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ABSTRACT

Dimension reduction and (spatial) clustering is
usually performed sequentially; however, the
low-dimensional embeddings estimated in the
dimension-reduction step may not be relevant to
the class labels inferred in the clustering step.
We therefore developed a computation method,
Dimension-Reduction Spatial-Clustering (DR-SC),
that can simultaneously perform dimension re-
duction and (spatial) clustering within a unified
framework. Joint analysis by DR-SC produces
accurate (spatial) clustering results and ensures
the effective extraction of biologically informative
low-dimensional features. DR-SC is applicable to
spatial clustering in spatial transcriptomics that
characterizes the spatial organization of the tissue
by segregating it into multiple tissue structures.
Here, DR-SC relies on a latent hidden Markov random
field model to encourage the spatial smoothness of
the detected spatial cluster boundaries. Underlying
DR-SC is an efficient expectation-maximization
algorithm based on an iterative conditional mode.
As such, DR-SC is scalable to large sample sizes
and can optimize the spatial smoothness parameter
in a data-driven manner. With comprehensive sim-
ulations and real data applications, we show that
DR-SC outperforms existing clustering and spatial
clustering methods: it extracts more biologically
relevant features than conventional dimension

reduction methods, improves clustering perfor-
mance, and offers improved trajectory inference and
visualization for downstream trajectory inference
analyses.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) studies encom-
pass a set of widely applied technologies that profile the
transcriptome of individual cells on a large scale and can re-
veal cell subpopulations within a tissue (1,2). Spatial tran-
scriptomics studies, on the other hand, involve a series of
recently developed technologies that allow for the simulta-
neous characterization of the expression profiles of multi-
ple tissue locations while retaining their locational informa-
tion. scRNA-seq technologies include full-length transcript
sequencing approaches (e.g., Smart-seq2 (3) and MATQ-
seq (4)) and 3′/5′-end transcript sequencing technologies
(e.g., Drop-seq (5) and STRT-seq (6)). While spatial tran-
scriptomics technologies include earlier fluorescence in situ
hybridization (FISH)-based approaches (e.g., seqFISH (7)
and MERFISH (8)) and sequencing-based techniques (e.g.,
10x Visium (9) and Slide-seq (10)) among others. Both
scRNA-seq and spatial transcriptomic technologies have
provided unprecedented new opportunities to characterize
the cell type heterogeneity within a tissue, investigate the
spatial gene expression patterns (11,12), explore the tran-
scriptomic landscape of the tissue, identify spatial trajecto-
ries on the tissue (13), and characterize the spatial distribu-
tion of cell types within tissues and across multiple tissue
types (14–16).
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In the analysis of both scRNA-seq and spatial transcrip-
tomics datasets, dimension reduction and (spatial) cluster-
ing are two key analytical steps that are critical for many
downstream analyses such as cell lineage analysis and dif-
ferential expression analysis. Specifically, due to the curse
of dimensionality, dimension-reduction methods are usu-
ally applied to the transformation of the original noisy ex-
pression matrix in either scRNA-seq or spatial transcrip-
tomics into a low-dimensional representation before per-
forming (spatial) clustering analysis (13,17–19). The exist-
ing literature describes many dimension-reduction meth-
ods that have been developed and common methods in-
clude principal component analysis (PCA), weighted PCA
(WPCA) (20), t-distributed stochastic neighbor embedding
(tSNE) (21), uniform manifold approximation and pro-
jection (UMAP) (22), etc. PCA is a well-recognized ap-
proach that is routinely used in many software packages
used for both scRNA-seq and spatial transcriptomics anal-
yses (17,23) and has many desirable features such as sim-
plicity, computational efficiency, and relative accuracy. For
example, Seurat (24), SpaGCN (25), BayesSpace (26) and
SC-MEB (27) all first extract the top principal compo-
nents (PCs) from the high-dimensional expression matrix
and then perform (spatial) clustering analysis. WPCA is
a variation of PCA that imposes different weights on dif-
ferent genes to upweight the potentially informative genes
(20) in the presence of heteroscedastic noises. SpatialPCA
is another variation of PCA that incorporates spatial local-
ization information to encourage neighborhood similarity
in the PC space (13). While fitting PCA, WPCA and Spa-
tialPCA is generally automatic and does not rely on param-
eter tuning, the other two widely used nonlinear dimension-
reduction methods tSNE and UMAP rely relatively heavily
on the manual tuning of parameters for optimized perfor-
mance (19,23). In addition to these generic methods, several
dimension-reduction methods have been developed that ac-
count for either the count nature and/or dropout events of
scRNA-seq data, e.g., zero-inflated factor analysis (ZIFA)
(28) zero-inflated negative binomial-based wanted variation
extraction (ZINB-WaVE) (29), and single-cell variational
inference tools (scVI) (30).

After obtaining a low-dimensional representation with
dimension reduction, (spatial) clustering analyses are then
carried out. Clustering of scRNA-seq data aims to iden-
tify cell types and cluster cells into the distinct cell cate-
gories. Spatial clustering in spatial transcriptomics aims to
use spatial transcriptomic information to cluster tissue lo-
cations into multiple spatial clusters, effectively segment-
ing the entire tissue into multiple tissue structures or do-
mains. Cell-type clustering facilitates our understanding of
the cellular composition of tissues with potentially hetero-
geneous cell types, whereas spatial clustering facilitates the
characterization of the tissue structure and is a key step to-
wards understanding the spatial and functional organiza-
tion of tissue. Common clustering methods for scRNAseq
analysis include k-means (31) and the Gaussian mixture
model (GMM) (32). Common spatial clustering methods
for spatial transcriptomics analysis include the graph con-
volutional network (GCN)-based approach SpaGCN (25),
the hidden Markov random field model (HMRF) imple-
mented in the Giotto package (33), BayesSpace (26), SC-

MEB (27), and SpatialPCA (13), all of which promote the
smoothness of cluster assignments in neighboring tissue lo-
cations. By performing dimension reduction and (spatial)
clustering sequentially, the estimated low-dimensional em-
beddings and class labels can be used for many types of
downstream analyses, such as cell lineage analysis (34–37),
spatial trajectory inference on the tissue (13), and differen-
tial gene expression (DGE) analysis (38).

The majority of existing methods for dimension reduc-
tion and (spatial) clustering have been used in a tandem
analysis by first performing dimension reduction on expres-
sion matrix followed by (spatial) clustering analysis of the
estimated low-dimensional embeddings (19), as shown in
Figure 1A. Performing dimension reduction and (spatial)
clustering as two sequential analytical steps is not ideal
for two important reasons. First, these tandem methods
optimize distinct loss functions for dimension reduction
and (spatial) clustering separately, and the two loss func-
tions may not be consistent with each other when aiming
to achieve optimal (spatial) cluster allocation (39). PCA
aims to retain as much variance as possible in as few PCs
as possible, whereas spatial clustering aims to either mini-
mize within-cluster variances or maximize between-cluster
variances. Second, the dimension-reduction step in the tan-
dem methods does not consider uncertainty in obtaining
low-dimensional features. Consequently, the extracted low-
dimensional components are effectively treated as error-free
in the spatial clustering analysis, which is not desirable. To
address these two drawbacks of tandem analysis, several re-
cent methods have been developed in other research areas to
perform joint dimension reduction and clustering analysis.
For example, an ad-hoc remedy would perform two ana-
lytical steps iteratively: estimating the low-dimensional em-
beddings by applying supervised dimension reduction to-
gether with the inferred latent class labels (the Dimension-
Reduction step;DR), and inferring class labels using esti-
mated embeddings, and using, if necessary, spatial infor-
mation (the Spatial-Clustering step;SC). These simple pro-
cedures echo some recent explorations of self-supervised
learning (40,41), in which deep neural networks were com-
bined with simple classifiers to perform unsupervised clus-
tering of image data. To some extent, joint methods employ
self-learning to classify all spots and obtain latent features
iteratively. However, it is still challenging to unify the ex-
isting methods and combine both DR and SC steps in a
self-learning manner.

