHi and PMA. Cells were transfected
with 0.8 mg of DN-TRAF6 or control vector, and treated with NTHi with
or without PMA. Cell lysate was blotted with antibodies as indicated in
the figure. (C) The synergistic enhancement of NTHi-induced MUC5AC
transcription by PMA was inhibited by overexpression of DN-TRAF6 in
human epithelial cells, as assessed by MUC5AC-dependent promoter
Luciferase assay. Cells were transfected with 0.8 mg of DN-TRAF6 or
control vector, and treated with NTHi with or without PMA. Relative
luciferase activity of MUC5AC was measured from the cell lysate. Values
are the means 6 S.D. (n = 3). *p,0.05 vs. control; **p,0.05 vs. NTHi
alone; ***p,0.05 vs. NTHi with PMA in control vector transfected cells.
The data shown are representative of three independent experiments.
2, absence of; +, presence of; NTHi, nontypeable Haemophilus
influenzae; DN, dominant negative; Ubn, ubiquitin.
doi:10.1371/journal.pone.0031049.g005

CARMA1 Mediates TLR-Dependent Pathway

PLoS ONE | www.plosone.org 6 January 2012 | Volume 7 | Issue 1 | e31049



functional involvement of TRAF6 ubiquitination in mediating the

synergistic induction of MUC5AC needs to be further investigated

in future studies.

Discussion

In the present study, we showed that phorbol ester (PMA)

synergizes with bacterium NTHi to induce up-regulation of

MUC5AC expression, which is known to play an important role in

mucosal defense against invading bacterial pathogens. PMA-

induced synergistic enhancement of MUC5AC expression is

mediated by TLR2-dependent activation of TRAF6-MKK3/6-

p38 MAPK signaling pathway. PKCh modulates TLR-TRAF6-

dependent signaling to synergistically enhance MUC5AC induc-

tion by NTHi and PMA. Moreover, CARMA1, an important

signaling mediator upon TCR activation in T cells, acts

downstream of PKCh to mediate TLR-dependent synergistic

MUC5AC induction via TRAF6 (Fig. 8D).

