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Abstract We present here the 2011 update of the Auto-

Motif Service (AMS 4.0) that predicts the wide selection of

88 different types of the single amino acid post-transla-

tional modifications (PTM) in protein sequences. The

selection of experimentally confirmed modifications is

acquired from the latest UniProt and Phospho.ELM dat-

abases for training. The sequence vicinity of each modified

residue is represented using amino acids physico-chemical

features encoded using high quality indices (HQI) obtain-

ing by automatic clustering of known indices extracted

from AAindex database. For each type of the numerical

representation, the method builds the ensemble of Multi-

Layer Perceptron (MLP) pattern classifiers, each optimis-

ing different objectives during the training (for example the

recall, precision or area under the ROC curve (AUC)). The

consensus is built using brainstorming technology, which

combines multi-objective instances of machine learning

algorithm, and the data fusion of different training objects

representations, in order to boost the overall prediction

accuracy of conserved short sequence motifs. The perfor-

mance of AMS 4.0 is compared with the accuracy of pre-

vious versions, which were constructed using single

machine learning methods (artificial neural networks,

support vector machine). Our software improves the aver-

age AUC score of the earlier version by close to 7 % as

calculated on the test datasets of all 88 PTM types.

Moreover, for the selected most-difficult sequence motifs

types it is able to improve the prediction performance by

almost 32 %, when compared with previously used single

machine learning methods. Summarising, the brainstorm-

ing consensus meta-learning methodology on the average

boosts the AUC score up to around 89 %, averaged over all

88 PTM types. Detailed results for single machine learning

methods and the consensus methodology are also provided,

together with the comparison to previously published

methods and state-of-the-art software tools. The source

code and precompiled binaries of brainstorming tool

are available at http://code.google.com/p/automotifserver/

under Apache 2.0 licensing.

Keywords Post-translational modifications � AMS-4 �
High quality indices � MLP � Consensus

Background

Post-translational modification (PTM) is a chemical mod-

ification of a protein after its translation. During protein

synthesis, a protein is built using basic blocks of twenty

different amino acids. Then the process of modification is

taking place by attaching to them other biochemical

functional groups such as acetate, phosphate, various lipids

and carbohydrates, by changing the chemical nature of an

D. Plewczynski and S. Basu contributed equally to this work.

Electronic supplementary material The online version of this
article (doi:10.1007/s00726-012-1290-2) contains supplementary
material, which is available to authorized users.

D. Plewczynski (&) � I. Saha

Interdisciplinary Centre for Mathematical and Computational

Modelling, University of Warsaw, 5a Street,

02-106 Warsaw, Poland

e-mail: D.Plewczynski@icm.edu.pl

I. Saha

e-mail: indra@icm.edu.pl

S. Basu

Department of Computer Science and Engineering,

Jadavpur University, Kolkata 700032, India

e-mail: subhadip@cse.jdvu.ac.in

123

Amino Acids (2012) 43:573–582

DOI 10.1007/s00726-012-1290-2

http://code.google.com/p/automotifserver/
http://dx.doi.org/10.1007/s00726-012-1290-2


amino acid, or by making structural changes, like the forma-

tion of disulfide bridges. In the advent of massive next gen-

eration sequencing experiments, the availability of whole

proteomes requires accurate computational techniques for

investigation of protein modification sites in the high-

throughput scale. To address these needs we present here the

recent update of the AMS tool for identification of post-

translational modification sites in proteins using only

sequence information. The method is based on the consensus

between efficiently designed artificial neural networks,

trained on proteins from the current version of Swiss-Prot

database (Bairoch and Apweiler 1999) and Phospho.ELM

dataset (Diella et al. 2004, 2008). The earlier version of the

PTM prediction software was released as AMS 3.0 web server

(Basu and Plewczynski 2010), and attracted large interest

among the scientific community, we observed large internet

traffic on our web site http://code.google.com/p/automotif

server/. The popularity of AMS 3.0 software has prompted us

to release an upgraded version of the software, powered by the

high quality indices, physico-chemical features and the con-

sensus meta-learning algorithm.

The automatic prediction of PTM sites is an important area

of interest for the bioinformatics research community. The

currently available PTM prediction tools can be mostly cate-

gorised on the basis of their respective classification meth-

odologies and the scope of prediction. In addition some

researchers have developed consensus based approaches, that

combine several signature recognition methods to scan a

given query protein sequence against observed protein sig-

natures. PROSITE (Sigrist et al. 2002) and Sulfinator (Mon-

igatti et al. 2002) are typical examples in this category.