Here, we propose a unified and principled method to
both estimate low-dimensional embeddings relevant to la-
tent class labels and, in the case of spatial transcrip-
tomics analysis, further leverage these embeddings with
spatial information to perform spatial clustering using an
HMRF. The proposed method was built on a hierarchi-
cal model with two layers, as shown in Figure 1B: the
first layer relates gene expression to low-dimensional em-
beddings and represents the DR step; while the second
layer relates the latent embeddings to the cluster labels,
and, if necessary, spatial information and thus represents
the SC step. These two layers are unified in DR-SC such
that the relevant features are estimated while simultane-
ously performing spatial clustering. We developed an effi-
cient expectation-maximization (EM) algorithm based on
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Figure 1. Workflows for both tandem analysis (A) and DR-SC (B) and potential applications of DR-SC in downstream analysis (C). (A & B). Compared
with tandem analysis, DR-SC iteratively performed dimension reduction and (spatial) clustering with improved estimation for both clustering and low-
dimensional embeddings. (C) DR-SC can be used to cluster cell types, with the number of clusters selected in a data-driven manner. The estimated cell
types can be used to perform differential gene expression analysis. The estimated low-dimensional embeddings from DR-SC can be used for visualization,
trajectory inference, and detection of gene expression with spatial variations by controlling cell-type-relevant covariates.
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an iterative conditional mode (ICM) (42,43). DR-SC is not
only computationally efficient and scalable to large sam-
ple sizes but is also capable of optimizing the smooth-
ness parameter in the spatial clustering component. Impor-
tantly, when the smoothness parameter is set to zero, DR-
SC directly performs clustering for scRNA-seq data with
no spatial information. Unlike existing spatial clustering
approaches, DC-SC can determine the number of clusters
in an automatic fashion using modified Bayesian informa-
tion criteria (MBIC) (44). Using 16 benchmark scRNA-
seq datasets, we demonstrated that the low-dimensional
embeddings and the class labels estimated from DR-SC
lead to better performance in the downstream lineage
analysis using Slingshot (36). We further illustrated, us-
ing both CITE-seq and spatial transcriptomics (10x Visium
and Slide-seqV2) datasets, that DR-SC achieves higher
(spatial) clustering accuracy and resolves low-dimensional
representations with improved visualization. To exemplify
the utility of the estimated low-dimensional embeddings
from DR-SC, we performed analysis to infer cell lin-
eages using a seqFISH mouse embryonic dataset. The R
package DR.SC is available on CRAN (https://CRAN.R-
project.org/package=DR.SC), with functions implemented
for standalone analysis and Seurat based (45) pipeline anal-
yses.

MATERIALS AND METHODS

Model specification

We proposed the use of DR-SC to estimate low-dimensional
latent features while improving clustering performance via
a unified statistically principled method. DR-SC relates to a
two-layer hierarchical model that simultaneously performs
dimension reduction via a probabilistic PCA model and
promotes spatial clustering using an HMRF based on em-
pirical Bayes. With spatial transcriptomics datasets, we ob-
serve a p-dimensional log-normalized expression vector xi
= (xi1, ···, xip)T for each spot, si ∈ R

2, on square or hexag-
onal lattices, while its class label, yi ∈ {1, ···, K}, and q-
dimensional embeddings, zi’s, are unavailable. Without loss
of generality, we assume that xi is centered and DR-SC
models the centered log-normalized expression vector xi,
with its latent low-dimensional feature, zi, and class label,
yi, as

xi = Wzi + εi , εi ∼ N(0,�), (1)

zi |yi = k ∼ N(μk, �k), (2)

where � = diag(�1, ···, �p) is a diagonal matrix for residual
variance, W ∈ R

p×q is a loading matrix that transforms the
p-dimensional expression vector into q-dimensional embed-
dings, and μk ∈ R

q×1 and �k ∈ R
q×q are the mean vector

and covariance matrix for the kth class, respectively. Equa-
tion (1) relates to the high-dimensional expression vector
(xi) in p genes with a low-dimensional feature (zi) via a prob-
abilistic PCA model while Equation (2) is a GMM for this
latent feature among all n spots. When spatial coordinates
(si) are available, we assume each latent class label, yi, is
interconnected with the class labels of its neighborhoods
via a Markov random field. To promote spatial smooth-
ness within spot neighborhoods, we assume that the hidden

Markov random field y = (y1, ···, yn)T takes the following
Potts model (46),

Pr(y) = C(β)−1 exp

⎧⎨
⎩−1

2

∑
i

∑
i ′∈Ni

β(1 − δ(yi , yi ′ ))

⎫⎬
⎭ , (3)

where � is a Dirac function, C(�) is a normalization con-
stant that does not have a closed form, Ni is the neighbor-
hood of spot i, and � is the smoothing parameter that con-
trols the similarity among the neighboring labels, in other
words, the degree of spatial smoothness. When this smooth-
ing parameter � goes to zero, the spatial-clustering step in
DR-SC, Equations (2) and (3), is reduced to a latent GMM
with no spatial information.

DR-SC unifies both models for dimension reduction and
(spatial) clustering (Figure 1B). By combining the latent
GMM in Equation (2) and the Potts model in Equation (3),
DR-SC performs the spatial clustering on low-dimensional
embeddings obtained from the probabilistic PCA model
in Equation (1). Conventionally, the embeddings obtained
using unsupervised dimension reduction methods, such as
PCA, UMAP, or tSNE, reflect variations caused by differ-
ent sources, including batch effects and microenvironments
among the observed cells/spots, etc., other than cell-type
differences. Thus, embeddings from unsupervised dimen-
sion reduction analyses may distort the downstream cluster-
ing used for cell typing (47). In contrast, DR-SC performs
dimension reduction in a self-learning manner, where the
embeddings, zi’s, are estimated under the supervision of the
estimated latent labels for each spot (Figure 1B). Thus, the
obtained embeddings capture information with regards to
biological differences, e.g., cell-type or cell-state differences,
which in turn improve the spatial clustering for cell typing.
When no spatial information is available, as in scRNA-seq,
we can simply apply a latent GMM (2) without considering
the Potts model (3).

Compared methods

We conducted comprehensive simulations and real data
analysis by comparing the dimension reduction and clus-
tering performance of DR-SC with those of existing meth-
ods. In detail, we considered the following eight dimension-
reduction methods to compare the dimension-reduction
performance: (1) PCA implemented in the R package stats;
(2) WPCA (48) implemented in the R package DR.SC;
(3) factorial k-means (FKM) (39) implemented in the R
package clustrd; (4) tSNE; (5) UMAP, in which tSNE and
UMAP were implemented in the R package scater; (6)
ZIFA implemented in the Python module ZIFA; (7) ZINB-
WaVE implemented in the R package zinbwave; and (8)
scVI implemented in the Python module scvi. As the last
three methods, ZIFA, ZINB-WaVE, and scVI, can be ap-
plied to only raw count data, we compared their perfor-
mance with that of DR-SC in Simulation 2 with the count
matrix for expression levels and real datasets.

We considered the following 10 clustering methods when
comparing clustering performances. (1) BayesSpace (26)
implemented in the R package BayesSpace; (2) Giotto (33)
implemented in the R package Giotto; (3) SC-MEB (27) im-

https://CRAN.R-project.org/package=DR.SC
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plemented in the R package SC.MEB; (4) SpaGCN (25) im-
plemented in the Python module SpaGCN; (5) Louvain (49)
implemented in the R package igraph; (6) Leiden (50) imple-
mented in the R package leiden; (7) GMM implemented in
the R package mclust; (8) k-means implemented in the R
package stats; (9) FKM (39) implemented in the R package
clustrd; and (10) subspace clustering based on arbitrarily
oriented projected cluster generation (ORCLUS) (51) im-
plemented in the R package orclus. In tandem analysis, we
used BayesSpace, Giotto, SC-MEB, and SpaGCN, which
were recently developed to perform spatial clustering, and
Louvain, Ledien, GMM, and k-means, which are conven-
tional non-spatial clustering algorithms. We also applied
FKM and ORCLUS to perform joint dimension reduction
and clustering analysis.