Of particular interest in this study is that PKCh modulates

bacteria-induced TLR2-TRAF6-dependent signaling pathway to

synergistically enhance MUC5AC mucin up-regulation, a primary

innate defense response for mammalian airways. Although

extensive efforts have been made towards understanding the

critical role for PKC in inflammatory responses, still unknown is

the role of PKC in mediating host mucosal innate immune

responses in chronic inflammatory and infectious diseases, such as

COPD and OM. In the present study, our data clearly indicate

that phorbol ester PMA, a potent PKC activator and an analogues

of diacylglycerol (DAG), synergizes with bacterium NTHi to

induce MUC5AC expression via cross-talk with TRAF6. Inter-

estingly, the synergistic effect of PMA appers to be specific only for

TLR-dependent signaling pathway (Fig. 4). Furthermore, simi-

larly to MUC5AC up-regulation, PMA also synergistically

enhance NTHi-induced expression of pro-inflammatory cytokines,

such as TNF-a, IL-1b and IL-8 (data not shown). These results,

although rather unexpected, may provide novel implication into

the role of PKC in regulating TRAF6-dependent mucosal innate

immune responses. There is now accumulating evidence to suggest

that activation of PKC isotypes is induced by multiple stimuli, such

as LPS, neutrophil elastase, nicotine and cigarette smoke

[83,84,85,86]. Those stimuli have also been widely known as the

major cause of chronic inflammatory and infectious diseases, such

as COPD and OM [87,88,89]. Therefore, under diseased

conditions such as COPD and OM, it is anticipated that activation

Figure 6. TLR-TRAF6-dependent synergistic MUC5AC induction by NTHi and PMA is mediated by PKCh. (A) Rottlerin, a specific PKCTM/h
inhibitor, blocked the synergistic induction of MUC5AC transcription by NTHi and PMA in human epithelial cells, as assessed by MUC5AC-dependent
promoter Luciferase assay. Cells were pre-treated with 20 mM of Rottlerin or vehicle control, and treated with NTHi with or without PMA. Relative
luciferase activity of MUC5AC was measured from the cell lysate. Values are the means 6 S.D. (n = 3). *p,0.05 vs. control; **p,0.05 vs. NTHi alone;
***p,0.05 vs. NTHi with PMA in vehicle treated cells. (B) The synergistic induction of MUC5AC expression was also attenuated by Rottlerin at the
mRNA level, as assessed by performing Q-PCR. Cells were pre-treated with 20 mM of Rottlerin or vehicle control, and treated with NTHi with or
without PMA. mRNA expression level of MUC5AC was measured by Q-PCR. (C) Co-expressing WT-PKCh enhanced, whereas DN-PKCh inhibited, the
synergistic induction of MUC5AC transcription by NTHi and PMA. Cells were transfected with 0.3 mg of WT- PKCh, 0.6 mg of DN PKCh, or control
vector, and treated with NTHi with or without PMA. Relative luciferase activity of MUC5AC was measured from the cell lysate. Values are the means 6
S.D. (n = 3). *p,0.05 vs. control; **p,0.05 vs. NTHi alone; ***p,0.05 vs. NTHi with PMA in control vector transfected cells. (D) C/A-PKC-induced
MUC5AC expression was synergistically enhanced by NTHi in human epithelial cells. Cells were transfeced with 0.3 mg of C/A PKCh or control vecttor,
and treated with NTHi. Relative luciferase activity of MUC5AC was measured from the cell lysate. Values are the means 6 S.D. (n = 3). *p,0.05 vs. NTHi
alone. (E) C/A-PKCh synergized with WT-TRAF6 to induce MUC5AC expression in a dose-dependent manner. Cells were transfected with 0.1, 0.3, or
0.6 mg of C/A PKCh with or without 0.3 mg of WT-TRAF6. mRNA expression level of MUC5AC was measured by Q-PCR. Values are the means 6 S.D.
(n = 3). *p,0.05 vs. control; **p,0.05 vs. C/A PKCh transfected cells. The data shown are representative of three independent experiments.
2, absence of; +, presence of; NTHi, nontypeable Haemophilus influenzae; WT, wild-type; DN, dominant negative; C/A, constitutively active form.
doi:10.1371/journal.pone.0031049.g006
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of PKC may contribute to the detrimental and overactive host

responses, such as mucin overproduction, especially in infectious

diseases. Thus, our data reveal a novel role of PKCh in regulating

the host mucosal innate immune response in the pathogenesis of

chronic inflammatory and infectious diseases.

