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Abstract

A homoplasy is a nucleotide identity resulting from a process other than inheritance from a common ancestor.

Importantly, by distorting the ancestral relationships between nucleotide sequences, homoplasies can change the

structure of the phylogeny. Homoplasies can emerge naturally, especially under high selection pressures and/or high

mutation rates, or be created during the generation and processing of sequencing data. Identification of homoplasies

is critical, both to understand their influence on the analyses of phylogenetic data and to allow an investigation into

how they arose. Here we present HomoplasyFinder, a java application that can be used as a stand-a-lone tool or

within the statistical programming environment R. Within R and Java, HomoplasyFinder is shown to be able to

automatically, and quickly, identify any homoplasies present in simulated and real phylogenetic data. HomoplasyFinder

can easily be incorporated into existing analysis pipelines, either within or outside of R, allowing the user to quickly

identify homoplasies to inform downstream analyses and interpretation.

DATA SUMMARY

Three previously published datasets were used in the
current analyses:

(1) Crispell et al. 2017: Whole Genome Sequence Myco-
bacterium bovis data published under bioproject
accession number: PRJNA363037 on National
Centre for Biotechnology Information
(NCBI).

(2) Grandjean et al. 2017: Whole Genome Sequence
Mycobacterium tuberculosis data published under
project: ERP004677 on European Nucleotide Archive
(ENA).

(3) Didelot and Wilson 2015: Whole Genome Sequence
Staphylococcus aureus published as an example dataset
for ClonalFrameML: http://www.danielwilson.me.uk/
files/ClonalFrameML/

All the code generated for this manuscript and for

HomoplasyFinder is freely available on GitHub. General

scripts are here, the Java source code files are available

here, and the R package (homoplasyFinder) can be

accessed here.

INTRODUCTION

A phylogenetic tree describes the ancestral relationships
between nucleotide sequences. The accuracy of the ancestral
relationships depicted in the phylogenetic tree relies upon the
vast majority of nucleotide differences, which define the tree,
resulting from substitution events that only occurred once [1].
A homoplasy defines when the same substitution occurs multi-
ple times independently in separate evolutionary lineages [2–4].

Homoplasies often obscure the true evolutionary history of
sequences by suggesting greater genetic similarity.The presence
ofa largenumberofhomoplasies in a set of sequences can there-
foreobscure their truephylogenetic relationships [5, 6].

There aremultipleways that homoplasies can arise.Convergent
evolution can result in the same nucleotide evolving indepen-
dently at a position on a genome [7].Widespread antibiotic use
is known to increase selective pressures, prompting convergent
evolution that can promote resistance [8, 9]. Recombination,
defined as the reorganising of the genome or the incorporation
of novel genetic material into it [10, 11], can also create homo-
plasies [12]. In addition, homoplasies can be introduced during
thegenerationorprocessingof sequencingdata [13, 14].
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In 1971, Fitch [15] described calculating the minimum
number of state changes required on a phylogenetic tree to
explain the characters observed for that state at the tips of
the tree. An example of a state is a nucleotide at a position
in an alignment, that state can vary in different sequences
and is usually one of four nucleotides (A=Adenine, C=Cyto-
sine, G=Guanine, and T=Thymine). The consistency index
uses the minimum number of state changes to determine
how consistent the nucleotides observed at a site in an align-
ment are with a phylogeny [16]. When the consistency
index is equal to one that site is entirely consistent, values
less than one indicate a degree of inconsistency, with zero
meaning completely inconsistent.

The consistency index can be used to efficiently identify
homoplasies. It is possible to calculate the consistency index
using a variety of tools, for example: phangorn [17], phylip
[18], treetime [19] and mesquite [20], and in RAxML [21].
How to access these tools varies considerably, requiring dif-
fering expertise: phangorn is a package within the statistical
programming environment R, phylip, treetime and RAxML
work in the command line, and mesquite provides a Graphi-
cal User Interface (GUI). These tools are designed to con-
duct varied and complicated phylogenetic analyses, but not
specifically for identifying homoplasies.