Simulations

We performed two sets of simulations as follows. Simulation
1 involved log-normalized gene expression data. In this sim-
ulation, we generated non-spatial/spatial log-normalized
gene expressions. In detail, we generated the class label, yi,
for each i = 1, ···, n in a rectangular 70 × 70 lattice from a
K-state (K=7) Potts model with smoothing parameter � =
0 or 1 using function sampler.mrf in R package GiRaF.
Then we generated latent low-dimensional features, zi, from
the conditional Gaussian, such that zi|yi = k ∼ (�k, �k),
where zi ∈ Rq with q = 10 and structures for �k and �k
are shown in Supplementary Table S1. Next, we generated

W̃ = (w̃i j , i ≤ p, j ≤ q) with each w̃i j
i.i.d.∼ N(0, 1), to per-

form a QR decomposition on W̃ such that W̃ = Q̃R̃, and
assigned W = Q̃, i.e., a column orthogonal matrix. Finally,
we generated a high-dimensional expression matrix using
xi = Wzi + εi , εi ∼ N(0,�), where � = diag(�j), j = 1, . . . ,
p. In the case of homoscedasticity, �j = 9, ∀j, while in the

case of heteroscedasticity, λ j = 2 + 4|a j |, a j
i.i.d.∼ N(0, 9).

Simulation 2 involved raw gene expression data. In this
simulation, we generated non-spatial/spatial raw gene ex-
pressions. The method used to generate the class label, yi,
loading matrix, $w$, and latent features, zi’s, was the same
as in Simulation 1, except that �k had a different value (see
Supplementary Table S1). The difference involved the gen-
eration of log-normalized gene expression, xi, using xi =
Wzi + τ + εi , τ j ∼ N(0, 1), εi ∼ N(0,�) and raw gene ex-
pression, x̃i , using x̃i j ∼ Poisson(xi j ), where � j is the j-th
element of � , � = diag(�j), j = 1, ···, p. To ensure a proper
signal, we set �j = 1, ∀j, in the case of homoscedasticity and

λ j = 0.1 + |a j |, a j
i.i.d.∼ N(0, 1) in the case of heteroscedas-

ticity. In this simulation, we only observed raw gene expres-
sion x̃i j of gene j and cell i for non-spatial settings and the
raw gene expression x̃i j of gene j and spot i and spatial co-
ordinates si for spot i.

Real datasets

Human dorsolateral prefrontal cortex datasets. We
downloaded spatial transcriptomics obtained on the
10x Visium platform for human dorsolateral prefrontal
cortex (DLPFC) from https://github.com/LieberInstitute/
spatialLIBD. This dataset is a collection of data from 12

human postmortem DLPFC tissue sections from three
independent neurotypical adult donors and the raw data
for each sample includes 33,538 genes. We first selected
genes with spatial variation using SPARK (11) without
adjusting for any covariates. In detail, we selected spatially
variable genes (SVGs), either those with adjusted P-values
of less than 0.05 or the top 2,000 SVGs (Supplementary
Table S2), then we performed log-normalization using
library size. Detailed information on the 12 samples is
given in Supplementary Table S2. Taking the manual
annotations based on cytoarchitecture as benchmarks,
we were able to evaluate the clustering performance of
DR-SC and other methods. In the tandem analysis, we
first obtained the top 15 PCs from either PCA or WPCA,
then applied other clustering methods using the top 15 PCs
(26). We further performed spatial variation analysis (SVA)
to identify SVGs adjusted for cell-type-relevant covariates
using SPARK and compared them with SVGs that were
not adjusted for these covariates. We then performed DGE
analysis using the function FindAllMarkers in the R pack-
age Seurat to identify differentially expressed genes based
on cell type labels estimated using DR-SC. Finally, we
performed functional enrichment analysis using g:profiler
(52) based on the SVGs with adjustment.

Mouse olfactory bulb and mouse E15 neocortex data.
We downloaded mouse olfactory bulb or mouse E15
neocortex data from https://singlecell.broadinstitute.org/
single cell/data/public/SCP815/sensitive-spatial-genome-
wide-expression-profiling-at-cellular-resolution#study-
summary. We first selected the top 2,000 genes with spatial
variation using SPARK (11) without adjusting for any
covariates. Then we performed log-normalization of these
SVGs using library size and obtained the top 15 PCs based
on PCA. Because BayesSpace and SC-MEB are both based
on tandem analysis, the top PCs obtained from PCA were
used as inputs. SpaGCN is also based on tandem analysis
but it used its internally embedded PCA algorithm.

For the joint method, DR-SC was applied to the 2,000
SVGs, and we clustered all spots from the mouse olfactory
bulb data into 12 clusters and all spots from the mouse
E15 neocortex data into 15 clusters. Using the estimated
class labels for the clusters from the DR-SC, we performed
DGE analysis using the function FindAllMarkers in the R
package Seurat to identify the marker genes for each clus-
ter. Next, we performed cell typing using the PanglaoDB
database (53). Finally, we performed trajectory inference by
Slingshot method based on the extracted features and cell
classes estimated by DR-SC and detected the differentially
expressed genes along the inferred cell pseudotime using the
function testPseudotime in the R package TSCAN.

Mouse embryo datasets. We downloaded a mouse em-
bryo dataset (16) from https://content.cruk.cam.ac.uk/
jmlab/SpatialMouseAtlas2020/ that was collated using a se-
quential fluorescence in situ hybridization (seqFISH) plat-
form. This dataset contained 23,194 cells, 351 genes, and
two-dimensional spatial coordinates. Cell types were an-
notated based on their nearest neighbors on an existing
scRNA-seq atlas (Gastrulation atlas) (16). Taking these
manual annotations as the benchmark, we compared the

https://github.com/LieberInstitute/spatialLIBD
https://singlecell.broadinstitute.org/single_cell/data/public/SCP815/sensitive-spatial-genome-wide-expression-profiling-at-cellular-resolution#study-summary
https://content.cruk.cam.ac.uk/jmlab/SpatialMouseAtlas2020/
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clustering performance of DR-SC with that of other spa-
tial clustering methods. We performed log-normalization
with library size of the gene-expression matrix. In the
tandem analysis, we first obtained the top 15 PCs (26)
from either PCA or WPCA and then applied other spa-
tial clustering methods using these topc 15 PCs. We fur-
ther restricted our analysis to the cells manually annotated
as ‘forebrain/midbrain/hindbrain’ and performed down-
stream trajectory analysis. By applying DR-SC, we ob-
tained six subclusters for the brain region. Then, we per-
formed DGE analysis using the function FindAllMarkers
in the R package Seurat to identify differentially expressed
genes among the estimated clusters and further mapped six
clusters to either four cortical regions or four cell types us-
ing the PanglaoDB database (53). To visualize the clustering
results, we applied tSNE to reduce the 15-dimensional em-
beddings obtained via different methods to a 2-dimensional
representation. Finally, we applied Slingshot to conduct tra-
jectory inference based on the features and clusters from
DR-SC and detected differentially expressed genes along
the inferred cell pseudotime using the function testPseudo-
time in the R package TSCAN.

Benchmark datasets in trajectory inference. We down-
loaded 16 benchmark datasets with linear trajectory
information from the website https://zenodo.org/record/
1443566#.XNV25Y5KhaR (37). These datasets consisted
of single-cell gene-expression measurements in the form of
raw read counts. Detailed information on these datasets
is given in Supplementary Table S3, including the species,
number of cells, number of genes, platform, etc. We first pre-
processed the raw count data using Seruat, which included
selecting the top 2,000 most variable genes and log normal-
ized the data using library size (54) for methods based on
normalized expression, except ZINB-WaVE and scVI. Af-
ter normalization, we estimated the low-dimensional em-
beddings and class labels using both joint and tandem meth-
ods. For the joint analysis, we considered the proposed DR-
SC and FKM while in tandem analysis, we performed di-
mension reduction using other methods followed by clus-
tering analysis using the GMM. The number of clusters was
chosen using modified BIC and regular BIC by default for
DR-SC and GMM, respectively. Because FKM does not
select the number of clusters automatically, the number of
clusters selected for DR-SC was used for FKM. To further
perform lineage development analysis, we applied Slingshot
implemented in the R package slingshot with default values
for parameters using the estimated embeddings and class la-
bels as input. Analysis details and results are deferred to the
Supplementary Text (Supplementary Figures S1– S3).