Another important finding in the present study is the direct

evidence showing that CARMA1 acts downstream of PKCh to

mediate TLR-dependent synergistic MUC5AC induction via

TRAF6 in human epithelial cells. CARMA1 contains a CARD

and a MAGUK domain, and plays an essential role in the adaptive

immune response [49,50,90,91,92]. CARMA1 also functions as a

molecular scaffold in the assembly of multi-protein complexes and

has recently been implicated in signaling from PKC to NF-kB

activation in T cells [46,47,48,51,52,55]. It has been previously

reported that CARMA1 is predominantly expressed in spleen,

thymus, and peripheral blood leukocyte, associates with Bcl10-

MALT1 complex and recruits these proteins into the lipid rafts by

an unknown mechanism [50,87,93,94]. The recruitment of the

Bcl10-MALT1 complex has been shown to activate IKK through

an ubiquitin-dependent pathway leading to activation of NF-kB

[47,52,55,95,96]. Although several studies have demonstrated the

critical role for CARMA1 in the adaptive immune response in T

cells, little is known about the function of CARMA1 in epithelial

cells. Moreover, the involvement of CARMA1 in bacteria-induced

host defense has yet to be addressed. As evidenced by the data

shown in Fig. 7 and 8, CARMA1 is expressed in a variety of

human epithelial cell lines as well as primary bronchial epithelial

cells, and mediates bacteria-induced TLR-dependent synergistic

MUC5AC up-regulation (Fig. 7). Furthermore, CARMA1 acts

downstream of PKCh to modulate TLR-dependent signaling via

TRAF6 (Fig. 8). Given that inhibition of CARMA1 blocked not

only the synergistic activation of MKK3/6-p38 MAPK pathway

but also activation of MEK-ERK by PMA, it is likely that

CARMA1 plays a central role in this synergistic induction of

MUC5AC. Thus, our studies provide direct evidence for the

critical involvement of CARMA1 in bacteria-induced host defense

especially in human epithelial cells, thus bringing new insights into

the novel molecular function of CARMA1 in regulating host

mucosal innate immune response in respiratory epithelial surface,

the first line of host defense.

Materials and Methods

Reagents
Recombinant human TNF-a and IL-6 were purchased from

R&D Systems. PGN, Zymosan, Poly(I:C) and LPS were purchased

from InvivoGen (San Diego, CA). PMA, SB203580 and Rottlerin

were purchased from Calbiochem (LaJolla, CA).

Cell Culture
HM3 (human colon epithelial), HeLa (human cervix epithelial),

A549 (Human lung epithelial), and HMEEC-1 (human middle ear

epithelial) cells were maintained and used as described previously

[5,6,74,76,77,97,98]. HM3 and HMEEC-1 cells are from Dr. Y.S.

Kim and Dr. David Lim, respectively, as described previously

[40,71,99,100]. HeLa and A549 cells are from ATCC. All media

contained 10% fetal bovine serum (Invitrogen), penicillin (100 U/

ml) and streptomycin (0.1 mg/ml). All cells were cultured in a

humidified atmosphere of 5% CO2 at 37uC. Primary human

bronchial epithelial cells (NHBE) were purchased from Clonetics

(San Diego, CA) and maintained in Clonetics’ recommended

bronchial epithelial growth media (BEGM) following the manu-

facturer’s instructions [5,6,76,98]. Stable cell lines, HEK293-

pcDNA and HEK293-TLR2 were kindly provided by D. T.

Figure 7. CARMA1 acts downstream of PKCh in mediating PMA-
induced synergistic enhancement of TLR-TRAF6-dependent
MUC5AC expression. (A) CARMA1 was expressed in a variety of
epithelial cells, such as in human cervix HeLa, colon HM3, airway A549,
middle ear HMEEC-1 and primary bronchial epithelial NHBE cells, as
assessed by WB using antibody against CARMA1. (B) Overexpression of
a DN mutant form of CARMA1 attenuated C/A-PKCh-induced MUC5AC
expression. Cells were transfeced with 0.3 mg of C/A PKCh with or
without 0.8 mg of DN-CARMA1. Relative luciferase activity of MUC5AC
was measured from the cell lysate. Values are the means 6 S.D. (n = 3).
*p,0.05 vs. control; **p,0.05 vs. C/A PKCh transfected cells. (C) The
synergistic induction of MUC5AC transcription by NTHi and PMA was
potently inhibited by overexpression of DN-CARMA1. Cells were
transfeced with 0.8 mg of DN-CARMA1 or control vector, and treated
with NTHi with or without PMA. Relative luciferase activity of MUC5AC
was measured from the cell lysate. Values are the means 6 S.D. (n = 3).
*p,0.05 vs. NTHi alone; **p,0.05 vs. control vector transfected cells. (D)
Overexpression of a DN mutant form of CARMA1 greatly inhibited not
only synergistic phosphorylation of p38 MAPK and MKK3/6 induced by
NTHi and PMA, but also ERK and MEK phosphorylation. Cells were
transfeced with 0.8 mg of DN-CARMA1 or control vector, and treated
with NTHi with or without PMA. Cell lysate was blotted with antibodies
indicated in the figure. The data shown are representative of three
independent experiments. 2, absence of; +, presence of; NTHi,
nontypeable Haemophilus influenzae; DN, dominant negative; C/A,
constitutively active form.
doi:10.1371/journal.pone.0031049.g007
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Golenbock as described previously [97,101]. Wild-type (WT) and