Here, we present HomoplasyFinder a tool specifically
designed to identify homoplasies. Using the consistency
index, HomoplasyFinder is able to quickly identify homopla-
sies given a phylogenetic tree and nucleotide alignment.
Once identified, HomoplasyFinder returns an annotated
Newick formatted phylogeny, a simple report and a nucleo-
tide alignment without any inconsistent sites. Homoplasy-
Finder is an open-source Java application that can be
accessed in R, in the command line or via a GUI. The cur-
rent article describes the implementation and testing of
HomoplasyFinder.

THEORY AND IMPLEMENTATION

Calculating consistency index

The algorithm used to calculate the minimum number of
changes for the characters at each alignment site on a phylo-
genetic tree was adapted from that of Swofford et al. [22]
(summarised in Fig. 1). The algorithm uses the following
steps:

(1) Read Newick file (A Newick file is a standard file for-
mat for storing phylogenetic trees)

(2) Read FASTA file (A FASTA file is a standard file for-
mat for storing a set of unaligned or aligned nucleo-
tide sequences)

(3) Initialise a vector of zeros with length equal to the
number of sites in the alignment to record the tree
length for each site

(4) Assign the nucleotide sequences to their respective
tips in the phylogenetic tree. Note that these sequen-
ces are represented as character sets for each site in
the alignment.

(5) Select an unvisited internal node. If none is available,
finish.
(a) Check if any descendant nodes are unvisited. If

they are, visit them first.
(b) Examine each site in the alignment.

. If the character sets for each descendant node at
the current site have elements in common -
assign the intersection of the character sets to the
current internal node for the current site. Other-
wise, assign the union of the character sets and
increment the tree length for the current site

(c) Set the current internal node to visited and return
to step 5

The consistency index for each site in the alignment is then
calculated by dividing the minimum number of changes on
the phylogeny by the number of different nucleotides
observed at that site minus one. Sites with a consistency
index of less than one will be reported as inconsistent and
potentially homoplasious.

Importantly, where Ns are present in the alignment (an N
indicates that insufficient data are available to determine the
nucleotide at that sequence position), the character set will
contain four nucleotides (A, C, G and T). Similarly, other
IUPAC (International Union of Pure and Applied Chemis-
try) codes can be handled.

The steps described were implemented in Java, available
here. All the source code is hosted on the open-source plat-
form github. HomoplasyFinder is licensed under a GPL-3.0
licence. The R package, homoplasyFinder, uses the R pack-
age rJava [23] to interact with the HomoplasyFinder Java

IMPACT STATEMENT

We are currently in a sequencing revolution; sequencing

data is being generated and analysed at an unprece-

dented rate. Often phylogenetic approaches, which study

the ancestral relationships between sequences, underpin

the analysis of sequencing data. A homoplasy is a char-

acter shared across clades in a phylogeny that don’t

share direct ancestry, are an indication of inconsistency

between the phylogenetic tree and the sequences used

to build it. Homoplasies on a phylogeny can be created

naturally, from convergent evolution or recombination,

or unnaturally, during the generation and processing of

sequencing data. Before the phylogenetic relationships in

a tree are interpreted, it is crucial that any inconsisten-

cies between the sequencing data and the tree are identi-

fied. Here we present HomoplasyFinder an open-source

tool that will automatically identify all homoplasies pres-

ent on a phylogeny. Implemented in Java and accessible

in the command line, in R, or via a graphical user inter-

face, HomoplasyFinder is a fast and easy-to-use tool that

can be readily incorporated into existing phylogenetic

analyses pipelines.
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application. Importantly, HomoplasyFinder, and the consis-
tency index in general, will be most accurate when the phy-
logeny is well-resolved. In addition, HomoplasyFinder is
designed to work on a Newick formatted phylogeny, which
will be rooted.