Cord blood mononuclear cell datasets. We obtained a
cord blood mononuclear cell (CBMC) dataset from NCBI
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE100866 under the accession number GSE100866. This
dataset contains 8,167 CBMCs measured using CITE-Seq
technology (55) from two species (human and mouse).
In addition to genome-wide expression measurements
of 20,511 genes in the form of read counts, this dataset
also contains data on the protein levels of 13 cell-surface
markers. We first performed preprocessing to retrieve the

top 2,000 most variable genes and lognormalized these
based on library size (54). Following the vignette at https://
satijalab.org/seurat/archive/v3.1/multimodal vignette.html
(55), we ignored three cell-surface markers and performed
clustering analysis with the remaining 10 markers using
the FindClusters function in the R package Seurat. Taking
the class labels from the nine clusters estimated using these
10 surface markers as the benchmark, we evaluated the
clustering performance of DR-SC and other methods using
the adjusted Rand index (ARI) values. We used DR-SC
and FKM to simultaneously estimate the embeddings and
class labels, while other methods were applied for tandem
analyses. Using the estimated class labels for the 11 clusters
from DR-SC, we performed DGE analysis using the R
package BPSC (38) on human cells. Next, we performed
cell typing using the PanglaoDB database (53). For each
cell type, we further performed functional enrichment
analysis by selecting the significant genes with adjusted
P-values of less than 0.05 and a log fold-change greater
than 0.5. Analysis details and results are deferred to the
Supplementary Text (Supplementary Figures S4– S8 and
Supplementary Table S4).

Evaluation metric for dimension reduction and (spatial) clus-
tering

We evaluated the performance of DR-SC from four aspects:
feature extraction, clustering performance, selection of the
number of clusters, and computational efficiency. Here, we
briefly present the evaluation metrics for the feature extrac-
tion and clustering performance. For details on the other
two aspects, please refer to the Supplementary Text.

In the simulations, we used two metrics to assess the
performance of the feature extraction including both the
canonical correlations between the estimated features and
the underlying true ones and the conditional correlation be-
tween gene expression, xi, and cell type label, yi, given the
estimated latent features. Canonical correlation measures
the similarity between two sets of random variables. Thus, a
larger canonical correlation coefficient value suggests a bet-
ter estimation of zi. For optimal performance, we aimed to
obtain the estimated features, ẑi , that contain all informa-
tion on cell types, in other words, yi⊥xi |̂zi with the smaller
the conditional correlation the better.

To compare clustering performance, we evaluated both
ARI (56) and normalized mutual information (NMI) (57).
ARI (56) is a corrected version of the Rand index (RI) (58)
that avoids some of its drawbacks (56). The ARI is used
to measure the similarity between two different partitions
and lies between −1 and 1. The larger the value of ARI, the
higher the similarity between two partitions. When the two
partitions are equal up to a permutation, the ARI takes a
value of 1. NMI is a way of correcting the mutual informa-
tion (MI) so the NMI value falls between zero and one. MI
quantifies the ‘amount of information’ obtained on one ran-
dom variable in units such as Shannons (bits) by observing
another random variable. MI intuitively measures the infor-
mation that two random variables x and yx share. If x and y
do not share information and are independent, then MI(x,
y) = 0. At the other extreme, if y = x, then MI(x, y) = H(x),
where H(x) is the marginal entropy of x. This indicates that

https://zenodo.org/record/1443566#.XNV25Y5KhaR
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100866
https://satijalab.org/seurat/archive/v3.1/multimodal_vignette.html
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MI does not take values between zero and one. Thus, some
normalized versions have been proposed and we used one
of these versions (NMI).

RESULTS

DR-SC method overview

Here, we provide a brief overview of DR-SC, and further de-
tails are available in the Supplementary Text. The proposed
method involves simultaneous dimension reduction and
(spatial) clustering built on a hierarchical model with two
layers, as shown in Figure 1B. The first layer, the DR step,
relates the gene expression to the latent low-dimensional
embeddings, while the second layer, the SC step, relates the
latent embeddings along with spatial coordinates if neces-
sary to the cluster labels. Unifying the DR and SC steps not
only produces relevant low-dimensional embeddings, im-
proving the visualization of the clusters on the tSNE plots,
but also enhances the (spatial) clustering performance.

In later sections, we show the improved clustering per-
formance with spatial transcriptomics datasets from differ-
ent platforms. In the Supplementary Text, we show how
DR-SC improved the clustering performance for single-cell
datasets. Aside from improving the (spatial) clustering per-
formance, DR-SC estimates low-dimensional embeddings
that can also be used in different types of downstream anal-
yses (Figure 1C). First, the estimated embeddings can be
used to better visualize clustering among cells/spots. Sec-
ond, the performance of the trajectory inference can be im-
proved, as the reduced dimensional space from DR-SC pos-
sesses more relevant information on cell clusters. Third, by
taking these estimated embeddings as covariates, we can
perform hypothesis testing to identify genes with pure spa-
tial variation but not due to cell-type differences. These
gene expression differences may be related to a specific cell
morphology or tissue type rather than being related to cell
type. In the Supplementary Text, we compare the accu-
racy of the downstream lineage inference using the esti-
mated embeddings and cell-type labels from DR-SC with
those from other unsupervised dimension-reduction meth-
ods applied to 16 benchmark scRNA-seq datasets. In later
sections and in the Supplementary Text, we also show the
improvements to clustering performance and cluster visu-
alization provided by DR-SC for both non-spatial (CITE-
seq) and spatial transcriptomics (10x Visium, Slide-seqV2,
and seqFISH) datasets. The basic information (number
of spots/cell/genes and platforms) on the selected spatial
transcriptomics datasets are shown in Supplementary Ta-
ble S5. By applying DR-SC to several spatial transcrip-
tomics datasets, we further show the utility of using the low-
dimensional embeddings obtained from DR-SC to identify
genes related to cell morphology and tissue type.

DR-SC improves clustering and estimation of low-
dimensional features in simulations

We conducted simulation studies to evaluate the perfor-
mance of DR-SC in comparison with existing dimension
reduction and clustering methods. First, we simulated data
with both non-spatial (� = 0) and spatial (� = 1) pat-
terns and with both homogeneous and heterogeneous resid-

ual variance �j (see Materials and Methods). Two sim-
ulation settings were considered. In Simulation 1, log-
normalized and centered gene expression data were gen-
erated from Equation (1) – (3). In Simulation 2, we first
generated a count matrix using Poisson distribution with
over-dispersion, which more effectively mimics the count
nature of scRNA-seq and 10x Visium datasets (see Meth-
ods). Then, we log-transformed the raw count matrix using
library size (54). In all simulations, we set p = 1, 000 and
ran 50 replicates. The details of the simulation settings are
provided in the Materials and Methods.

We compared the clustering performance of DR-SC with
two groups of spatial/non-spatial clustering methods. The
first group used tandem analysis using PCs from either
PCA or WPCA in the DR step, and using SpaGCN (25),
BayesSpace (26), SC-MEB (27), Giotto (33), Louvain (49),
Leiden (50), GMM, and k-means in the clustering step.
Among these, SpaGCN software used the log-normalized
expression matrix as the input and its internally embed-
ded PCA algorithm to obtain PCs, and could only be ap-
plied to spatial clustering. The second group was a joint
analysis with ORCLUS (51) and FKM (39). By setting the
smoothing parameter to zero, BayesSpace, SC-MEB, and
Giotto could be applied to cluster non-spatial data. On the
other hand, to evaluate the estimation accuracy of low-
dimensional embeddings, we compared DR-SC with eight
dimension-reduction methods in all simulation settings, in-
cluding PCA, WPCA (20), FKM (39), tSNE (21), UMAP
(22), ZIFA (28), ZINB-WaVE (29), and scVI (30).