The other popular techniques mostly involve artificial

neural network, support vector machine, and other machine

learning approaches to PTM site prediction. These include

NetPhos (Blom et al. 1999) and NetPhosK (Blom et al.

2004; Hjerrild et al. 2004), NetOGlyc (Julenius et al.

2005), NetNGlyc, DictyOGlyc (Gupta et al. 1999),

YinOYang (Gupta and Brunak 2002), PredPhospho (Kim

et al. 2004), Scansite (Yaffe et al. 2001), GPS (Xue et al.,

20052006), PHOSITE (Koenig and Grabe 2004), Kinase-

Phos 2.0 (Wong et al. 2007), etc. Our previously developed

web server AutoMotifServer (AMS) (Plewczynski et al.

2005) for prediction of post-translational modification sites

in protein sequences also uses SVM classifier with both

linear and polynomial kernels. The software was available

freely only as the web server at http://ams2.bioinfo.pl/. The

currently available version of our AutoMotif Server (AMS-

3) (Basu and Plewczynski 2010) software predicts large set

of PTM types using MLP based predictors. More detailed

work was done for acetylation prediction by (Xu et al.

2010; Gnad et al. 2010) and (Li et al. 2009), who devel-

oped lysine acetylation prediction tools using the SVM

classifier. The recent work of Wan et al. (2008) designed an

efficient meta-predictor that organise and process predic-

tions from individual source prediction algorithms. They

compiled and evaluated their technique on four unbiased

phosphorylation site datasets, namely the four major pro-

tein kinase families: CDK, CK2, PKA and PKC.

Despite almost a decade of research on computational

solutions for this problem, there is still a room for

improvement of the precision of in silico methods. The

complex nature of functional sequence motifs influences

strongly the quality of classification, therefore impacting

negatively the prediction accuracy, to be more useful in

high-throughput context of systems biology studies. In this

paper, we present the consensus approach that is based on

fast machine learning method, namely, Multi-Layer Per-

ceptron (MLP) artificial neural network (Rumelhart et al.

1985), along with diverse sets of most informative amino

acids features selected by high quality indices clustering.

More specifically, the current work focuses on: (1) clus-

tering of amino acid indices features in three sets of high

quality indices (HQIs), comprising of 8, 24 and 40 different

features respectively. These three sets of feature vectors are

subsequently referred as HQI-8, HQI-24 and HQI-40

respectively in the rest of the manuscript, (2) estimate the

average and the best performances of the recall, precision

and AUC optimised MLP predictors on test datasets of 88

different PTM types, separately using HQI-8, HQI-24 and

HQI-40 feature vectors, along with the previously used 10

AMS-3 features (referred as AMS3-10 in rest of the man-

uscript) described in (Basu and Plewczynski 2010), (3) for

each of those amino acids representations we employ six

different consensus strategies among the saved networks

for the best recall, precision and AUC optimised predictors,

using the features described as AMS3-10, HQI-8, HQI-24

and HQI-40. The schematic block diagram of the devel-

oped consensus based prediction technique is shown in

Fig. 1a, b. The accuracy of new method is significantly

larger, when comparing with the previous versions of AMS

prediction tool (Basu and Plewczynski 2010). The brain-

storming consensus between efficiently designed MLP

pattern classifiers and diverse physico-chemical represen-

tations is capable of classifying highly complex and non-

linear biological sequence motifs, where non-trivial and

weak correlations between amino acid positions and types

are important. The proposed meta-learning approach hier-

archically improves the quality of predictions by combin-

ing results of several, differently optimised sub-methods.

Methods

We used as the training dataset proteins extracted from the

Swiss-Prot Release 57.5 (consisting of 470,369 entries), and

Phospho.ELM dataset version 8.2 downloaded from
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http://phospho.elm.eu.org/dataset.html web site. Phospho.

ELM version 8.2 contains 4,687 substrate proteins covering

2,217 tyrosine, 14,518 serine and 2,914 Threonine instances.

In our approach, the query protein sequence is dissected

into overlapping short sequence segments. Each segment is

represented using a vector of numerical values, where each

amino acid is described using its physico-chemical char-

acteristics. The database of AAindex (http://www.genome.

jp/aaindex/) has been used to analyse by recently

developed consensus fuzzy clustering technique for gen-

erating the subsets of HQIs (Saha et al. 2011). AAindex is a

database of numerical indices representing various phys-

ico-chemical and biochemical properties of amino acids

and pairs of amino acids. In 1988, Nakai et al. (Nakai et al.