Testing HomoplasyFinder

Identifying homoplasies in simulated data

HomoplasyFinder was tested using simulated nucleotide

sequence alignments with known homoplasies created in R
(v3.4.0 [24]). A continuously mutating sequence of nucleoti-

des was sent through a simulated population, passing from
infected to susceptible individuals. Mutations were modelled

using a Poisson distribution, occurring, on average, once

every two time-steps and at unique positions. The infec-
tiousness of each infected individual per time-step was

0.001 (on average, one in every 1000 susceptible individuals
were infected by a single infected individual). Each infected
individual carried their own continuously mutating
sequence of nucleotides, which they received from the indi-
vidual that infected them. Infected individuals were sampled
(removed and their sequence recorded) throughout each
simulation with a probability of 0.05 (per infected individual
per time-step). Each simulation used 200 individuals and
ran until 100 individuals were sampled. A maximum likeli-
hood phylogenetic tree was reconstructed with the sampled
sequences from each simulation using the phangorn R pack-
age [17].

Homoplasies were introduced into the simulated sequences
by randomly selecting a pair of non-nested nodes (i and j)
on the maximum likelihood phylogenetic tree. A random
position with a nucleotide that was unique to the sequences

Fig. 1. Diagrams demonstrating calculating the tree length of one site in a nucleotide alignment. Step 1. Demonstrates how the

nucleotides at one site in each sequence are assigned to the tips in a phylogeny. Step 2. Demonstrates defining the nucleotide sets at

each internal node, as either the union or intersection of the nucleotide sets of the descendent nodes, and calculating the tree length.
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of node i was selected without replacement and assigned to
node j’s sequences. The simulated nucleotide sequences
with their inserted homoplasies were stored in a FASTA file,
and a maximum likelihood phylogenetic tree was recon-
structed and stored in a Newick file.

An additional set of simulations were completed to investi-
gate how recombination events influence the identification
of homoplasies using HomoplasyFinder. A varying number
of recombination events were incorporated into the simu-
lated sequences with 100 previously inserted homoplasies,
and the number of the inserted homoplasies identified by
HomoplasyFinder was recorded. Similarly to the insertion of
homoplasies, recombination events were simulated by ran-
domly selecting a pair of non-nested nodes (i and j) on the
phylogenetic tree reconstructed using simulated sequences.
Next, a 100 bp region (r) of the simulated alignment was
randomly chosen. Lastly, the consensus sequence for the
region r from node i’s sequences was assigned to node j’s
sequences.

Identifying homoplasies in published data

Three whole-genome-sequence datasets, Mycobacterium
bovis data (298 genomes) published by Crispell et al. [25],
M. tuberculosis data (472 genomes) published by Grandjean
et al. [26], and Staphylococcus aureus data (110 genomes)
published by Didelot and Wilson [27], were processed
according to the methods described in the respective
articles. HomoplasyFinder was used to check whether any
homoplasies were present in these data. Grandjean et al.
[26] published a list of a subset of the homoplasies they

identified and these were compared with the output from

HomoplasyFinder. ClonalFrameML [27] was used to analyse

the S. aureus data and its output was compared with the

results from HomoplasyFinder.

Comparing to published tools

Treetime and phangorn were selected for speed comparisons
with HomoplasyFinder. Whilst phangorn directly calculates
the consistency index, Treetime uses ancestral sequence
reconstruction methods to identify homoplasies. The time
taken for HomoplasyFinder (accessed within R and in the
command line) to recognise simulated homoplasies was
compared to the same data analysed by Treetime and phan-
gorn. The comparisons were carried out on a desktop
Ubuntu computer with an AMD Ryzen 5 1600X processor
with six cores and 16GB of Random Access Memory
(RAM).

Using HomoplasyFinder

HomoplasyFinder can be accessed within R, in the com-
mand line or via a GUI. The R package, homoplasyFinder,
can be directly imported into a package library using the fol-
lowing commands:

install.packages(‘devtools’)

library(‘devtools’)

install_github(‘JosephCrispell/
homoplasyFinder’)

library(‘homoplasyFinder’)

Fig. 2. Identifying homoplasies in simulated data using HomoplasyFinder. (a) The proportion of 1000 simulated phylogenetic datasets

with X inserted homoplasies (where the number of inserted homoplasies ranged from 0 to 100 in steps of 1) not identified using Homo-

plasyFinder - i.e., false negatives. (b) The proportion of 1000 simulated phylogenetic datasets with X non-inserted homoplasies identi-

fied by HomoplasyFinder - i.e., false positives. Each point is coloured according to X, which represents either the number of inserted

homoplasies not found, or the number of non-inserted homoplasies found.
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Once the package is loaded, the runHomoplasyFinder-
InJava() function can be used to execute
HomoplasyFinder.