We first compared the clustering performances of each
method. For tandem analysis in Simulation 1, we applied
both PCA and WPCA to obtain low-dimensional embed-
dings, denoted as suffix -O and -W, respectively in Figure
2 and Supplementary Figure S9. In Simulation 2 (Supple-
mentary Figure S10), besides PCA and WPCA, we also ap-
plied ZINB-WaVE to obtain low-dimensional embeddings
as the input for different clustering methods in the tan-
dem analysis. Since Giotto, k-means, FKM, and ORCLUS
do not provide a data-driven way to select the number of
clusters, K, we evaluated their clustering performances us-
ing the true cluster number. DR-SC achieved the best clus-
tering performance and was the most robust to both ho-
mogeneous and heterogeneous residual variances among
the methods that used the true cluster number (Figure 2A
and Supplementary Figures S9a and S10a). To select the
number of clusters, K, DR-SC and SC-MEB used MBIC
(44,59), GMM used BIC, BayesSpace adopted the aver-
age loglikelihood-maximization-based method in early iter-
ations, Leiden and Louvain used a community-modularity-
maximzing rule (49), and SpaGCN applied Louvain initial-
ization (25). DR-SC also achieved the best clustering per-
formance among the methods that selected the number of
clusters automatically (Figure 2B, Supplementary Figures
S9b and S10b). Meanwhile, DR-SC selected the true num-
ber of clusters consistently (Figure 2C and Supplementary
Figure S11b). Conventional PCA is unable to recover the
underlying features in the presence of heteroscedastic noise,
while WPCA can give less informative genes less weight
(20). Thus, when heterogeneous errors appeared, the clus-
tering performance of the tandem analysis using conven-
tional PCA was worse than that using WPCA. In all set-
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Figure 2. Comparisons of log-normalized gene expressions in Simulation 1. For tandem analysis, we used either PCA or WPCA to obtain PCs and named
the analysis as method-O or method-W. (A & B) Comparison of the clustering performance using the true number of clusters and with automatically
selected cluster number, respectively. The clustering performance is evaluated using ARI. (C) Comparison of the cluster-number selection performance of
12 methods that can choose the number of clusters. d. Comparison of the dimension-reduction performance of six methods using the average canonical
correlation coefficients.

tings, the clustering performance of DR-SC was robust in
both homogeneous and heterogeneous cases. Importantly,
DR-SC achieved the highest ARI values among all the
methods trialed. Moreover, we observed that only DR-SC
correctly chose the number of clusters. In constrast, BayesS-
pace tended to overestimate the cluster number in non-
spatial cases and underestimate them in spatial cases; this is
because BayesSpace fixed the smoothing parameter rather
than updating it in a data-driven manner. Thus, the selec-
tion of the number of clusters for BayesSpace was sensitive
to the choice of smoothing parameter (Supplementary Fig-
ure S11c). The other methods tended to show similar pat-
terns across both non-spatial and spatial cases.

Next, we evaluated the performance of DR-SC in esti-
mating the low-dimensional embeddings. For the average
canonical correlation between the estimated embeddings,
ẑi , and the true latent features, zi, DR-SC had the highest

canonical correlation coefficients (Figure 2D and Supple-
mentary Figure S11a), suggesting that the estimated embed-
dings were more accurate. Pearson correlation coefficients
between observed expressions, xi, and the estimated cell-
type labels, ŷi , conditioned on embeddings from DR-SC
were much smaller than those from other methods (Sup-
plementary Figures S9c and S11a), suggesting that DR-
SC captures more relevant information regarding cell types
and, thus, facilitates the downstream analysis.

In addition, we evaluated the corresponding computa-
tional time for each method in all simulation settings, as
shown in Supplementary Figure S9a, S9b and S10 (bot-
tom panel). Louvain and SpaGCN were computational the
fastest, while BayesSpace was the slowest. Moreover, DR-
SC was computationally efficient and scalable to large sam-
ple sizes, only taking around 15 mins to analyze a data with
1,000 genes and 100,000 spots (Supplementary Figure S9d).
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Human dorsolateral prefrontal cortex data

As an emerging spatial transcriptomics technology, the 10x
Visium assay represents improvements in both resolution
and the time needed to run the protocol (60). Maynard et al.
(14) used this technology to generate spatial maps of gene
expression matrices for the six-layered DLPFC of the adult
human brain and manually annotated Visium spots based
on the cytoarchitecture. In this dataset, there were 12 tissue
sections from three adult donors with a median depth of 291
million reads for each sample, a median of 3,844 spots per
tissue section and a mean of 1,734 genes per spot. The raw
gene expression count matrices were log-transformed and
normalized using library size (54).

In this analysis, we considered both joint and tandem
methods for dimension reduction and clustering. To apply
the joint methods, we took the log-transformed raw count
matrix using the library size as input, and in the tandem
analysis, we obtained the top 15 PCs from either PCA or
WPCA as input for the different clustering methods. As
Giotto, k-means, FKM, and ORCLUS cannot choose the
number of clusters, K, we fixed the number of clusters us-
ing manual annotations to make comparisons with DR-SC.
When the cluster number, K, was fixed, the methods with
spatial clustering, i.e., DR-SC and Giotto, outperformed
those that did not consider spatial information, and DR-
SC performed much better than Giotto (Figure 3A). For
all methods that were capable of selecting the number of
clusters, we also observed that the spatial clustering meth-
ods, such as DR-SC, SpaGCN, SC-MEB, and BayesSpace,
outperformed the non-spatial ones such as GMM, Leiden,
and Louvain (Figure 3B). Note, there were only minor dif-
ferences in the DR-SC when we used either the fixed K
or the chosen K. We also evaluated the clustering perfor-
mance using the NMI (Supplementary Figure S12a) and
similar patterns were observed. A heatmap of cell types
from the manual annotations, and heatmaps of cluster as-
signments across spatial and non-spatial clustering meth-
ods for sample ID151510 are provided in Figure 3C. The
results for other 11 samples are provided in Supplemen-
tary Figures S13a– S23a. In addition, Figure 3D and Sup-
plementary Figures S13b– S23b show the tSNE plots for
DR-SC and the other three dimension reduction methods
(PCA, WPCA, UMAP), for which tSNE PCs were obtained
from the estimated 15-dimensional features of each method
with the class labels estimated in DR-SC. We observed bet-
ter separation of tSNE PCs with DR-SC. Moreover, we
evaluated the computational efficiency of DR-SC and com-
pared it with that of other methods (Supplementary Figure
S12b) and found that DR-SC was about 10 times faster than
FKM, ORCLUS, and BayesSpace.

We further performed conditional analysis to investigate
the roles of SVGs beyond simple cell-type differences. Us-
ing SPARK (11), we performed spatial variation analysis
(SVA) with the embeddings estimated by DR-SC as covari-
ates. The detailed gene list identified at a false discovery rate
(FDR) of 1% is given in Supplementary Table S6. Com-
pared with the list of 1,583 SVGs identified by SVA with-
out using covariates, the number of SVGs dramatically de-
creased to 113 at an FDR of 1% on average over 12 tis-
sues after adjusting for covariates. Without adjusting for

cell-type-relevant covariates, the gene expression variations
identified by SVA could simply reflect cell-type differences.
A Venn diagram of the links between SVGs obtained with-
out adjusting for cell-type-relevant covariates and differen-
tially expressed genes in different cell types (Supplementary
Figure S24a) showed that the majority of genes differen-
tially expressed according to cell type were also identified
as SVGs without adjusting for covaraites. Supplementary
Figure S24b and c show bar plots for the proportion of dif-
ferentially expressed genes overlapping with SVGs without
or with adjusting for covariates. The proportion of overlap
was substantially reduced after we performed conditional
spatial variation analysis, suggesting these genes were gen-
uinely spatially expressed and not merely the result of vari-
ations between cell types.

Next, we performed functional enrichment analysis of
SVGs adjusted for cell-type-relevant covariates. A total of
82 terms from Gene Ontology (GO), Kyoto Encyclopedia
of Genes and Genomes (KEGG), and Human Protein At-
las (HPA) were enriched with adjusted P-values of less than
0.05 in at least three DLPFC tissue sections. Supplemen-
tary Figure S25 shows the top five pathways among all
12 DLPFC tissue sections, in which many common terms
could be identified after controlling for cell-type-relevant
covariates. These results suggested that SVGs adjusted for
cell-type-relevant covariates shared common spatial pat-
terns in the brain tissue. For example, the same set of highly
significant HPA terms were identified in 8 out of 12 tis-
sue samples, including processes in white matter, processes
in granular layer, and cytoplasm/membrane (Supplemen-
tary Figure S25). Nearly all the most significant KEGG
pathways were identified in all 12 samples, including Hunt-
ington’s disease, Alzheimer’s disease, and Parkinson’s dis-
ease, etc. Several studies (61,62) reported the distribution
of abnormal proteins across the brain causes damage in
Alzheimer’s disease, Parkinson’s disease, Huntington’s dis-
ease, and other neurodegenerative diseases. Additionally,
many common significant GO terms were identified in all
12 samples, such as electron transfer activity, structural
molecule activity, structural constituents of the cytoskele-
ton, oxidative phosphorylation, endocytic vesicle lumen,
and respiratory chain complex. Details of the top five path-
ways for all 12 tissue samples are presented in Supplemen-
tary Table S7.