1988) came up with 222 amino acid indices from published

literature and investigated the relationships among them

using hierarchical clustering analysis. Subsequently, Tomii

and Kanehisa (Tomii and Kanehisa 1996) enriched the

Fig. 1 a The schematic block

diagram of the consensus based

prediction server for Post-

Translational Modification sites

in Protein sequences.

b a detailed description of the

consensus algorithm is shown.

The input FASTA format

protein sequence is dissected

into 9 amino acid long

overlapping sequences.

Annotated sequence segment

databases for 88 PTM types are

collected from the recent

versions of Swiss-Prot and

Phiospho.ELM databases.

Features are extracted from

AAIndex database release 9.0.

Three sets of MLP based

classifiers are then trained to

generate AUC, Recall and

Precision optimised prediction

results. Six different consensus

schemes are then designed to

integrates the set of differently

optimised predictors into the

single meta-learning predictor,

and is able to boost the

prediction performance in

comparison with the single

classification methods

Consensus prediction of PTM in protein sequences 575
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AAindex database with 42 amino acid mutation matrices

and released as the AAindex2. Recently, 47 amino acid

contact potential matrices have been reported as AAindex3.

The database is continuously updated by Kawashima et al.

(Kawashima et al. 1999, 2008; Kawashima and Kanehisa

2000). Currently, 544 amino acid indices are released in

AAindex1 database.

However, the selection of the minimal/optimal set of

amino acid indices for different bioinformatics applications

is a difficult task and often involves adhoc/sub-optimal

choices. It is therefore necessary to group similar indices in

clusters and label representative cluster-indices. Moreover,

the clustering of Amino acid indices done previously by

Tomii et al. (Tomii and Kanehisa 1996; Kawashima et al.

2008) categorised 402 indices into six groups by using

hierarchical clustering technique. Those clusters/groups

represent Alpha and turn propensities, Beta propensity,

Composition, Hydrophobicity, Physico-chemical proper-

ties and other properties. However, 142 amino acid indices

of current database have not been clustered. These facts

motivated us to analyse the current AAindex database

using consensus fuzzy clustering, which we believe better

describe the complex nature of chemical and physical

similarity between amino acids. The consensus fuzzy

clustering technique has been developed by using the

majority voting of all recently proposed fuzzy clustering

techniques (Bezdek 1981; Krishnapuram et al. 1999;

Maulik and Bandyopadhyay 2003; Maulik and Saha 2009,

2010; Mauliket al 2010). After clustering of enhanced

AAindex database, we have found three (3) new clusters,

overall eight (8) clusters, named as Electric properties,

Hydrophobicity, Alpha and Turn propensities, Physico-

chemical properties, Residue propensity, Composition,

Beta propensity and Intrinsic propensities. The detail

description of the clustering method, clustering software

and supplementary material with clustering quality results

are given at http://sysbio.icm.edu.pl/aaindex/AAindex/

(Saha et al. 2011).

In order to provide the HQIs for the consensus fuzzy

clustering results, three different approaches are used, which

provide three different subsets of indices from the large AA-

index database. For computing the high quality indices 8

(HQI-8), medoid (centre) of eight clusters is considered,

which gives us indices called BLAM930101, BIOV880101,

MAXF760101, TSAJ990101, NAKH920108, CEDJ970104,

LIFS790101, MIYS990104. Similarly, for HQI-24 and

HQI-40, three and five indices are considered from each

cluster, respectively. For computing HQI-24, including the

cluster medoid, other two farthest indices from the medoid are

taken for each cluster. These two farthest indices are less

significant for that cluster. However, they give more divers-

able properties of amino acid to that subset. Similarly for

HQI-40, including the indices covered by the HQI-24 for all

clusters, other two nearest indices of the medoid are consid-

ered from each cluster, that give strength to the property of

medoids indices. All of these high quality indices HQI-8,

HQI-24 and HQI-40 are separately mentioned in the supple-

mentary (http://sysbio.icm.edu.pl/aaindex/AAindex/) with

their amino acid values. The above procedure of computing

HQIs is shown in Fig. 2 (Saha et al. 2011).

The identification of PTMs for each sequence segment

of the query protein is done using the set of feed-forward

artificial neural networks (ANN), which are trained with

Back-Propagation (BP) learning algorithm (Rumelhart

et al. 1986) to optimise the classification accuracy between

the positive and the negative samples in the randomly

chosen training subset of sequence segments. The optimi-

sation procedure is tuned to produce three different ANNs,

namely separately maximising the Recall (R), Precision

(P), and the AUC (A) values for the training dataset chosen

for each of the PTM type. For example, for PTM type

Phospho_PKA, 861 positive data samples are generated.