TLR22/2 MEFs were obtained from E13 embryos of WT and

TLR22/2 mice, respectively and maintained in DMEM supple-

mented with 10% fetal bovine serum (Invitrogen, Carlsbad, CA,

USA) as described previously [74]. TLR22/2 mice have been

reported previously and provided by Dr. Shizuo Akira [9,102].

Isolation and culture of MEF cells from TLR22/2 mice has been

approved the by the Institutional Animal Care and Use

Committee at University of Rochester.

Bacterial Strain and Culture
NTHi strain 12, a clinical isolate, was used in this study

[8,9,40,41,74,76]. Bacteria were grown on chocolate agar at 37uC
in an atmosphere of 5% CO2. For making NTHi crude extract,

NTHi were harvested from a plate of chocolate agar after

overnight incubation and incubated in 30 ml of brain heart

infusion (BHI) broth supplemented with NAD (3.5 g/ml). After

overnight incubation, NTHi were centrifuged at 10,000 g for

10 min, and the supernatant was discarded. The resulting pellet of

NTHi was suspended in 10 ml of phosphate-buffered saline and

sonicated. Subsequently, the lysate was collected and stored at

70uC. NTHi lysates (5 mg/ml) were used in all the experiments.

S.p. strain D39 was used and crude extracts were used as described

[70,71,74,77].

Plasmids, Transfection and Luciferase assay
The plasmids fp38a (AF), fp38b2 (AF), WT-TRAF6, Dominant-

negative (DN)-TRAF6 (TRAF6:299–522), DN-TLR2, WT-

PKCh, DN-PKCh (K409R), constitutively-active (C/A)-PKCh
(A148E), and MUC5AC-luciferase reporter were described

previously [5,6,8,9,40,41,68,70,71,72,76]. DN-CARMA1 was

kindly provided by Dr. Xin Lin [44,45]. Empty vector was used

as a control. All transient transfections were carried out in

triplicate using a TransIT-LT1 reagent (Mirus, Madison, WI)

following the manufacturer’s instructions. At 40 h after starting the

transfection, cells were pretreated with or without chemical

inhibitors including SB203580 or Rottlerin for 1 h. NTHi and

PMA were then added to the cells for 5 h before cell lysis for

Luciferase assay.

Small-interfering RNA (siRNA)
CARMA1-siRNA and siCONTROL (non-targeting siRNA

Pool) were purchased from Dharmacon. Cells were transfected

with a final concentration of 100 nM siRNA using Lipofectamine

2000 (Invitrogen Life Technologies). Forty hours after the start of

transfection, cells were treated with NTHi and PMA as indicated

before lysed for Luciferase assay and Immunoprecipitation.

Real-time Quantitative PCR (Q-PCR) Analysis
Total RNA was isolated using TRIzol reagent (Invitrogen)

following the manufacturer’s instructions. For the reverse

transcription reaction, TaqMan reverse transcription reagents

(Applied Biosystems) were used. Briefly, the reverse transcription

reaction was performed for 60 min at 37uC, followed by 60 min at

42uC by using oligo(dT) and random hexamers. PCR amplifica-

tion was performed by using TaqMan Universal Master Mix. In

brief, reactions were performed in duplicate containing 26Uni-

versal Master Mix, 1 ml of template cDNA, 100 nM primers, and

100 nM probe in a final volume of 12.5 ml, and they were

analyzed in a 96-well optical-reaction plate (Applied Biosystems).