Mouse olfactory bulb data

Slide-seq is a spatial transcriptomics technology that simul-
taneously decouples imaging from molecular sampling and
quantifies expression across the genome with 10-�m spatial
resolution (10). To further improve the sensitivity magni-
tude and enable the more efficient recovery of gene expres-
sion, Slide-seqV2 was recently introduced (63) to generate
two datasets each from mouse olfactory bulb and mouse
cortex. We present our analysis of the mouse olfactory bulb
dataset in this section and that of the mouse cortex dataset
in the next one. The olfactory bulb contained 21,041 spots
and 37,329 genes with a median of 494 unique molecular
identifiers per bead. The raw gene expression count matri-
ces were log-transformed and normalized using library size.



e72 Nucleic Acids Research, 2022, Vol. 50, No. 12 PAGE 10 OF 18

A

C

D

B

Figure 3. Analysis of human dorsolateral prefrontal cortex data. (A) Violin plot of ARI values across 12 samples for DR-SC and other methods that cannot
choose the number of clusters. The number of clusters in the analysis was fixed by manual annotations. (B) Violin plot of ARI values across 12 samples for
DR-SC and other methods that can choose the number of clusters. (C) Spatial heatmaps of cluster assignments for sample ID151510 using DR-SC and
other spatial and non-spatial clustering methods. Left bottom corner denotes cell assignment from manual annotation; upper panel corresponds to the
cell assignment from spatial clustering methods, and the rest of lower panel corresponds to the cell assignment from non-spatial clustering methods. (D)
Visualization of the cluster labels for sample ID151510 from DR-SC given the annotated number of clusters based on two-dimensional tSNE embeddings
from four different DR methods including DR-SC, PCA, WPCA and UMAP.
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In the analysis, we applied the spatial clustering meth-
ods BayesSpace, SC-MEB, SpaGCN and DR-SC, all of
which, except for DR-SC, were based on tandem analy-
sis. Thus, BayesSpace and SC-MEB took the top 15 PCs
from the normalized expression matrix of SVGs as input
(see Materials and Methods), while the SpaGCN package
took the normalized expression matrix as input and used
its internally embedded PCA algorithm to obtain the PCs.
In a joint method, DR-SC used the normalized expres-
sion matrix of SVGs as input. A spatial heatmap of the
cluster assignments across the four methods is provided
in Figure 4A, while the tSNE plots for these four meth-
ods is shown in Figure 4B, where the tSNE PCs of DR-
SC were obtained from its estimated 15-dimensional la-
tent features while tSNE PCs of BayesSpace-O, SC-MEB-
O, and SpaGCN were based on 15 PCs using the ordinary
PCA, denoted as suffix -O. We obtained a clearer visual-
ization of the cell types using tSNE PCs from DR-SC. We
also compared the running time of these methods (Sup-
plementary Figure S26a) and found DR-SC and BayesS-
pace respectively took 1,042 and 13,193 secs to complete
the analysis for all 21,041 spots. To further compare the vi-
sualizations of the different dimension-reduction methods,
we first applied the other eight dimension-reduction meth-
ods to extract latent features and obtained two-dimensional
tSNE PCs based on each estimated latent one. We visual-
ized the two-dimensional tSNE PCs derived from the dif-
ferent dimension-reduction methods with cluster labels es-
timated in DR-SC (Figure 4C and Supplementary Figure
S26b), and the tSNE PCs from DR-SC were more distin-
guishable than those from other methods.

Using the cluster labels estimated in DR-SC, we per-
formed DGE analysis to identify the marker genes for each
cluster. The heatmap of differentially expressed genes for
each cell type (Figure 4D) showed good separation across
the different cell clusters. By checking PanglaoDB (53) for
the identified marker genes, we were able to identify seven
cell types in the heatmap (Figure 4D), including two major
neuron cell types: Purkinje neurons and interneurons con-
sisting of 52% and 10% spots, respectively. The primary out-
put signal for Purkinje cells was the modulated discharge of
simple spikes while interneurons potentially contributed to
the modulation of simple spikes (64).

We then performed spatial variational analysis using
SPARK by controlling for the 15-dimensional embeddings
estimated by DR-SC. In total, 518 SVGs were identified at
an FDR of 1%, and the identified genes are listed in Sup-
plementary Table S8. Next, we performed functional en-
richment analysis of these SVGs and 385 GO terms were
found to be enriched with adjusted P-values of less than
0.05. A bubble plot for this functional enrichment (Figure
4E) showed that the nervous-system-development-related
pathways were enriched in the olfactory bulb.

We additionally applied Slingshot (36) to perform cell lin-
eage analysis using low-dimensional embeddings and the
cluster labels estimated by DR-SC. Srivatsan et al. (65) re-
ported that the neuron cells differentiate after glia cells.
To check this, we focused on studying neuron cells (Purk-
inje neurons and interneurons) and glia cells (astrocytes
and oligodendrocytes) to infer their differentiation trajec-
tory. The inferred trajectory shown in Supplementary Fig-

ure S26c led us to conclude that Purkinje neurons differen-
tiated after oligodendrocytes, while interneurons differenti-
ated after astrocytes. Supplementary Figure S26c also pro-
vides a heatmap of the expression levels of the top 20 most
significant genes presenting dynamic expression patterns
over pseudotime. In this analysis, some genes presented in-
teresting dynamic expression patterns, varying from high
to low levels and back to high levels, such as Camk2b and
Malat1.

Mouse E15 neocortex data

The mouse E15 neocortex data from the Slide-seqV2 plat-
form contains 33,611 spots and 22,683 genes resolved spa-
tially according to their expression in E15 embryo section.
Similarly, we performed spatial clustering by DR-SC and
compared it with the BayesSpace, SC-MEB, and SpaGCN
results. For BayesSpace and SC-MEB, the top 15 PCs from
the normalized expression matrix of SVGs were used as in-
put (see Materials and Methods), while for SpaGCN and
DR-SC, the normalized expression matrix was the input.
SC-MEB-O and DR-SC shared similar spatial patterns,
whereas BayesSpace-O assigned a large proportion of spots
(78%) to a single cluster (Figure 5A). We also gained a better
visualization of clusters using tSNE PCs from DR-SC com-
pared to PCA (Figure 5B). We also compared the running
time of these methods (Supplementary Figure S27a), and
DR-SC and BayesSpace respectively took 1,218 and 18,740
secs to analyze all 33,611 spots. To further compare the vi-
sualizations obtained via the different dimension-reduction
methods, we first applied the other eight dimension reduc-
tion methods to extract latent features and obtained two-
dimensional tSNE PCs based on each estimated latent one.
We visualized the two-dimensional tSNE PCs from the dif-
ferent dimension reduction-methods with cluster labels esti-
mated in DR-SC (Fig 5C and Supplementary Figure S27b),
which indicated DR-SC provided the best visualization.

Based on the cluster labels estimated in DR-SC, we per-
formed DGE analysis to identify marker genes for each
cluster. A heatmap of the findings showed good separa-
tion of the differentially expressed genes across different
cell types (Figure 5D). By checking PanglaoDB (53) for the
identified marker genes, we were able to identify five cell
types, including two major neuron-related cell types: neu-
rons and neural stem/precursor cells consisting of 40% and
29% spots, respectively.