Each such data is represented as a 9 residues long

sequence. Negative data samples are taken from fragments

of sequences, where no known PTMs are observed. In

order to generate the train and test samples for classifica-

tion experiment, 577 samples (67 % of 861) are randomly

selected as training patterns, and the rest 284 samples are

Fig. 2 Illustrated the computational procedure of HQIs for two

clusters, ‘star’ points are considered for HQI-2, ‘star ? square’ points

are considered for HQI-6, and ‘star ? square ? circle’ points are

considered for HQI-10. In our case, number of clusters is 8, hence, we

got HQI-8, HQI-24 and HQI-40
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considered as test set. In both train and test datasets the

ratio between the positive and negative data samples are

maintained as 1:5. Then we extract appropriate features

(AMS3-10, HQI-8 etc.) for each of the data sequences. An

MLP classifier with BP learning strategy is then trained for

a fixed number of iterations over the training data samples,

to finally predict the test patterns. The hidden neurons (in

the only hidden layer) are varied from 2 to 20 in steps of 2.

During the training phase, we optimise the network (i.e.,

adjust interconnection weights) to generate optimum

Recall, Precision and AUC scores. The training is contin-

ued for a fixed number of iterations. To avoid over-fitting,

network weights are saved as intermediate files at different

stages of training. The network with best performance

(among the set of intermediate networks generated at dif-

ferent iterations during training) over the test set is finally

reported in this manuscript. In the training process, it may

so happen that an intermediate network generated at a

lower iteration may finally get selected as the best network

in that specific training process. Please note that the test

data was never used during the training and update of the

network weights. All the experiments in the current work

are run separately to train the A/R/P networks using the

AM3-10, HQI-8, HQI-24 and HQI-40 feature sets. A

detailed discussion involving the design issues of the MLP

classifiers and A/R/P optimisation strategies are discussed

in Basu and Plewczynski (2010).

To develop the consensus strategy for the current work,

we assign the n-star quality result (positive prediction

score) to any test sequence, where n is the number of

optimised ANNs (trained networks) agreeing for the

sequence fragment under consideration to be positive for a

specific PTM type. For example, when a test sequence is

classified as positive by all the trained neural networks

under consideration, the strength of positive prediction is

said to be of n-star quality. In contrast, if only one network

predicts the test sequence to be positive the prediction

quality is 1-star. For test of unknown sequences, an end-

user may tune the quality of prediction by choosing a

specific value of n. Please note that, for any value of

n = m; m C 1, quality consensus of the order (m - 1)-star

are considered as negative predictions. Now we proceed

with the aforementioned n-star quality consensus strategy

with different sets of input networks. Here we have worked

with six different sets of input network variations, by con-

sidering different sets of networks generated by AUC, Recall

and Precision optimised trainings for each PTM type.

Agreement over classification decisions is achieved by

(1) combining prediction decisions of different trained

neural networks generated by varying the number of hid-

den neurons in each of the optimisation categories A, R and

P. Since we varied the hidden neurons from 2 to 20, 10

trained networks are generated in each of the A, R and P

optimisation experiments. Therefore, we implement a

10-star consensus scheme for each of A, R and P optimi-

sation schemes. (2) Combining prediction decisions of all

neural networks obtained from A and R, thereby working

on 20 trained networks in a 20-star consensus scheme. (3)

Combining prediction decisions of all neural networks

obtained from A, R and P, i.e., a 30-star consensus scheme. (4)

Combining prediction decisions of three best performing

neural networks obtained from A, R and P, a 3-star consensus.

(5) In another consensus scheme, we combine networks across

different feature descriptors. 3 best performing networks from

A, R and P optimisations are considered for each of the 3

feature descriptors, HQI-8, HQI-24 and HQI-40. This gives 9

networks for a 9-star consensus scheme. (6) In another vari-

ation of the previous consensus approach, we combine 12 best

performing networks obtained using HQI-8, HQI-24, HQI-40

and AMS3-10 feature descriptors.

The consensus procedures designed in our work address

specific requirements from the biologists, generating high

recall/precision values for any given query sequence, using

respective recall/precision optimised network setups. In

addition, the network setup for optimum AUC area gives a

balanced prediction for query sequence, resulting in mod-

erately high (optimum) recall/precision values. The clas-

sification results are generated along with a probabilistic

confidence measure for such decision. The schematic block

diagram of the designed consensus based PTM prediction

scheme is shown in Fig. 1a, b. In the following section we

describe the detailed theory and notations involved in

implementation of the abovementioned consensus

algorithm.