Probes for TaqMan include a fluorescent reporter dye, 6-

carboxyfluorescein (FAM), on the 59 end and labeled with a

fluorescent quencher dye, 6-carboxytetramethylrhodamine

(TAMRA), on the 39 end to allow direct detection of the PCR

product. Reactions were amplified and quantified by using as ABI

7700 sequence detector and the manufacturer’s corresponding

Figure 8. CARMA1 mediates TLR-dependent synergistic MUC5AC induction by NTHi and PMA via cross-talk with TRAF6. (A) CARMA1
knockdown by CARMA1-siRNA efficiently reduced the endogenous CARMA1 expression at both the mRNA and protein level, as assessed by Q-PCR
and WB, respectively. (B) CARMA1-siRNA inhibited the synergistic induction of MUC5AC transcription by NTHi and PMA. Values are the means 6 S.D.
(n = 3). *p,0.05 vs. NTHi alone; **p,0.05 vs. control siRNA transfeced cells. (C) Synergistic enhancement of NTHi-induced TRAF6 polyubiquitination
by PMA was attenuated by CARMA1 knockdown. (D) Schematic representation depicting how CARMA1 mediates the synergistic enhancement of
MUC5AC expression in human epithelial cells. The data shown are representative of three independent experiments. CON, control; 2, absence of;
+, presence of; NTHi, nontypeable Haemophilus influenzae; Ubn, ubiquitin; TLRs, toll-like receptors; TRAF6, TNF receptor associated factor 6; PKC,
protein kinase C.
doi:10.1371/journal.pone.0031049.g008
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software (Applied Biosystems). Relative quantity of mRNAs were

obtained by using the comparative Ct Method (for details, see

User Bulletin 2 for the ABI PRISM 7500 sequence-detection

system) and was normalized by using TaqMan Pre-Developed

Assay Reagent human cyclophilin as an endogenous control

(Applied Biosystems). The primers and probe for human

MUC5AC were as follows: 59-GTT CTA TGA GGG CTG

CGT CTT T-39 (forward primer) and 59-GGC TGG AGC ACA

CCA CAT C-39 (reverse primer); TaqMan probe, 59-FAM-ACC

GGT GCC ACA TGA CGG ACC T-TAMRA-39.

Western Blot (WB) Analysis
Western blots were performed as described [97]. Briefly,

western blots were performed using whole cell extracts, separated

on 8–10% SDS-PAGE gels and transferred to polyvinylidine

difluoride membranes (Pall Life Sciences, Pensacola, FL). The

membrane was blocked with a solution of TBS containing 0.1%

Tween 20 (TBS-T) and 5% nonfat milk. After three washes in

TBS-T, the membrane was incubated in a 1:1000 dilution of a

primary antibody. After another three washes in TBS-T, the

membrane was incubated with 1:2000 dilution of the correspond-

ing secondary antibody. The membrane was reacted with

chemiluminescence reagent ECL (Amersham Biosciences) to

visualize to blots. Antibodies against phospho-p38 (Thr180/

Tyr182), p38, phospho-MKK3/6 (Ser-189/207), MKK3, phos-

pho-ERK1/2 (Thr202/Tyr204), ERK1/2, phospho-MEK1/2

(Ser217/221), MEK1/2 and CARMA1 were purchased from

Cell Signaling Technology (Beverly, MA), Antibodies against

TRAF6 and Ubiquitin were from Santa Cruz Biotechnology, and

anti-b-actin was from Sigma.

Immunoprecipitation (IP)
For immunoprecipitation, 800 ml of lysates were incubated for

1 hour at 4uC with control mouse IgG and protein A/G-agarose

(Santa Cruz Biotechnology). After centrifugation, anti-TRAF6

antibody (Santa Cruz Biotechnology) was incubated with super-

natant for 1 h at 4uC, followed by incubation overnight with

protein A/G-agarose. Immunoprecipitates were washed twice

with RIPA buffer, resuspended in 26 SDS loading buffer, and

separated on 8% SDS-PAGE, followed by Western blot analysis.
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