Next, we applied Slingshot (36) to infer the differenti-
ation lineages of E15 neocortex cells based on the low-
dimensional features and cluster labels estimated by DR-
SC. The inferred development trajectory of different types
of cells and a heatmap of the top 20 significant dynamic ex-
pressed genes along the trajectory were plotted (Figure 5E).
We also observed the differentiation of neuron cells (neu-
rons and neural stem/precursor cells) after glia cells (as-
trocytes, oligodendrocytes and oligodendrocyte progenitor
cells). For example, a portion of the neurons and all neu-
ral stem/precursor cells differentiated after the astrocytes,
and the remainder of the neurons differentiated after oligo-
dendrocytes and oligodendrocyte progenitor cells. Accord-
ing to the heatmap, some genes presented interesting dy-
namic patterns of expression. For instance, the gene Ttr had
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Figure 4. Analysis of mouse olfactory bulb data. (A) Spatial heatmap of clusters from four spatial-clustering methods. (B) tSNE plots for these four
methods, where tSNE PCs of DR-SC were obtained based on the extracted 15-dimensional features, while tSNE PCs of BayesSpace-O, SC-MEB-O and
SpaGCN were based on 15 PCs from PCA. (C) Visualization of the cluster labels from DR-SC based on two-dimensional tSNE embeddings from four
different DR methods, PCA, WPCA, UMAP, and scVI. (D) Heatmap of differentially expressed genes for each cell type identified by DR-SC. (E) Bubble
plot of −log10(P-values) for pathway enrichment analysis of 518 SVGs with adjusted P-values of less than 0.05. Dashed line represents a P-value cutoff of
0.05. Gene sets are colored by category: GO biological process (BP, blue), and GO cellular component (CC, yellow), GO molecular function (MF, brown).

low expression levels at the early stage before substantially
increasing later. In contrast, the expression levels of Nfib,
Sox11, Nnat and Map1b changed from low to high, then
back to low. Steele-Perkins et al. (66) reported that the tran-
scription factor gene Nfib is essential for mouse brain devel-
opment. Jankowski et al. (67) found that expression of the
transcription factor gene Sox11 modulates peripheral nerve
regeneration in mice. Nnat was reported the spatial expres-

sion pattern during mouse eye development (68). Map1b is
required for axon guidance and is involved in the develop-
ment of the central and peripheral nervous systems (69).

Mouse embryo data

We applied DR-SC to analyze a large seqFISH dataset of
mouse organogenesis (16) that contained 23,194 cells. In



PAGE 13 OF 18 Nucleic Acids Research, 2022, Vol. 50, No. 12 e72

A

B

C

D E

Figure 5. Analysis of mouse E15 neocortex data. (A) Spatial heatmap of clusters from four spatial-clustering methods: BayesSpace-O, SC-MEB-O,
SpaGCN, and DR-SC. (B) tSNE plots for these four methods, where tSNE PCs of DR-SC were obtained based on the extracted 15-dimensional fea-
tures while tSNE PCs of BayesSpace-O, SC-MEB-O, and SpaGCN were based on 15 PCs from PCA. (C) Visualization of the cluster labels estimated by
DR-SC based on two-dimensional tSNE embeddings from four different DR methods: PCA, WPCA, UMAP, and scVI. (D) Heatmap of differentially
expressed genes for each cell type identified by DR-SC. (E) Heatmap of gene expression levels of the top 20 genes with significant changes with respect to
the Slingshot pseudotime. Each column represents a spot that is mapped to this path and is ordered by its pseudotime value. Each row denotes the most
significantly changed gene expression.

this dataset, the expression of a panel of 351 genes was re-
solved spatially within multiple 8- to 12-somite-stage mouse
embryo sections using the seqFISH platform. Cell labels
were accurately annotated across the embryo (16) based on
their nearest neighbors within an existing scRNA-seq atlas
(Gastrulation atlas) (70).

We first performed clustering analysis using DR-SC
and other existing spatial-clustering methods, SpaGCN,
BayesSpace, SC-MEB and Giotto. Taking the above manu-
ally annotated cell types as reference, we compared the clus-

tering performance of DR-SC with that of the other meth-
ods. As the other methods involved tandem analyses, we ob-
tained the top 15 PCs (26) using either PCA or WPCA from
all 351 genes for use as input in these, except for SpaGCN.
DR-SC provided better clustering performance than the
other clustering methods in terms of the ARI values (Sup-
plementary Figure S28a). A heatmap of cell types accord-
ing to the mannual annotations is provided in Supplemen-
tary Figure S28b, while heatmaps of the cell types inferred
by DR-SC, SC-MEB, and BayesSpace are provided in Sup-
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plementary Figure S28c. The cell labels estimated by DR-
SC and SC-MEB, but not BayesSpace, were in agreement
with those in the manual annotations. BayesSpace incor-
rectly clustered many of the cells as ‘low quality’ cells.

To refine the analysis of the brain regions, we first col-
lected cells manually annotated as ‘forebrain, midbrain,
or hindbrain’, then we applied DR-SC to estimate low-
dimensional embeddings and provide labels for cells in the
three brain regions (Figure 6A). DR-SC identified a total
of six clusters. By checking PanglaoDB (53) for the marker
genes identified via DGE analysis, we were able to identify
four cell types (astrocytes, microglia cells, neurons 1/2, and
ependymal cells 1/2; Figure 6B) and four cortical regions
(forebrain, hindbrain 1/2/3, midbrain, and microglia; Fig-
ure 6C). Details of the cell typing are provided in Supple-
mentary Table S9. Note that neuron cells were found in both
forebrain and hindbrain regions, while glia (astrocytes, mi-
croglia) cells were from both the midbrain and microglia re-
gions. A recent study (65) reported that neurons and glia
cells can be distributed over different brain regions. The
tSNE plot for the regions and cell types in Figure 6D shows
that DR-SC effectively separated the different clusters.

To further investigate the development and differentia-
tion of these brain cells, we calculated the pseudotime us-
ing Slingshot based on the 15-dimensional embeddings and
cluster labels estimated using DR-SC. We identified three
lineages that were consistent with the findings in a previ-
ous study (65). A plot of the inferred lineages with pseu-
dotime (Figure 6E) provided an ilustration of the dynamic
trajectory from glia cells to neurons. Following Srivatsan et
al. (65), we used Allen Brain Reference Atlases (http://atlas.
brain-map.org/) as guides to check how these trajectories
were distributed over brain segments. The cells and trajec-
tories from each cluster overwhelmingly occupied different
brain regions (Figure 6D and E). While combing pseudo-
time and region spatial information, we observed that cells
in the early differentiation stage were clustered in the mi-
croglia and midbrain regions. Later, cells with differentiated
transcriptomes emerged in more distant regions, i.e., the
hindbrain and forebrain. According to the inferred pseudo-
time, we identified differentially expressed genes along cell
pseudotime using the method described by Ji et al. (34).
The heatmap of the expression of the top 20 most signif-
icant genes (Figure 6F) suggested the occurance of some
interesting dynamic expression patterns over pseudotime.
The genes Foxa1, Shh, and Foxa2 had higher expression
levels at the early stage, but later their expression levels de-
creased substantially. In contrast, the expression levels of
the genes Fgfr2 and Fgfr3 changed from low to high and
then returned to low. We observed the pattern of expres-
sion of En1 changed from high to low then to high along
the inferred trajectory. In humans, the En1 gene codes for
the homeobox protein engrailed (EN) family of transcrip-
tion factors. A recent study (71) reported that En1 shows
a transcriptional dependency in triple negative breast can-
cer associated with brain metastasis. Carratala-Marco et al.
(72) found that EN plays an important role in the region-
alization of the neural tube and EN’s distribution regulates
cerebellum and midbrain morphogenesis, as well as retino-
tectal synaptogenesis.

DISCUSSION

In this paper, we have proposed a joint DR-SC for analyzing
high-dimensional scRNA-seq and spatial transcriptomics
data using a hierarchical model. In contrast to most existing
methods that perform dimensional reduction and (spatial)
clustering sequentially, DR-SC unifies low-dimensional fea-
ture extraction with (spatial) clustering in the same, joint
modeling framework, and provides an improved estimation
for cell-type-relevant low-dimensional embeddings and en-
hanced clustering performance for both scRNA-seq and
spatial transcriptomic data from different platforms. With
simulation studies and benchmark dataset analyses, we
demonstrated that DR-SC can improve clustering perfor-
mance while effectively estimating low-dimensional embed-
dings.