Consensus

In general, we define a n-star quality consensus scheme as

Cn
N, where N is the number of neural networks participating

in the specific consensus strategy, and n(1 B n B N) is the

quality of prediction. More specifically, 1-star prediction

says that any one of possible N networks predicts the test

sequence to be positive for the PTM type under consider-

ation, and N-star represents that all networks agreed to the

decision. Along this principle, we define the 10-star quality

consensus prediction C10
n as the consensus over 10 varia-

tions of hidden neurons (hidden neuron counts 2–20 in

steps of 2) for AUC based optimisation. Similarly, we

define C20
n and C30

n that combine 20 network predictions

from A and R, and 30 network predictions from A, R and P

respectively. Subsequently, C3
n is defined as the consensus

among three best A, R, P networks, as described in (4)

above (in Methods section). C9
n and C12

n are defined as the

consensus over the best networks across different feature

Consensus prediction of PTM in protein sequences 577
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sets, as discussed in (5) and (6) respectively. In the fol-

lowing we first discuss the C10
n consensus algorithm and

then describe the other variations.

Let nA
k ; n

R
k ; n

P
k be the MLP networks with k neurons in

the hidden layer, designed to generate optimum AUC score

(A), Recall (R) and Precision (P) scores respectively over

the test dataset. Let pA
k ; p

R
k ; p

P
k be the prediction results

corresponding to the networks nA
k ; n

R
k ; n

P
k for any unknown

test pattern, where:

pA
k ¼

1; test pattern is classified as positive by nA
k

0; otherwise

n

Similarly pR
k ; p

P
k also generate binary prediction

decisions based on the classification confidence of the

corresponding MLP classifiers nR
k and nP

k respectively. Now

the general n-star consensus is designed as CN
n , where n =

minimum number of networks advocating for a test

fragment to be positive. The sum of prediction scores is

defined as SN
p . For example, in case of C10

n if,

S10
p ¼

P
k

pA
k ; k ¼ 2 to 20 in steps of 2, a test pattern is said

to be predicted with n-star quality if n� S10
p . Similarly, for

C20
n , we estimate S20

p ¼
P

k pA
k þ

P
k pR

k and for C30
n , S30

p ¼P
k pA

k þ
P

k pR
k þ

P
k pP

k , where k ¼ 2 to 20 in steps of 2 in

all cases.

For C3
n we first define a function Max AUC

over Testdata (MAT) to select the best performing net-

work in any given optimisation category. The performance

is evaluated in terms of maximum AUC score over the test

dataset, as already discussed above. Therefore, we first

compute nA
MAT ¼ MAT nA

k

� �
; k ¼ 2 to 20 in steps of 2. Sim-

ilarly, we compute nR
MAT ¼ MAT nR

k

� �
and nP

MAT ¼ MAT

nP
k

� �
. The corresponding prediction scores are for the three

selected networks are defined as pA
MAT; p

R
MAT and pP

MAT

respectively and the sum of prediction scores as,

S3
p ¼ pA

MAT þ pR
MAT þ pP

MAT.

In the case of C9
n we use the MAT function separately

for the three different feature sets under consideration for

the current work, viz., HQI-8, HQI-24 and HQI-40.

Therefore we define the function MAT� HQI� 8 to

generate three best performing nets as nA
MAT�HQI�8 ¼ MAT

�HQI� 8 nA
k

� �
; k ¼ 2 to 20 in steps of 2, and likewise

nR
MAT�HQI�8 and nP

MAT�HQI�8. In the same way three best

networks are generated by each of the functions MAT

�HQI� 24 and MAT� HQI� 40. The sum of the cor-

responding prediction scores is then defined as:

S9
p ¼ pA

MAT�HQI�8 þ pR
MAT�HQI�8 þ pP

MAT�HQI�8

þ pA
MAT�HQI�24 þ pR

MAT�HQI�24 þ pP
MAT�HQI�24

þ pA
MAT�HQI�40 þ pR

MAT�HQI�40 þ pP
MAT�HQI�40:

Similarly, for C12
n we use four different MAT functions

separately for the four different feature sets, viz., MAT

�HQI� 8; MAT� HQI� 24; MAT� HQI� 40 and

MAT� AMS3� 10. The sum of the corresponding

prediction scores is then defined as:

S12
p ¼ pA

MAT�HQI�8 þ pR
MAT�HQI�8 þ pP

MAT�HQI�8

þ pA
MAT�HQI�24 þ pR

MAT�HQI�24 þ pP
MAT�HQI�24

þ pA
MAT�HQI�40 þ pR

MAT�HQI�40 þ pP
MAT�HQI�40

þ pA
MAT�AMS3�10 þ pR

MAT�AMS3�10 þ pP
MAT�AMS3�10:

As discussed before, n-star quality result is obtained for

any specific PTM type between the ANN networks in any

of the six ways, viz., C10
n ;C

20
n ;C

30
n ;C

3
n;C

9
n or C12

n . We

assign the statistical significance based on ‘‘how many

ANNs agree that selected fragment is predicted as Positive

for a PTM type’’. Implementation and performances of

these consensus approaches are discussed in details in the

following section.