In the command line the application without a GUI can be
ran using:

java -jar homoplasyFinder.jar --fasta fas-
taFile --tree treeFile where the full paths are pro-
vided to FASTA and NEWICK tree files. A range of
command line options are available and can be viewed using
the --help flag. The application with a GUI can be exe-
cuted by double clicking.

HomoplasyFinder can produce three different output files: a

report (in a CSV format) detailing the consistency informa-

tion calculated for each homoplasious site in the input

alignment (use the --includeConsistent flag to
include information for all sites), an alignment without the
inconsistent sites (in a FASTA format), and an annotated
phylogeny (in a NEWICK format). These output files are all
in standard formats and as such should be accessible to any
programs designed to handle these formats, for example the
annotated phylogeny can be viewed within R using the ape
package, or by using figtree or icytree. Full documentation
for HomoplasyFinder can be found here.

RESULTS AND DISCUSSION

Identifying simulated homoplasies

HomoplasyFinder was able to accurately identify the homo-
plasies within the simulated phylogenetic datasets (Fig. 2a).
On average across the simulations, HomoplasyFinder

Fig. 3. Creating non-identifiable homoplasies. An example of how the process of creating simulated, and naturally evolving, homopla-

sies can result in homoplasies that can’t be detected.
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detected 98.5% (Lower 2.5%: 92.4%, Upper 97.5%: 100%)

of the inserted homoplasies. Simulated homoplasies that

weren’t detected were created when the sequences involved

were (or ended up being) directly adjacent on the phyloge-

netic tree (Fig. 3). In addition, Fig. 2b demonstrates that the

process of inserting homoplasies can alter the phylogenetic

data such that non-inserted homoplasies were present.

Fig. 4 demonstrates that recombination events can strongly

influence the structure of the phylogeny and thereby the

ability to accurately detect homoplasies. Recombination

events themselves can cause homoplasies. Therefore, if high

levels of recombination are present in genetic data, their

influence on the phylogeny must be accounted for prior to

identifying homoplasies.

Whilst the simulations demonstrate that HomoplasyFinder
can accurately identify homoplasies in phylogenetic data,
they also highlight the circularity to the identification of
homoplasies. The sequence data with homoplasies is used to
reconstruct the phylogenetic tree that is used to identify the
homoplasies. A phylogenetic tree is necessary to identify
homoplasies as it defines hierarchical clusters of the sequen-
ces. Therefore, the accuracy of homoplasy identification relies
upon the homoplasies themselves having not strongly influ-
enced the true phylogenetic relationships between the
sequences.

Identifying homoplasies in published data

M. bovis and M. tuberculosis are both slowly evolving,
highly conserved pathogens with relatively large genomes

Fig. 4. The proportion of 100 homoplasies inserted into simulated nucleotide sequences that were identified by HomoplasyFinder

before (red) and after (blue) recombination events had been applied to the sequences. The simulated sequences had either 0, 1, 10,

100, 1000 or 10 000 recombination events applied to them. The vertical lines represent the range between the lower 2.5% and upper

97.5% of the proportions calculated on each of 1000 replicates.
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that rarely recombine [28, 29]. Therefore, genome sequence
data of these pathogens should provide a phylogenetic sig-
nature that is close to perfect (without homoplasies), pro-
vided the sequencing quality is good.

HomoplasyFinder identified six homoplasies (0.2% of the
3852 polymorphic sites identified) present in the alignment
analysed and published by Crispell et al. [25] (Fig. 5). Given

the stringent quality filtering carried out by Crispell et al.
[25], and that each of the homoplasies identified was found
in three or more sequences, these are likely to be the result
of evolutionary, rather than sequencing, processes.