DR-SC relies on a hidden Markov random field model
with a smoothing parameter to perform spatial clustering.
The probabilistic framework of DR-SC allows us to adap-
tively update the spatial smoothing parameter that pro-
motes similar cluster assignments for neighboring tissue
locations in a data-driven manner. When the smoothness
parameter is set to zero, DR-SC performs clustering for
scRNA-seq data without spatial information. We developed
an efficient EM algorithm based on iterative conditional
mode and expectation-maximization (ICM-EM), making
DR-SC computationally efficient and scalable to large sam-
ple sizes.

In-depth analyses using scRNA-seq and spatial tran-
scriptomic data from different platforms showed that the
estimated clusters and embeddings from DR-SC effectively
facilitated the downstream analysis. First, we applied DR-
SC to a 10x Visium dataset for DLPFC to demonstrate
the improved spatial clustering performance of DR-SC and
further carried out conditional SVA to identify genes with
pure spatial variations but not cell-type differences. The ma-
jority of genes identified in SVA without adjustment for
cell-type-relevant covariates simply reflected cell-type dif-
ferences. Functional enrichment analysis showed that the
genes identified in SVA with adjustment for covariates were
enriched in pathways related to the DLPFC tissue. For
example, the most significant KEGG pathways including
Huntington’s disease and Alzheimer’s disease were identi-
fied in all 12 LIBD samples. Second, we applied DR-SC
to analyze two Slide-seqV2 datasets and found it outper-
formed both existing dimension reduction methods in terms
of visualization and existing spatial clustering methods in
terms of separation, as well as its usefulness in cell trajec-
tory inference. In the mouse olfactory bulb data, we iden-
tified some genes with interesting dynamic expression pat-
terns, such as Camk2b and Malat1. Küry et al. (73) re-
ported that Camk2b was important for learning and synap-
tic plasticity in mice, while Zhang et al. (74) reported a
potential cis-regulatory role of Malat1 gene transcription
in mice. Third, we applied DR-SC to analyze a seqFISH
dataset and showcased its ability to infer cell lineages based
on the reduced-dimensionality space estimated by DR-
SC. Among the identified genes with interesting dynamic
patterns over pseudotime, transcription factors Foxa1 and
Foxa2 are crucial in maintaining key cellular and functional
features of dopaminergic neurons in the brain (75) while

http://atlas.brain-map.org/
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Figure 6. Analysis of mouse embryo data. (A) Spatial heatmap of brain regions and other areas. (B) Spatial heatmap of cell types based on clusters identified
by DR-SC. (C) Spatial heatmap of cortical region identified by DR-SC. (D) tSNE plot of cell types and corresponding cortical regions, where the tSNE
projection was evaluated based on estimated low-dimensional embeddings using DR-SC. Note, the cortical regions and cell types are well separated. (E)
tSNE plot of inferred pseudotime using Slingshot based on the estimated low-dimensional embeddings and cluster labels for the cortical region from DR-
SC. (F) Heatmap of gene expression levels for the top 20 genes with significant changes with respect to the Slingshot pseudotime. Each column represents
a spot that is mapped to this path and is ordered by its pseudotime value. Each row denotes the most significantly changed gene expression.

Fgfr2 and Fgfr3 play important roles during early neural
development (76,77). Fourth, we demonstrated both the
higher Kendall’s and Spearman’s rank correlation coeffi-
cients between the true and inferred pseudotime using DR-
SC among 16 benchmark scRNA-seq datasets (Supplemen-
tary Text). Finally, using a CITE-seq dataset for CBMC, we
demonstrated that analysis using DR-SC can improve clus-
tering performance while facilitating the identification of
differentially expressed genes among the different cell types
in the analysis of scRNA-seq data (Supplementary Text).

There are several potential extensions that can be applied
to DR-SC. First, in the current study, we considered single
transcriptional profiles. The framework of DR-SC could be
naturally extended to perform joint-clustering analyses of
multiple samples by properly removing their batch effects.
Second, the fast-evolving technology of single-cell omics
provides opportunities to integrate omics profiles from dif-
ferent modalities for the same individuals. Extending DR-
SC by integrating multiple different omics techniques, such
as through the canonical correlation analysis framework
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(78) which is a nature extension of PCA towards multi-
ple modality analysis, will also likely achieve higher statis-
tical performance. Third, DR-SC essentially performs un-
supervised clustering, but with the availability of labels for
some cells/spots, it would be interesting to perform semi-
supervised clustering of those data. We will investigate these
issues in future work.

DATA AVAILABILITY

All codes in this paper are publicly available at
https://github.com/feiyoung/DR-SC.Analysis. The
source code is released under the GNU gen-
eral public license. The 16 benchmark datasets
with linear trajectory information are available at
https://zenodo.org/record/1443566#.XNV25Y5KhaR.
The cord blood mononuclear cells datasets are
available at https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE100866 via the accession number
GSE100866. The human dorsolateral prefrontal cor-
tex datasets on the 10x Visium platform are accessible
at https://github.com/LieberInstitute/spatialLIBD. The
mouse olfactory bulb data and mouse E15 neocor-
tex data on the Slide-seqV2 platform are available
at https://singlecell.broadinstitute.org/single cell/data/
public/SCP815/sensitive-spatial-genome-wide-expression-
profiling-at-cellular-resolution#study-summary. The
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SpatialMouseAtlas2020/.
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60. Asp,M., Bergenstråhle,J. and Lundeberg,J. (2020) Spatially resolved
transcriptomes–next generation tools for tissue exploration.
BioEssays, 42, 1900221.

61. Flavin,W.P., Bousset,L., Green,Z.C., Chu,Y., Skarpathiotis,S.,
Chaney,M.J., Kordower,J.H., Melki,R. and Campbell,E.M. (2017)
Endocytic vesicle rupture is a conserved mechanism of cellular
invasion by amyloid proteins. Acta Neuropathol., 134, 629–653.

62. Weickenmeier,J., Jucker,M., Goriely,A. and Kuhl,E. (2019) A
physics-based model explains the prion-like features of
neurodegeneration in Alzheimer’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis. J. Mech. Phys. Solid., 124, 264–281.

63. Stickels,R.R., Murray,E., Kumar,P., Li,J., Marshall,J.L., Di
Bella,D.J., Arlotta,P., Macosko,E.Z. and Chen,F. (2021) Highly
sensitive spatial transcriptomics at near-cellular resolution with
Slide-seqV2. Nat. Biotechnol., 39, 313–319.

64. Barmack,N.H. and Yakhnitsa,V. (2008) Functions of interneurons in
mouse cerebellum. J. Neurosci., 28, 1140–1152.

65. Srivatsan,S.R., Regier,M.C., Barkan,E., Franks,J.M., Packer,J.S.,
Grosjean,P., Duran,M., Saxton,S., Ladd,J.J., Spielmann,M. et al.
(2021) Embryo-scale, single-cell spatial transcriptomics. Science, 373,
111–117.

66. Steele-Perkins,G., Plachez,C., Butz,K.G., Yang,G., Bachurski,C.J.,
Kinsman,S.L., Litwack,E.D., Richards,L.J. and Gronostajski,R.M.
(2005) The transcription factor gene Nfib is essential for both lung
maturation and brain development. Mole. Cell. Biol., 25, 685–698.

https://arxiv.org/abs/1802.03426
https://openreview.net/forum?id=068E_JSq9O
https://doi.org/10.1101/2021.08.25.457696


e72 Nucleic Acids Research, 2022, Vol. 50, No. 12 PAGE 18 OF 18

67. Jankowski,M.P., McIlwrath,S.L., Jing,X., Cornuet,P.K.,
Salerno,K.M., Koerber,H.R. and Albers,K.M. (2009) Sox11
transcription factor modulates peripheral nerve regeneration in adult
mice. Brain Res., 1256, 43–54.

68. Sel,S., Patzel,E., Poggi,L., Kaiser,D., Kalinski,T., Schicht,M.,
Paulsen,F. and Nass,N. (2017) Temporal and spatial expression
pattern of Nnat during mouse eye development. Gene Exp. Patter.,
23, 7–12.
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