Results and discussion

In the current work we have implemented multiple con-

sensus schemes to improve the recognition accuracy of the

existing A/R/P optimised single network accuracies. Detail

experiment with all the positive samples for each of 88

PTM types is conducted to validate the findings. The

experiment is conducted with the optimised AUC, Recall

and Precision networks over 10 different hidden neuron

variations for each PTM type during the training process.

System and methods related to these optimum single net-

works are reported in one of our recent works (Basu and

Plewczynski 2010). AUC, Recall and Precision perfor-

mances corresponding to the training and test datasets of 88

different PTM types is given in the supplementary excel

sheet. The objective of the current work is to design a

consensus based meta-prediction scheme over such trained

networks. To compare the current results with the single

network performances only the AUC values are consid-

ered. Detailed experimental results for n-star quality pre-

dictions for C10
n ;C

20
n ;C

30
n ;C

3
n;C

9
n and C12

n consensus

schemes are given in the supplementary excel sheet.

Table 1 shows overall comparison of single network per-

formances with the variations of n-star consensus results

for 15 most promising PTM types, where significant per-

formance gains are observed. It may also be observed from

the experiments that the consensus strategy improves the

prediction performances for almost all the PTM types,

considered for the current work.

We have also compared the performance of the current

experiment with the existing software tools, viz., GPS,
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KinasePhos, NetPhosK, PPSP, PredPhospho, Scansite and

the Meta-predictor tool, along with our previously devel-

oped AMS-3 software. Four significant PTM types,

CDK_group, CK2_group, PKA_group and PKC_group are

considered for this benchmark comparison. The designed

consensus strategy improves the recognition performance

of the existing AMS-3 software in case of most PTM types

under consideration. Details of this experiment are shown

in Table 2. Apart from our AMS-3 tool, the PPSP, Net-

PhosK and Meta-predictor tools came in comparison with

the developed AMS-4 software, with respect to the repor-

ted AUC scores. In fact, the performance of AMS-4 is less

than NetPhosK and Meta-predictor scores in the case of the

CK2_group. Furthermore, in the case of the PKA_group,

the performances of AMS-4 and Meta-predictor are found

to be at par. PPSP scores are also found to be close to the

AMS-4 performances for the PKA_group and the

CK2_group. However, for the PTM types, CDK_group and

PKC_group, AMS-4 performance is found to be higher

than the other tools under consideration. Overall, it may

fairly be assessed that the performance of the new AMS-4

software is noteworthy and comparable with the existing

software tools in this domain. In case of Lysine acytelation

predictions, the current AMS-4 software also performs

satisfactorily in comparison with some of the tools dedi-

cated for the said prediction purpose. The average Recall/

Sensitivity reported in (Xu et al. 2010) is in the range of

80 %. Similarly (Gnad et al. 2010) have used SVM to

predict acetylated residues and reported Recall of 78 % on

input data containing equal numbers of modified and non-

modified residues. Acetylation prediction on lysine resi-

dues in (Li et al. 2009) has shown accuracies in the range

Table 1 Experimental results on 15 important PTM types are shown, where the developed consensus scheme is found to be significantly

improving the corresponding AUC scores of the best single network based prediction strategies

PTM Single network AMS-4 Meta-Consensus Gain over AMS-3 (%)