Three of the six homoplasies identified in the M. bovis
data are found close to, or within, genes encoding cell-
surface proteins that are known to be highly variable

Fig. 5. Identifying homoplasies in M. bovis data using HomoplasyFinder. A phylogenetic tree reconstructed using 298 published M. bovis

whole genome sequences [25]. HomoplasyFinder identified homoplasies at six different positions (0.2% of the 3852 polymorphic posi-

tions identified), the nucleotides associated with these positions in each sequence are plotted and coloured according to their type

(Adenine=red, Cytosine=blue, Guanine=cyan and Thymine=orange). Where no information for the nucleotide at a particular site in a

sequence was available, it is coloured white. The positions, on the M. bovis reference genome [33], associated with the identified homo-

plasies are reported in the top right and annotated on the internal nodes where a change was necessary. To avoid overlapping one of

the labels was slightly moved and a red line points to the node it annotates.
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[30, 31]. In addition, the homoplasy found at position
1 505 649 was associated with two large independent
clades and, therefore, is likely to have resulted from
convergent evolution as a result of the high selection
pressures exerted on genes encoding surface proteins.
The presence of these six homoplasies is unlikely to
have strongly influenced the structure of the published
phylogeny, but these sites, and their influence, should
be considered in any future research.

HomoplasyFinder identified 798 homoplasies (3.6 % of the

21 877 polymorphic sites identified) in the M. tuberculosis

data published by Grandjean et al. [26]. The high number

of homoplasies identified is likely to have resulted from the
quality filtering carried out by Grandjean et al. [26] being
less stringent than that of Crispell et al. [25]: no proximity
filtering was conducted, difficult to sequence regions were
retained (such as repeat regions and mobile elements), and
the quality thresholds were lower (for example, no read
depth filter was used and a high-quality base depth was set
to two). Grandjean et al. [26] called variants and compared
them with phenotypic drug resistance profiles, making spec-
ificity of the variants called less important, therefore the low
quality thresholds used here are unlikely to have caused
problems in their downstream analyses. Of the 105 homo-
plasies reported by Grandjean et al. [26], 11 weren’t

Fig. 6. Comparing HomoplasyFinder to phangorn and treetime. The time taken to identify 10 homoplasies present in simulated phyloge-

netic datasets by HomoplasyFinder accessed in R and the command line, phangorn in R and by treetime in the command line. A total of

190 different datasets were tested, ranging from 100 to 1000 sequences, in steps of 50 with 10 replicates of each. The number of

positions in these sequences ranged from 4000 to 20 000. The points and vertical lines plotted represent the mean, and range, respec-

tively, of the ten replicates.
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identified by HomoplasyFinder, or phangorn. These 11 sites
not identified by HomoplasyFinder were associated with
poor quality sequence data and showed no evidence of being
homoplasious upon manual examination.

ClonalFrameML identified 1518 recombination events in
the S. aureus dataset analysed here and reported 13 743
homoplasious patterns (to save computation, ClonalFra-
meML condenses the input alignment into unique patterns
(n=20 791) that can be linked back to individual positions).
These homoplasious patterns were all identified by Homo-
plasyFinder and found to be associated with 19 810 positions
in the nucleotide alignment. Of these 19 810 positions,
12 097 were found within the regions of the alignment that
were associated with recombination events. For S. aureus,
which undergoes high levels of recombination [32], in order
to reconstruct a well-resolved phylogeny the effects of
recombination must be considered. Methods to account for
recombination include reconstructing the phylogeny using
areas of the genome that are free from recombination or
using tools such as ClonalFrameML that can account for
recombination whilst reconstructing a phylogeny.

Comparison with published tools

HomopasyFinder, accessed via Java directly or using R,
was faster than both phangorn and treetime (Fig. 6).
HomoplasyFinder analysed the largest dataset of 1000
sequences each containing approximately 20 000 nucleo-
tides, in less than five seconds, whilst phangorn took
around 20 s and treetime took over two minutes. Dur-
ing these trials as well as identifying homoplasies,
HomoplasyFinder, in contrast to the other tools, was
also creating a Newick file containing an annotated
phylogeny and a new FASTA file with an alignment
without the sites where homoplasies were identified.

Conclusions

Here, we describe HomoplasyFinder; an open-source, non-
parametric Java application that is accessible within R, in
the command line, and via a GUI. HomoplasyFinder uses
the consistency index to quickly and accurately identify
homoplasies. Once HomoplasyFinder has been used, any
homoplasies identified can be interrogated, and their origins
and influence on future work determined.
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