AMS-3

Average Maximum Maximum Average Maximum

Phosphothreonine_CDC2 0.685068 0.698365 0.910212 32.864475 30.33471

GRK_group 0.614195 0.693856 0.776483 26.422879 11.908379

CK1_group 0.4375 0.4375 0.541667 23.8096 23.8096

AMPK_group 0.769388 0.77551 0.94898 23.342189 22.368506

Abl 0.689333 0.693333 0.833333 20.889759 20.192317

Lyn 0.676389 0.680556 0.805556 19.096555 18.367335

Phosphoserine 0.734679 0.769004 0.865732 17.838131 12.578348

Tyrosine 0.81172 0.827492 0.954545 17.595353 15.353985

PLK1 0.729353 0.743781 0.854892 17.212379 14.938671

MAPK14 0.738125 0.74375 0.8625 16.850127 15.966387

GSK-3_group 0.747253 0.747253 0.870879 16.544062 16.544062

PDK-1 0.7375 0.8125 0.854167 15.819254 5.1282462

MAPKAPK2 0.647619 0.649471 0.743386 14.787553 14.46023

ATM 0.83347 0.842033 0.950549 14.047176 12.887381

Syk 0.685417 0.6875 0.770833 12.461903 12.121164

Table 2 Performance (AUC

score) of the current AMS 4.0

experiment, for some of the key

PTM types is compared with the

existing state-of-the-art
software tools

The highest performances are

highlighted corresponding to

each PTM type

CDK_group CK2_group PKA_group PKC_group

GPS 0.87 0.81 0.84 0.75

KinasePhos 0.87 0.75 0.82 0.74

NetPhosK 0.77 0.93 0.87 0.75

PPSP 0.87 0.87 0.88 0.79

PredPhospho 0.86 0.77 0.85 0.71

Scansite 0.75 0.77 0.76 0.63

Meta-predictor 0.89 0.93 0.89 0.82

AMS 3.0 0.92 0.87 0.88 0.84

AMS 4.0 0.95 0.88 0.89 0.86
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75–77 % using SVM pattern classifier. In the current work

we predict acetyllysine PTM type with over 90 % Recall,

Precision and AUC scores. Although the comparison is not

performed on an identical test dataset, it may safely be

concluded that the current consensus approach performs

satisfactorily for acetylation predictions as well.

The current experimental protocol improves the per-

formance of our previously designed AMS 3.0 tool by

more than 6 % on average (over all the 88 PTM types).

Please note that, for many PTM types the prediction

accuracy was already in the nineties, thereby having lim-

ited scope in increment of performance numbers. Keeping

that in mind, an average performance increment of 6 %

may be considered significant. The developed AMS 4.0

tool is a big step ahead of our previous AMS 3.0 tool. The

key improvements are, (1) development of a wide variety

of consensus strategies to combine the strength of multiple

single networks (MLP based classifiers) to boost the pre-

diction performance for a wide variety of PTM types, (2)

clustering of amino acid physico-chemical features

(http://sysbio.icm.edu.pl/aaindex/AAindex/), categorise them

as three different indices sets, viz., HQI-8, HQI-24 and HQI-

40, and use them prudently for solving the problem under

consideration, (3) development of a consensus among the

heuristically chosen AMS 3.0 features, and the three sets of

HQI features, and (4) development of a meta-consensus

strategy by selecting the best approach for each PTM type.

In the current work, we first employ the consensus

strategy over the existing classifiers, designed for the AMS

3.0 tool. The average AUC performances of C10
n ;C

20
n ;C

30
n

and C3
n based consensus strategies are compared with the

corresponding single network performances. More specif-

ically, the AMS 4.0 consensus predictions for each PTM

are compared with two different AMS 3.0 performance

measures, viz., (1) average AUC score over 10 different

variations of hidden layer neurons for the MLPs, and, (2)

maximum AUC score over the 10 variations. In the same

way, we compare the AMS 4.0 performance (for

C10
n ;C

20
n ;C

30
n and C3

n) with the single network perfor-

mances corresponding to the HQI-8, HQI-24 and HQI-40

feature sets. It may be observed from the detailed com-

parison table, given in the supplementary excel sheet, that

the average of average AMS 3.0 AUC scores over 88 PTM

types is around 83.45 %, while the average of maximum

AUC scores is 84.20 %. Using consensus prediction over

AMS 3.0 results, the average AUC score could be

enhanced by around 2 %. The C30
n consensus strategy is

found to be superior among the four contender consensus

schemes. The average AUC score of 85.88 % is achieved

in case of C30
n over AMS 3.0 results. The average C30

n AUC

scores over HQI-8, HQI-24 and HQI 40 feature sets are

reported as 84.05, 84.88 and 85.57 %, an improvement of

around 2 % in corresponding single network performances.

Although the average benefit of the use of HQI features

over AMS 3.0, are not so apparent from the average con-

sensus results, the choice of HQI features contributed in

specific PTM types with significant gains. In addition, we

have designed the C9
n and C12

n consensus strategies by

combining classifiers from different feature combinations.

The first scheme combines all the three HQI feature com-

binations and the later combines all the four, viz., AMS3-

10, HQI-8, HQI-24 and HQI-24. The average AUC score of

87.79 % is achieved for C12
n (best among the six consensus

schemes and a gain of around 4 % over average AMS 3.0

performance). Finally, a meta-consensus strategy identifies

the best scheme (among the possible six) for each of the

PTM types, and the average AUC score of 88.79 % is

achieved.

It may be worth mentioning in this context that the

recognition performances reported in the original AMS 3.0

work (Basu and Plewczynski 2010) are not used in the

current work for the comparison purpose. This is primarily

because the sharp difference in the two experimental pro-

tocols. Current version of the dataset is very different from

the earlier one and incorporates newer/additional variations

of positive samples for most PTM types. In addition, the

earlier dataset had many redundancies in positive samples

(similar short sequences amino acid collected from differ-

ent proteins), which are completely removed in the current

dataset. Therefore, to compare the performance of AMS

4.0 we have recomputed the complete AMS 3.0 experiment

to develop the new test-bed for performance evaluation.

We also compute performance gains for individual PTM

types by comparing the meta-consensus AUC score with,

(1) the corresponding average AMS 3.0 score for the PTM

type, and (2) the maximum AMS 3.0 AUC score. From the

supplementary sheets and from Table 1, it may be observed

that up to 32 % performance gain (with respect to the

average AMS 3.0 AUC score) could be achieved using the

AMS 4.0 tool. More than 10 % average performance gains

could be achieved for 21 PTM types. Overall, 6.94 %

performance gain is observed for 88 PTM types. The

average gains with respect to the maximum AUC scores of

AMS 3.0 tool is estimated as 5.88 %. As for example, for

the PTM type Phosphothreonine_CDC2 an average per-

formance gain of 32.86 % is observed. The corresponding

gain with respect to the maximum AMS 3.0 AUC score is

30.33 %. The average AUC score is improved from 68.5 %

to 91.02 % in this case. For PTM types GRK_group,

CK1_group, AMPK_group and Abl over 20 % boost over

average AUC score is observed. Key PTM types like

Phospho_PKA, Phospho_PKC, Phospho_CDC2 and Phos-

pho_auto have registered performance gains of 2.75, 2.79,

5.12 and 2.92 % over corresponding maximum AUC
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scores of AMS 3.0. In all these cases the AMS 3.0 per-

formances were already in the range of 88-92 percent,

thereby limiting the scope of high improvements. In case of

some more PTM types like PKA_group, PKB_group,

PKC_group, CDK_group and CK2_group the meta-con-

sensus AUC scores could be enhanced up to 88.66, 93.38,

85.63, 95.01 and 88.23 %, respectively, with average gains

of around 3 % over AMS 3.0. In general, for 88 different

PTM types, performance gains could be achieved in almost

all cases. However, for PTM types acetylglycine, Allysine,

Cysteine_amide and Cysteine_methylsome, performance

gain (over AMS 3.0) could not be achieved in the current

work. Furthermore, in case of acetylserine and Pyrrolidone,

the average performance could be improved marginally,

but the maximum AUC score remains same as the corre-

sponding AMS 3.0 scores. In future, we may need to

explore these specific cases even further, by enriching the

respective training and test databases and by selecting

some additional features, to improve the results for these

six PTM types.

Conclusions

In the current work, we present the 2012 update of the

AutoMotif Service (AMS) that predicts the wide selection

of 88 different types of the single amino acid post-trans-

lational modifications (PTM) in protein sequences, using

high quality indices (HQI) obtaining by automatic clus-

tering of known indices extracted from AAindex database.

In order to boost the overall prediction accuracy, a con-

sensus is built using brainstorming technology that com-

bines multi-objective instances of machine learning

algorithm. Among different consensus strategies, the C12
n

consensus scheme is found to give superior results in

comparison to the n-star consensus schemes, thereby jus-

tifying the choice of HQI features. Our software improves

the average AUC score of the earlier version by close to

7 % as calculated on the test datasets of all 88 PTM types.

It may be worth mentioning in this context that the con-

sensus strategy always retains the prediction quality of the

single network based prediction schemes. The consensus

meta-learning methodology on the average boosts the AUC

score up to around 89 % over all PTM types. The overall

boost is however moderate because of limited improve-

ment potential of the highly optimised networks for many

PTM types. In many cases, the AUC scores of such single

networks are already in excess of 90 %. In a nutshell,

significant performance improvement for most PTM types

could be achieved in the AMS 4.0 software using the

designed consensus strategy, without losing quality for the

others, giving added value to the existing AMS 3.0 pre-

diction software.
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